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Abstract 21

The radionuclides 14C and 3H may both be released from nuclear facilities. These 22
radionuclides differ from most others in that they are isotopes of macro-elements which 23
form the basis of animal tissues, feed and, in the case of 3H, water. There are few 24
published values describing the transfer of 3H and 14C from feed to animal derived food 25
products. Approaches are described which enable the prediction of 14C and 3H transfer 26
parameter values from readily available information on the stable H or C concentration of 27
animal feeds, tissues and milk, water turnover rates, and feed intakes and digestibilities. It 28
is recommended that the concentration ratio between feed and animal product activity 29
concentrations be used as it is less variable than the transfer coefficient (ratio between 30
radionuclide activity concentration in animal milk or tissue to the daily intake of a 31
radionuclide).32

Keywords: Carbon-14, tritium, milk, meat, eggs, concentration ratio, transfer 33
coefficient34

35



1.  Introduction36

37

Whilst the transfer of radionuclides to farm animal products has been the focus of 38
many reviews (e.g. NRPB, 2003; USNRC 2003) these either largely neglect 3H and 14C, 39
or give them brief consideration (e.g. IAEA 1994). In this paper we review equilibrium 40
transfer parameters for 3H and 14C based on data or models with uncertainty ranges and a 41
discussion of the effects of diet and production. An aim of the paper is to provide input 42
into the revision of the International Atomic Energy Agency’s Handbook of Parameter 43
Values for the Prediction of Radionuclide Transfer in Temperate Environments (TRS-44
364) (IAEA 1994; Santucci & Voigt 2005).45

1.1 Peculiarities of 3H and 14C transfer to animal products46

Compared to most other radionuclides the predominant factor which makes 3H and 47
14C special is that they are radioactive isotopes of essential macro-elements which 48
constitute the building blocks of animal tissues and feed components. The predominant 49
form of 14C released from nuclear installations is 14CO2. Depending upon reactor type, 50
other chemical form such as hydrocarbons (e.g. 14CH4), 14CO and carbonyl sulphide 51
(14COS) (Thorne, 2003) are also emitted. These other forms of 14C are unlikely to require 52
special consideration with regard to animal metabolism because plants and soil micro-53
organisms convert 14CO, 14CH4  and  14COS to 14CO2 (Maul et al, 2005). However, 54
Howard et al (submitted) have recently demonstrated that 35S ingested by dairy goats as 55
COS35 was metabolised differently to other forms of 35S administered.56

The predominant forms of tritium released by nuclear facilities are tritiated water 57
(HTO) and gas (HT). Approximately 10% of atmospheric tritium discharges from heavy 58
water reactors are as HT with small amounts of tritiated hydrocarbons (IR-2003). Other 59
nuclear facilities emit predominantly HT (Murphy 1992) and radiochemical factories can 60
have significant liquid release in organic forms (Leonard 2001). Tritium gas is converted 61
to tritiated water by soil bacteria.  Organic forms of tritium, as released by radiochemical 62
factories, are generally persistent in the environment.63

Through photosynthesis and other metabolic processes, plants convert HTO and 64
14CO2 into various organic compounds, predominately carbohydrates, protein and, to a 65
lesser extent, lipids. Metabolic processes in animals transform plant organic compounds 66
to different animal organic compounds; the composition of animal tissues is 67
predominantly lipids and protein with some carbohydrates. Organic tritium exists as 68
exchangeable and non-exchangeable forms. Exchangeable organic tritium is bound to 69
hydrogen, nitrogen or sulphur in chemical groups that can dissociate and exchange 70
rapidly with tritium in the HTO pool (Diabate, 1993; Belot et al, 1996).  Therefore, 71
exchangeable organic tritium has similar properties to HTO and can be considered to be 72
part of the HTO pool. Non-exchangeable, or organically bound tritium (OBT), is carbon-73
bound tritium formed through biological processes in plants and animals. Organically 74
bound tritium is radiologically important because it has a considerably longer retention 75
time in the body than HTO (Diabate 1993).. 76

At equilibrium, about 99 % of the dose to humans from 14C is via ingestion with 77
only approximately 1 % from inhalation (Holtum, 1986). Similarly, when considering 78



transfer to farm animals, inhalation, and drinking water, can generally be ignored as a 79
source of 14C (Thorne 2003). Consequently, the transfer from organic carbon in feed to 80
animal products is the only pathway that needs to be taken into account. The transfer of 81
tritium is more complicated, because intakes may be from HTO (in drinking water or 82
feed), from OBT in feed, or inhalation of HTO and HT. Tritium (from HTO) can also be 83
absorbed through the skin. Animals ingesting contaminated vegetation will metabolise 84
14C and OBT for maintenance energy, growth or production. Both tritium and carbon are 85
transferred through the environment without bioaccumulation in any compartment 86
(Brown et al, 1996), and concentrations in the environment for chronic releases are most 87
easily estimated using a specific activity approach (Evans 1969). This assumes that the 88
specific activity, 3H/1H or 14C/12C, in all environmental compartments is the same at a 89
specified location. Specific activity assumptions, which are used in many regulatory 90
models, result in upper estimates because complete equilibrium in all environmental 91
compartments is unlikely to be attained.  For tritium, alternative approaches, taking into 92
account differences between HTO and OBT have been proposed to model transfer to 93
animal derived food products (Galeriu, 1994; Galeriu et al, 2001; Peterson et al, 2002). 94

95

2. Equilibrium transfer parameters96

97

The main difficulty in providing recommended transfer parameter for 3H and 14C is 98
the paucity of relevant experimental data with the exception of the transfer to cows milk 99
following ingestion of HTO (see review by Thorne et al 2001).  Consequently, modelling 100
approaches and specific activity assumptions have to be relied upon.101

The transfer of radionuclides from diet to animal derived food products has for 102
many years been expressed as the equilibrium transfer coefficient (Ff for meat; Fm for 103
milk) (Ward et al. 1965) which is the fraction of daily activity intake appearing in 1 kg 104
(or 1 l) of animal product:105
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where:107
Cap - concentration of tritium or 14C in animal produce (Bq kg-1 fresh 108

 weight (fw)109
A         - daily radionuclide intake (Bq d-1)110
Cf -  concentration of tritium or 14C in animal feed (Bq kg-1 fw)111
Qf - daily feed consumption (kg fw d-1).112

Cf and Qf, both can also be defined in dry matter units (Bq kg-1dm, kg dm d-1, 113
respectively).114

Some authors have suggested that a simple transfer ratio (CR) may be more 115
appropriate especially when considering homeostatically controlled macro-elements such 116
as 3H and 14C (Galeriu et al. 2001; Howard et al. submitted):117
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Table 1 presents a summary of previously recommend transfer coefficients 119
(USNRC, 1977; CSA 1987; GRG, 1990; IAEA 1994) for 14C and 3H from dietary HTO. 120
In addition, because of the importance of OBT to dose, the IAEA (1994) also 121
recommended transfer factors for the milk and meat of goats after OBT feeding. Table 1 122
demonstrates the absence of many values for animal products. In this paper a more 123
complete list of transfer parameters is proposed; this list includes potential ranges for the 124
transfer parameters which are based on specific activity approaches, the small amount of 125
experimental data that is available and approaches used in recently proposed models. 126

127

2.1 Carbon-14128

The majority of carbon intake by farm animals is in organic forms and the same 129
will be true for 14C. The carbon intake from feed is between 10 and 20 g C d-1 kg-1 per kg 130
of body weight, whilst the retention from inhaled carbon dioxide is less than 0.2 mg C d-1 131
kg-1 (Watkins et al 1998) and that drinking water less than 2 mg C d-1 kg-1. In both feed 132
and animal tissues, inorganic carbon is less than 1 % of the total carbon. Consequently, in 133
modelling 14C transfer we need only to consider the transfer of organic carbon using the 134
dry matter intake, and dry matter concentrations of organic 14C and 12C. Applying the 135
specific activity approach (to give conservative estimates) to Equation (1) we obtain:   136
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where:139

Cap - concentration of 14C in animal produce (Bq kg-1 fresh weight)140

C
apC - concentration of C in animal produce (kg kg-1 fresh weight)141

Cfdm - concentration of 14C in animal feed (Bq kg-1 dry matter)142

C
fdmC - concentration of C in animal feed (kg kg-1 dry matter)143

Qfdm - daily feed consumption of animal (kg DM d-1)144

145

The composition of animals diets can vary considerably, but the carbon content per 146
kg dry matter (DM) shows less variability (Tables 2 and 3).  Table 4 presents typical 147
carbon contents of animal products (Geigy 1981). Whilst this may vary depending on 148
breed, level of nutrition, diet composition and meat quality, variation is not large; 149
coefficients of variation are characteristically   < 10 % for egg, about 10 % for milk and 150
up to 30 % for meat (Geigy, 1981, McDonald et al, 1995).  151

152

Daily animal feed intake has a large variability due to breed, diet quality, 153
production level and environment. There are differences between highly efficient 154
agricultural systems compared with subsistence farming. For example a sheep of similar 155



mass and growth rate can consume twice the mass of food from mountain rangeland than 156
it does when stabled. (Freer et al, 2002). A small cow with only 5 Ld-1 milk productions 157
will consume about 8 kg dm of grass, but a large cow with 40 Ld-1 milk needs up to 25 kg 158
dm d-1. A high concentrate diet will reduce the feed intake compared with a diet of 159
pasture grasses.160

 Using values presented in Tables 3 and 4, transfer coefficients for 14C have been 161
derived according to Equation (3) (Table 5). The typical live-weights, production rates 162
and daily dry matter intake rates (based on average live-weight and moderate production 163
rates according to practice in Europe and North America) assumed are also shown. 164
Ranges in transfer coefficient have also been estimated for varying animal mass and 165
production (which defines the intake rate of DM and hence C) over ranges applicable for 166
temperate climates. Estimated transfer coefficients can be seen to vary by up to 5-fold 167
depending upon the assumption made with regard to mass, production and diet; milk 168
yield is the main contributor to variability. However, the concentration ratio, also shown 169
in Table 5, is subject to less variation caused by most animal and dietary parameters. 170
Because the coefficient of variation for the carbon content in animal food is less than 10 171
% and in animal products is generally 10-40 %, the concentration ratio range is estimated 172
to vary by less than 25 % of the average values in Table 5. Concentration ratios are also 173
more similar between species because they do not include dry matter intake (which varies 174
considerably between species) in their derivation. This agrees with Table 4 which 175
demonstrates that the carbon content of milk or meat does not vary greatly between 176
species. Whilst transfer coefficients have previously been suggested by some 177
organisations (e.g. Table 1) we propose that concentration ratios for 14C should be used 178
be instead, because concentration ratios are more robust and can be used reliably in 179
diverse situations. Ranges of transfer factor and concentration ratios given in Table 5 180
apply also to extensive grazing systems and subsistence farming.181

182

2.2 Tritium183

As discussed above, 3H can be ingested by animals as either, or typically both,184
HTO (food and drinking water) and organic matter, including OBT. Inhalation and skin 185
absorption are also possible routes of HTO intake. Exchangeable organic tritium and 186
HTO rapidly equilibrate with body water.  Organically bound tritium from food is 187
metabolised by animals and partially converted to HTO.  Body HTO is also partially 188
metabolised to OBT. Consequently, the equilibrium activity concentrations of HTO and 189
OBT in animal products ([HTO] and [OBT] respectively) are given by:190

[ ] OBTOHHTOHH IFIFHTO += [4]191

[ ] OBTOOHTOHO IFIFOBT += [5]192

Where: FHH is the transfer coefficient from dietary HTO to product HTO (d kg-1); 193
FHO is the transfer coefficient from dietary HTO to product OBT (d kg-1); FOH is the 194
transfer coefficient from dietary OBT to product HTO (d kg-1); FOO is the transfer 195
coefficient from dietary OBT to product OBT (d kg-1); IOBT and IHTO are the daily intakes 196
of OBT and HTO respectively (Bq d-1).197



Whilst the specific activity approach can be adapted to provide a simplified and 198
conservative assessment (Peterson and Davis, 2002; Raskob, 1994), recently a model for 199
tritium concentrations in animal products based on hydrogen metabolism was proposed 200
(Galeriu et al., 2001). The model utilises parameters which are readily available and 201
allows predictions to be made for any animal product (for which the parameters are 202
available). The model equations are (the reader should refer to Galeriu et al. (2001) for 203
the derivation of these):204

BwBw

tw
HH M

F
λν
ν

= [6]205

DHH
BwBw

Dtw
OH FF

M
FF ==

λν
ν

[7]206

wBBw

ot
HO M

mSARF
λν111.0

= [8]207

OBH

HHOHOot
OO I

IFmF −
= [9]208

Where: 209

νtw is the fraction of tissue or pool, t, composed of water; 210

νBw is the fraction of the whole body composed of water;211

λw is a first order rate coefficient describing the body water turnover rate (d-1);212

MB is the animal’s live-weight (kg)213

FD is the dry matter diet digestibility;214

mot is the mass of organically bound hydrogen in 1 kg of tissue (kg kg-1);215

IOBH is the daily dietary intake of hydrogen in organic forms (kg d-1) determined by the dry 216
matter intake and composition;217

IHHO is the daily total intake of hydrogen as water (kg d-1)218

SAR is the ratio of the specific activity of OBT in the animal product o the specific 219
activity of HTO in the body water (the authors assumed a value of 0.25 for SAR based on 220
the results from small monogastric animals)221

and the constant 0.111 is the mass of hydrogen in water (kg kg-1)222

The total water flux of animals, given by νBwMBλw, includes drinking water, water 223
from food, respiration, skin absorption and metabolic water. Ambient temperature 224
influences dry matter and water intakes, whilst the activity level of an animal influences 225
feed intake. Other variables, such as diet composition and breed, can be considered and 226
the model can be applied to various climate and agricultural practices if specific input 227
data are known.228

When compared to available experimental data, there was good agreement for FHH, 229
FOH and FOO between the observed and predicted transfer coefficient values (see Figure 230
1). In the case of FHO there was an under-prediction of about 25% which may have been 231



due to the SAR value used (0.25) being derived from small mammal experiments whilst 232
all the available observed data were for ruminants. The discrepancy may be due to the233
higher carbohydrate digestion and rumen bacterial activity of ruminants. However, this 234
disagreement is likely to be of little importance because the pathway from HTO to OBT 235
makes only a small contribution to a tissue's overall 3H content. Tables 6 and 7 present 236
tritium transfer coefficients (for temperate climates) and ranges using the model of 237
Galeriu et al. and the same assumptions for animal mass and production level as in the 238
case of 14C (i.e. Table 5); Tables 2 to 4 present data on the hydrogen contents of animal 239
tissues and feeds used. Ranges were assessed considering animal mass, production level 240
and diet variability under European conditions. For example, if straw are only used for 241
cows, this will decrease the transfer coefficients to milk compared with a grass only diet.242

In Tables 6 and 7 we present total tritium transfer coefficients after intakes of HTO 243
(FHTO=FHH+FHO) or OBT (FOBT=FOH+FOO). The fraction of OBT in animal produce was 244
estimated as FHO/ FHTO or FOO/ FOBT.245

To apply the concentration ratio in the case of tritium we have to address the 246
occurrence of HTO and OBT in both intake and product:247

CRHTO=(FHH+FHO)* Iw [10]248

CROBT=(FOH+FOO)*Idm [11]249

Where Iw is the total water intake (including drinking water and water from food)250
and Idm is the total dry matter intake 251

When the CR approach is used, the concentration of HTO in intake water must 252
refer to total water and not only to drinking water. 253

From equations 4-11 we obtain254

CRHTO=νtw+SAR* mot [12]255

CROBT=(νtw*FD)*Idm/(Iw) +( mot-SAR* mot)/Coh                          [13]256

With Coh the concentration of organic hydrogen in the animal diet (kg kg-1dm).257

258

Galeriu et al. (2001, 2003) also performed a limited sensitivity analysis varying 259
input parameters within known ranges (Table 8). For dairy cows the parameter which 260
resulted in the greatest variation in estimated transfer coefficients was milk yield, as in 261
the case for 14C. Water intake and food digestibility may be sources of uncertainty if 262
specific information is missing.263

264

In the above assessment we used the metabolic model of Galeriu et al (2001), 265
because the model better takes into account the formation of OBT in animal products and, 266
if input information is available, can be applied to various environments and animal 267
managements regimes. Alternate models have also been published, based on specific 268
activity approaches and considering OBT. NEWTRIT (Peterson and Davis 2002), a 269
model formulated in terms of the tritium-to-hydrogen ratio in each environmental 270
compartment, predicts concentrations of HTO and OBT in animal products, for a generic 271



diet and has been used for compliance assessment by the US Environmental Protection 272
Agency. An animal model based on water balance between intake and animal product is 273
found in DCART (Peterson, 2004) and applied under Californian conditions. Both 274
NEWTRIT and DCART consider all pathways for water intake (drinking water, food, 275
metabolic, respiration) and mixed diets (of pasture, hay and grains). In DCART, the 276
transfer to OBT in animal produce is addressed with some simplified assumptions277
concerning the role of OBT. When predictions of the Galeriu et al model were compared 278
with probabilistic results from DCART (Peterson 2004), the deterministic (Galeriu et al) 279
results are within the DCART predicted ranges (Figure 2).280

In a deterministic comparison between the metabolic model and DCART, with the 281
same input for both models, the only significant difference is the concentration of OBT in 282
animal products, DCART giving lower values up to 50 %. DCART is a user-friendly 283
spreadsheet model that assesses dose to the public for routine tritium emissions.284
DCART’s atmosphere-soil-plant pathways have been validated in many practical 285
assessments (see Peterson 2004). DCART’s underestimate of concentrations of OBT in 286
animal products contributes little to the uncertainty in the total dose.287

The approach presented by Galeriu et al has also been used to derive concentration 288
ratios in Tables 6 to 8. As was seen for 14C, concentration ratios for tritium are less 289
dependent on input parameters than transfer coefficients (Table 8), although food 290
digestibility is important to the OBT concentration ratio.  Concentration ratios, again like 291
14C, are also more similar between species (Tables 6 and 7) than are transfer coefficients. 292
Consequently, CR values describing 3H transfer to animal products are recommended 293
over transfer coefficients.294

295

3. Discussion296

Using the approaches outlined above 3H and 14C concentration ratios can be 297
relatively easily predicted for animals other than those typical of North American and298
European conditions. For example CR for 14C in horse milk and meat of about 0.11 and 299
0.33, respectively, are estimated, using available animal metabolism information (Geigy 300
1981, Stoica 1995, Minesota 2006). These values are slightly lower than for other farm 301
animals in Table 5, reflecting lower fat content.  Preliminary values for tritium CR in 302
horse milk, (CRHTO=0.9, CROBT=0.33), (Table 9), are not very different from other 303
animals. For horse meat the preliminary CR given in Table 9, are similar to the values in 304
Tables 6 and 7. CR values for the horse can vary due to different environmental 305
conditions and grazing practices, but because the variability in CR is not too high, the 306
above values can be recommended as default values. 307

In Asia yak are specific domesticated mammals, living at high altitude, under 308
adverse environmental conditions. Yak milk has a comparatively high fat content (ILRI 309
2006a), close with sheep milk. In contrast to the yak, the camel is adapted for deserts. 310
Concentration ratios estimated for 3H and 14C to yak and camel products using available 311
metabolic information (FAO 2006, ILRI 2006 b) are presented in Table 9. These values 312
are similar to those estimated for more common farm animals as can be seen in Tables 5 313
– 7.314



Whilst not exhaustively considering all production systems the methodology 315
described above appears to provide values useful for applications in screening models. 316
However, the assumptions of equilibrium is unlikely to be valid in many instances (e.g. if 317
half-times are comparable or longer than the period from weaning to sacrifice). Available 318
dynamic approaches to modelling the transfer of farm animals will be considered in a 319
further paper. 320

321

Acknowledgements322

The work described in this paper was funded by the Royal Society, the European 323
Commission (Contract IDRANAP ICA1-CT-2000-70023) and the Romanian Ministry of 324
Education and Research . We wish to thank to Phil Davis (AECL – Canada) and to 325
Brenda Howard (CEH – Lancaster, UK) for their useful comments.326

bledsoe2
Text Box
This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.



REFERENCES 327

Belot, Y., Roy, M., Metivier, H., 1996. Le Tritium dans l’environment a l’Homme, Les 328
editions de physique, France (in French).329

Brown, R.M., Davis, P.A., Peterson, S.R., 1996. Modelling the Transfer of Tritium and 330
Carbon-14 in the Environment, Improvement of Environmental Transfer Models 331
and Parameters, Nuclear Cross-over Research, International Workshop 332
Proceedings held February 5-6, 1996, Tokyo, Japan, pp. 106-120.333

Canadian Standards Association (CSA), 1987. Guidelines for Calculating Derived 334
Release Limits for Radioactive Material in Airborne and Liquid Effluents for 335
Normal Operations of Nuclear Facilities, CAN/CSA-N288.1-M87, pp. 69.336

Diabate, S., Strack, S., 1993. Organically bound tritium. Health Phys. 65, 698-712.337

Evans, A.G., 1969.  New dose estimates from chronic tritium exposures.  Hlth. Phys.338
16, 57-63.339

FAO, 2006. www.fao.org/documents/show_cdr.asp?url_file=/docrep/ 340
003/t0755e/t0755e02.htm.341

Freer, M., Moore, A.D., J.R. Donnelly, J.R., 2002. The GRAZPLAN animal biology 342
model for sheep and cattle and the Graz Feed decision support tool CSIRO Plant 343
Industry. Technical Paper.344

Galeriu, D., 1994. Transfer parameters for routine release of HTO, incorporation of OBT.345
Atomic Energy of Canada Report. AECL 11052, COG -94-76.346

Galeriu, D., Crout, N.M.J., Melintescu, A., Beresford, N.A., Peterson, S.R., van Hess, M., 347
2001. A Metabolic Derivation of Tritium Transfer Factors in Animal   Products.  348
Radiat. Environ. Biophys. 40, 325-334.349

Geigy Scientific Tables, 1981. Units of measurement, body fluids, composition of the 350
body, nutrition, Vol. 1, 8th Edition.. Basel, Switzerland: Ciba-Geigy Ltd.351

Green, R., Woodman, R.F.M., 2003. Recommended transfer factors form feed to animal 352
products. NRPB W40.353

GRG, 1990. Allgemeine Verwaltungsvorschrift zu § 45 Strahlenschutzverordnung: 354
Ermittlung der Strahlenexposition durch die Ableitung radioaktiver Stoffe aus 355
kerntechnischen Anlagen oder Einrichtungen vom 21. Februar 1990 (BAnz. 1990, 356
Nr. 64a)357

Howard, B.J., Beresford, N.A., Mayes, R.W., Lamb, C.S., Barnett, C. L. The transfer of 358
different forms of 35S to goat milk. J. Environ. Radioactive (THIS ISSUE).359

International Atomic Energy Agency (IAEA),1994. Handbook of transfer parameter 360
values for the prediction of radionuclide transfer in the temperate environments.361
TRS 364. International Atomic Energy Agency, Vienna.362

ILRI 2006a www.ilri.cgiar.org/InfoServ/Webpub/Fulldocs/Yakpro/363

ILRI, 2006b. www.ilri.cgiar.org/InfoServ/Webpub/Fulldocs/Monono5/Produc.htm.364



IR, 2003. Results of environmental radioactivity monitoring project. Information Report 365
CNE-Prod Cernavoda, IR-96200-10 (in Romanian).366

Holtum, J.A.M., Latzko, E.,1986. Carbon and Carbon Metabolism in the Environment.367
ISH-Heft-92. Insitut für Strahlen-Hygiene, Bundesgesundheitsamt, Neuherberg, 368
Germany.  369

Leonard, K.S., McCubbin, D., Bailey, T. A., 2001. Organic forms of tritium in 370
foodchains. Environment Report RL6/01. CEFAS UK.371

Maul, P.R., Watson, C.E., Thorne, M.C., 2005. Probabilistic Modelling of C-14 and H-3 372
Uptake by Crops and Animals. Quitessa Report QRS-1264A-1, Version 373
3.0.374

McDonald, P., Edwards, R.A., Greenhalgh, J.F.D., Morgan, C.A., 1995. Animal 375
Nutrition, fifth edition Longman Scientific & Technical, Harlow.376

Minesota, 2006.   www.extension.umn.edu/distribution/ livestocksystems/ 377
components/0480_03.html.378

Murphy, C.E. Jr., Bauer, L.R., Ziegler, C.C., 1992. Tritium distribution in the 379
environment in the vicinity of a chronic atmospheric source - assessment of the 380
steady state hypothesis. Fusion Technology. 21, 668-672.381

Napier, B.A., Strenge, D. L., Ramsdell, Jr. J. V., Eslinger, P. W., Fosmire, C., 2002.382
GENII Version 2 Software Design Document. US. EPA. 383

Peterson, S. R., Davis, P.A., 2002. Tritium Doses from Chronic Atmospheric Releases: 384
A New Approach Proposed for Regulatory Compliance. Hlth. Phys. 82(2), 213-385
225.386

Peterson, S.R., 2004. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas 387
Released to the Atmosphere from Lawrence Livermore National Laboratory 388
(LLNL) Part 1. Description of Tritium Dose Model (DCART) for Chronic 389
Releases from LLNL UCRL-TR-205083.390

Raskob, W., 1994. Description of the new version 4.0 of the tritium model UFOTRI 391
including user guide. KfK report 5194. Kernforschungszentrum, Karlsruhe.392

Stoica, I., 1997. Animal nutrition and feeding, second ed. CORAl- SANIVET, Bucharest393
(in Romanian).394

Thorne, M. C., Gould, L. J., Kelly, M., 2001. Review of Data Suitable for Food Chain 395
Modelling of 14C, 3H and 35S in Animals. AEA Technology Report to the Food 396
Standards Agency AEAT/ERRA-0359, Issue 1.397

Thorne M., 2003. Parameterization of Animal Models. Report MTA/P0022/2003-1 Mike 398
Thorne and Associates Ltd.399

United States Nuclear Regulatory Commission, 1977.  Methods for Estimating 400
Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases 401
from Light-Water-Cooled Reactors.  Regulatory Guide 1.111, pp. 24.402

USNRC, 2003. Literature review and assessment of plant and animal transfer factors used 403



in performance assessment modelling, prepared by Robertson, D.E., Cataldo, D. 404
A., Napier, B.A., Krupka, K.M., Sasser, L.B. NUREG CR/6825 PNNL-14321.405

Ward, G. M., Jonson, J.E., Stewart, H.F., 1965. Deposition of follout 137 Cs of forage 406
and its transfer to cow’s milk. In: Klement, A. W. Jr. (ed), Proceedings of the 2nd407
AEC Symposium on follout. National Technical Information Center, Oak Ridge.408

Watkins, B. M., Robinson, P.C., Smith, G.M., 1998. Update of Models for Assessing 409
Short-Term Atmospheric Releases of C-14 and Tritium in the Light of New 410
Information and Experimental Data, Quantisci – MAFF-5044-1.411

412

413

414

415

416

417

418



Figure legends419

Fig. 1: Comparison between predicted log (transfer coefficient) with experimentally 420
observed log (transfer coefficient) from Galeriu et al 2001.  Solid line is the 1:1 421
relationship, dotted line is the line of best through the data (y = 1.1x + 0.14; R2=0.98). 422
Experimental data include values of FHH, FHO, FOH, FOO for cow and goat milk, beef, veal, 423
pork and goat meat.424

425

426

Fig. 2: Deterministic concentrations of HTO and OBT in animal products predicted by 427
the Galeriu et al (2001) metabolic model lie within the 95 percent confidence interval of428
concentrations predicted by DCART429
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Table 1453

Previously recommended transfer coefficients for 14C and 3H from dietary HTO454
14C 3HProduct

USNRC1 CSA2 GRG3 USNRC1 CSA2 GRG3 IAEA4

Milk (d l-1)

Cow 1.2x10-2 1.5x10-2 4.0x10-2 1.0x10-2 1.4x10-2 2.0x10-2 1.7x10-2

Goat 1.0x10-1 1.7x10-2

Meat (d kg-1)

Unspecified 3.1x10-2 2.0x10-2 1.2x10-2 2.0x10-2

Beef 6.4x10-2 1.8x10-2

Pork 1.8x10-1 7.4x10-2

Poultry 4.2 3.5

Eggs (d kg-1) 3.1 2.2
1USNRC, 1977; 2CSA 1987; 3GRG, 1990; 4IAEA 1994455
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Table 2490

Hydrogen and carbon as fractional content of basic constituents of food and animal 491
products (Diabate, 1993). 492

Food constituent Free H Organically bound H Total organic H* C

Water 0.11 0 0 0

Carbohydrate 0.044 0.064 0.44
Protein 0.051 0.068 0.52

Lipids 0.117 0.12 0.77
* include exchangeable and non- exchangeable (OBH) organic hydrogen493
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Table 3534

Carbon and organic hydrogen contents of some common animal foods (Stoica, 1997, 535
McDonald et al, 1995). 536

Food C content 
kg C  kg-1 

DM

CV+ Organic H 
content kg 
H  kg-1 DM

CV+

Grasses 0.42 0.03 0.06 0.03

Hay 0.42 0.01 0.06 0.02
Silage1 0.40 0.09 0.06 0.07

Roots 0.41 0.05 0.06 0.04
Cereals 0.46 0.06 0.07 0.05

+Coefficient of variation; 1Values representative of grass or maize silage 537
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Table 4574

Typical hydrogen and carbon contents of animal products (kg H or575

kg C per kg fw) (Geigy, 1981).576

Animal 
product

Free H Organically 
bound H

Total organic H C

Milk
Cow 0.096 0.008 0.010 0.067

Sheep 0.090 0.014 0.016 0.107
Goat 0.095 0.009 0.010 0.070

Meat
Beef 0.077 0.022 0.025 0.178

Veal 0.077 0.021 0.024 0.173
Mutton 0.074 0.026 0.029 0.203

Lamb 0.077 0.021 0.025 0.176
Goat 0.077 0.021 0.024 0.172

Pork 0.066 0.034 0.038 0.258
Hen 0.077 0.022 0.025 0.178

Chicken 0.080 0.019 0.022 0.155
Egg 0.074 0.018 0.021 0.142
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Table 5598

Derived transfer coefficients and concentration ratios* for 14C. Estimates are for typical 599
live-weights 600

Product Live-
weight

(kg)

Production 
rate (l d-1

or kg d-1)

Dietary 
intake

(kg DM d-

1)

Fm (d l-1) or 
Ff

(d kg-1)

Fm or Ff  
range

CR CR range

Milk
Cow 550 15 14 0.011 0.005-

0.024
0.16 0.13-0.2

Sheep 50 1.3 1.8 0.142 0.05-0.2 0.25 0.22-0.3

Goat 50 2.5 2.5 0.067 0.04-0.12 0.17 0.13-0.21
Meat+

Beef 500 0.7 9.3 0.046 0.03-0.09 0.42 0.33-0.6
Veal 160 0.8 4.9 0.085 0.06-0.15 0.41 0.3-0.5

Mutton 50 0.08 1.2 0.396 0.2-0.5 0.48 0.4-0.52
Lamb 20 0.2 1 0.419 0.3-0.6 0.42 0.36-0.48

Goat 50 0.08 1.2 0.341 0.2-0.5 0.41 0.35-0.45
Pork 100 0.8 2.7 0.228 0.15-0.4 0.61 0.4-0.73

Hen 2.5 0.007 0.12 3.532 3-4 0.42 0.3-0.45
Chicken 1.7 0.03 0.11 3.355 3-5 0.37 0.33-0.43

Egg 2.5 0.05 0.15 2.195 2-3.3 0.34 0.31-0.4
*Concentration ratio use concentration in animal product fresh and dry matter feed (as per Equation 2);601
+Estimates for meat are for animals at typical slaughter weights. 602
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Table 6620

Transfer coefficients for HTO intake estimated using the approach of Galeriu et al. 621
(2001).622

Animal 
product

FHTO

d l-1 or 
d kg-1

Fractio
n OBT

FHTO range CRHTO CRHTO
range

Cow milk 0.014 0.04 0.007-0.022 0.82 0.81-0.85

Sheep milk 0.12 0.06 0.06-0.2 0.78 0.76-0.8
Goat milk 0.12 0.07 0.07-0.32 0.8 0.81-0.87

Beef meat 0.013 0.11 0.08-0.02 0.66 0.64-0.69
Veal 0.03 0.08 0.06-0.15 0.69 0.64-0.72

Mutton 0.13 0.1 0.1-0.5 0.46 0.53-0.52
Lamb 0.2 0.08 0.1-0.4 0.78 0.75-0.81

Goat meat 0.2 0.1 0.1-0.4 0.67 0.62-0.72
Pork 0.06 0.13 0.04-0.1 0.58 0.59-0.62

Hen meat 2.7 0.1 2-4 0.6 0.57-0.63
Chicken 3.0 0.1 2-4 0.6 0.55-0.65

Egg 2.1 0.08 1.6-3 0.66 0.63-0.7
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647



Table 7648

Transfer coefficients for OBT intake estimated using the approach of Galeriu et al. 649
(2001).650

Animal 
product

FOBT

d l-1 or 
d kg-1

Fractio
n OBT

FOBT range CROBT CROBT
range

Cow milk 0.017 0.47 0.01-0.03 0.24 0.22-0.37

Sheep milk 0.18 0.57 0.05-0.2 0.32 0.23-0.39
Goat milk 0.13 0.4 0.1-0.45 0.32 0.25-0.38

Beef meat 0.042 0.8 0.03-0.07 0.4 0.35-0.44
Veal 0.07 0.72 0.06-0.15 0.35 0.31-0.4

Mutton 0.33 0.75 0.2-0.5 0.4 0.35-0.44
Lamb 0.38 0.67 0.2-0.6 0.38 0.35-0.4

Goat meat 0.2 0.67 0.1-0.5 0.43 0.4-0.46
Pork 0.19 0.73 0.13-0.4 0.52 0.5-0.68

Hen meat 4.0 0.6 3-4 0.7 0.67-0.74
Chicken 5.8 0.57 4-8 0.6 0.57-0.63

Egg 4.4 0.78 3.4-5 0.64 0.62-0.69
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Table 8676

Results of limited example sensitivity study for tritium transfer to dairy cattle and 677
chickens applying the model of Galeriu et al. (2001). 678

Parameter value Water Intake 
(kg d-1)

DM intake 
(kg d-1)

FHH FOH FHO FOO CRHTO CROBT

Milk yield (kg d-1)
5 39.4 8.8 2.04E-02 1.41E-02 5.18E-04 1.39E-02 8.24E-01 2.45E-01
15 62.8 14.0 1.28E-02 8.86E-03 3.25E-04 8.72E-03 8.24E-01 2.45E-01
40 121 27.0 6.62E-03 4.59E-03 1.68E-04 4.51E-03 8.24E-01 2.45E-01

Range* 0.32 0.32 0.32 0.32 1.00 1.00
Live- weight (kg)

350 54.8 12.2 1.46E-02 1.02E-02 3.73E-04 9.98E-03 8.24E-01 2.45E-01
550 62.8 14.0 1.28E-02 8.86E-03 3.25E-04 8.72E-03 8.24E-01 2.45E-01
750 70.1 15.6 1.15E-02 7.95E-03 2.92E-04 7.81E-03 8.24E-01 2.45E-01

Range 0.78 0.78 0.78 0.78 1.00 1.00
Water : DM intake

4 55.8 14.0 1.43E-02 9.88E-03 3.62E-04 8.74E-03 8.16E-01 2.60E-01
4.5 62.8 14.0 1.28E-02 8.86E-03 3.25E-04 8.72E-03 8.24E-01 2.45E-01
7 97.7 14.0 8.45E-03 5.86E-03 2.15E-04 8.64E-03 8.47E-01 2.02E-01

Range 0.59 0.59 0.59 0.99 1.04 0.78
Diet digestibility

0.5 62.8 14.0 1.30E-02 6.52E-03 3.32E-04 6.29E-03 8.22E-01 1.75E-01
0.72 62.8 14.0 1.30E-02 9.40E-03 3.32E-04 9.06E-03 8.22E-01 2.52E-01

1 62.8 14.0 1.30E-02 1.30E-02 3.32E-04 1.26E-02 8.22E-01 3.50E-01
Range 1.00 2.00 1.00 2.00 1.00 2.00

Milk Fat
3 58.2 12.9 1.38E-02 9.56E-03 3.51E-04 9.17E-03 8.24E-01 2.45E-01
4 62.8 14.0 1.28E-02 8.86E-03 3.25E-04 8.50E-03 8.24E-01 2.45E-01
5 67.4 15.0 1.19E-02 8.26E-03 3.03E-04 7.92E-03 8.24E-01 2.45E-01

Range 1.16 1.16 1.16 1.16 1.00 1.00
SAR
0.2 62.8 14.0 1.28E-02 8.86E-03 2.60E-04 8.50E-03 8.20E-01 2.53E-01
0.25 62.8 14.0 1.28E-02 8.86E-03 3.25E-04 8.50E-03 8.24E-01 2.45E-01
0.3 62.8 14.0 1.28E-02 8.86E-03 3.90E-04 8.50E-03 8.28E-01 2.38E-01

Range 1.00 1.00 0.67 1.00 0.99 1.06
* Range is the minimum to maximum ratio679
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Table 9693

Preliminary concentration ratios for horse, yak and camel694

Animal product 14C HTO OBT

Horse milk 0.11 0.9 0.33
Horse meat 0.33 0.74 0.42

Yak milk 0.27 0.81 0.32
Yak meat 0.41 0.71 0.40

Camel milk 0.17 0.87 0.42
Camel meat 0.29 0.77 0.48
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