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 [Abstract] Cell morphology dictates response to a wide variety of stimuli, controlling cell 

metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition 

(EMT) is a developmental process in which epithelial cells acquire migratory 

characteristics, and in the process convert from a ‘cuboidal’ epithelial structure into an 

elongated mesenchymal shape.  We had shown previously that matrix metalloproteinase-3 

(MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process 

that involves increased expression of Rac1b, a protein that stimulates alterations in 

cytoskeletal structure.  We show here that cells treated with MMP-3 or induced to express 

Rac1b spread to cover a larger surface, and that this induction of cell spreading is a 

requirement of MMP-3/Rac1b-induced EMT.  We find that limiting cell spreading, either 

by increasing cell density or by culturing cells on precisely defined micropatterned 

substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3.  

These effects are not caused by general disruptions in cell signaling pathways, as TGF-β-

induced EMT is not affected by similar limitations on cell spreading.  Our data reveal a 

previously unanticipated cell shape-dependent mechanism that controls this key 

phenotypic alteration and provide insight into the distinct mechanisms activated by 

different EMT-inducing agents.  

 



  Epithelial-mesenchymal transition (EMT) is a phenotypic alteration in which 

epithelial cells detach from their neighbors and the underlying basement membrane and 

become more motile and migratory [Radisky, 2005; Thiery, 2002]. EMT is critical for 

metazoan embryonic development: during gastrulation, the primitive embryonic epithelium 

forms the primary mesenchyme, and in vertebrates, multipotent migratory neural crest cells 

delaminate from the neural ectoderm and form diverse tissue derivatives [Shook and Keller, 

2003].   

 There is an increasing awareness that EMT-related processes are activated under 

pathological conditions as well, including fibrosis, tumor progression, and metastatic 

invasion [Kalluri and Neilson, 2003; Petersen et al., 2003; Radisky et al., 2007; Thiery, 

2003], and this recognition has triggered intensive investigations into the mechanisms 

involved in the activation of EMT.    In cultured cells, EMT can be induced by cytokines, 

growth factors, and matrix metalloproteinases (MMPs) [Stallings-Mann and Radisky, 

2007; Thiery and Sleeman, 2006].  We have found that MMP3 (previously stromelysin-1) 

induces EMT in mouse mammary epithelial cells [Lochter et al., 1997a; Lochter et al., 

1997b; Radisky et al., 2005; Sternlicht et al., 1999], through a signaling mechanism that 

involves cleavage of E-cadherin and induction of Rac1b, a highly activated splice isoform 

of the Rac1 GTPase.  Rac1b increases the levels of cellular reactive oxygen species (ROS), 

which in turn activate the EMT transcriptional program, including downregulation of 

epithelial cytokeratins and increased expression of mesenchymal markers including Snail, 

vimentin, and α-smooth muscle actin [Radisky et al., 2005].  Cells treated with MMP3 also 

significantly alter their cytoskeletal structure and morphology by losing cortical actin, 

 



developing large lamellapodia and increasing their spreading on the underlying substratum 

[Radisky et al., 2005]. 

 Modulation of cell morphology can dramatically alter cellular behaviors, such as: 

glucose uptake and metabolism, [Bissell et al., 1977], cell division[Folkman and Moscona, 

1978], proliferation and apoptosis[Chen et al., 1997], differentiation [Roskelley et al., 

1994; Watt et al., 1988], nuclear organization [Le Beyec et al., 2007], and morphogenesis 

[Nelson et al., 2005; Nelson et al., 2006].  EMT was first defined [Greenburg and Hay, 

1982] as a morphological reshaping of the epithelium that precedes mesenchymal invasion 

[Kalluri and Neilson, 2003].  Culturing epithelial cells at low density can induce some 

features of EMT, including a more spread morphology, downmodulation of epithelial 

keratins, and upregulation of mesenchymal vimentin [Ben-Ze'ev, 1984; Maeda et al., 2005; 

Sarrio et al., 2008].  Increased cell spreading is an early feature of MMP3-treated 

mammary epithelial cells [Radisky et al., 2005]; we thus hypothesized that this change in 

morphology might be necessary for MMP-3 to induce EMT.  Here, we tested this 

hypothesis in mouse mammary epithelial cells.  We find that MMP-3-induced cell 

spreading is required for the downstream induction of EMT.  Cells treated with TGFβ also 

increase their spreading against the underlying substratum, but that spreading is not 

required for TGFβ-induced EMT.  These results reveal differences between the EMT 

pathways downstream of MMP-3 and TGFβ, and provide insight into the causal 

relationship between morphology and EMT.  

 



Materials and Methods 

Cell culture and reagents.  Use of SCp2 mouse mammary epithelial cells and treatment 

with MMP3 were as previously described [Radisky et al., 2005], with a 3 day time point 

for all experiments.  The following reagents were used at the given concentrations: H2O2 

(25 µM, Sigma); NAC (10 mM, Sigma); GM6001 (40 µM, Calbiochem).  For 

measurements of projected cell area, phase contrast images of individual cells were 

outlined and processed with Image J software.  Transfections were performed with 

lipofectamine-2000 (Invtrogen) as previously published [Radisky et al., 2005].  For 

luciferase assays, cells were transfected with plasmids expressing 3TP-luciferase and 

CMV-renilla in a 10:1 ratio, and relative luciferase was assessed using the Dual-Glo 

Luciferase Assay System (Promega) and a Veritas Microplate Luminometer (Turner 

Biosystems).  Plasmids for expression of YFP-Rac1b, YFP-Rac1N17, and CMV-Rac1b 

and methods for selective siRNA knockdown of Rac1b and for assessing ROS using 

DCFDA (Invitrogen) were described previously [Radisky et al., 2005]; pEYFP-C1 

(Clontech) was used as a control for transfection experiments.  Recombinant human TGF-

β1 (240-B, R&D Systems) was used at 25 ng/ml final concencentration. 

Quantitative real-time PCR analysis.  Transcript levels were measured using RT/PCR by 

isolating RNA (Tri-pure; Roche Diagnostics), synthesizing cDNA and performing 

quantitative real-time PCR using ABI protocols and software (Lightcycler, Roche).  

Expression levels were assessed using TaqMan assays (Roche): sm-actin, 

Mm01546133_m1; GAPDH, Mm99999915_g1. We assessed Rac1b using a custom assay 

(forward primer, 5’- TGGACAAGAAGATTATGACAGATTGC-3’; reverse primer, 5’- 

CCCTGGAGGGTCTATCTTTACCA-3’; probe, 5’ CCGCAGACAGTTGGAGA-3’). 

 



Micropatterning.  Micropatterned substrata containing fibronectin-coated islands 

surrounded by non-adhesive regions were created as described [Tan et al., 2004].  Briefly, 

poly(dimethylsiloxane) (PDMS; Sylgard 184, Ellsworth Adhesives, Germantown, WI) 

elastomeric stamps containing a relief of 20µm or 40µm squares were coated with 

fibronectin (25 µg/mL in PBS; BD Biosciences) for 2 hr, washed with water, and dried 

under a stream of nitrogen.  Flat PDMS-coated substrata were UV-oxidized for 7 min 

(UVO cleaner, Jelight Co., Irvine, CA), stamped with fibronectin, blocked with 1% 

pluronic F108 (BASF Corp., Florham Park, NJ) in PBS for 1 hr, and rinsed in PBS before 

seeding SCp2 cells.  Cells were allowed to attach to the patterned islands for 

approximately 30 min before rinsing off remaining non-adherent cells.  Antibodies for 

immunofluorescence were anti cytokeratin wide screening (Z0622, Dako) and anti 

vimentin (V5255, Sigma). 

 



Results 

The tumors that arise as the result of inappropriate MMP3 expression in mammary 

glands of transgenic mice exhibit EMT [Sternlicht et al., 1999]. We showed that treatment 

with MMP3 is directly responsible for induction of  EMT in mouse cells in culture  

[Lochter et al., 1997a; Lochter et al., 1997b; Radisky et al., 2005].  The MMP3-induced 

EMT is characterized by cell scattering, down-regulation of epithelial markers such as 

cytokeratins and E-cadherin, and up-regulation of mesenchymal markers including 

vimentin, α-smooth muscle actin, and the transcription factor Snail [Radisky et al., 2005].   

Additionally, MMP3-induced EMT is accompanied by altered cellular morphology, with 

loss of colonial morphology, increased lamellipodia (Figure 1a), and substantial increase 

in cell spreading (as measured by projected cell area) against the underlying substratum 

(Figure 1b).  The catalytic activity of MMP3 is required for increased cell spreading and 

EMT since both are blocked by treatment with the broad spectrum MMP inhibitor, 

GM6001. 

We previously showed that MMP3 induces EMT through a cascade involving the 

generation of Rac1b, a highly active splice variant of Rac1 [Radisky et al., 2005].  We now 

find that MMP3-induced cell spreading is a consequence of the induction of Rac1b. 

Exogenous expression of Rac1b induces cell scattering (Figure 2a), increases expression 

of EMT markers such as  α−smooth muscle actin (Figure 2b) and increases cell spreading 

(Figure 2c); knockdown of Rac1b by siRNA blocks both MMP-3-induced expression of 

α-smooth muscle actin (Figure 2d) and cell spreading (Figure 2e).   Our previous studies 

showed that Rac1b led to the production of cellular reactive oxygen species (ROS), which 

led to upregulation of the EMT-inducing transcription factor, Snail [Radisky et al., 2005].  

 



Now here we show that cell spreading is upstream of ROS.  We found that cells treated 

simultaneously with MMP-3 and the ROS quenching agent N-acetyl cysteine (NAC) failed 

to scatter and did not express EMT markers [Radisky et al., 2005], but still showed 

increased cell spreading (Figure 2f).  We also found that ROS-induced EMT can occur in 

the absence of cell spreading, as treatment with H2O2 alone induces cell scattering and 

EMT without increasing cell spreading (Figure 2f).  These data show that MMP3-induced 

cell spreading is downstream of Rac1b but upstream of, or parallel to, ROS induction of 

EMT.  To evaluate whether MMP3/Rac1b-induced cell spreading was specifically 

necessary for the induction of EMT, we assessed the effect of MMP3 treatment and Rac1b 

expression in cells cultured at different densities.  We selected cell density values so that 

there was substantial cell-cell contact even at the low cell density (50,000 cells/cm2) and 

maintenance of healthy overall culture appearance and cell viability (by trypan blue 

exclusion, data not shown) at high cell density (150,000 cells/cm2) (Figure 3a).  We found 

that the limitation of cell spreading at high density blocked the induction of EMT markers 

including α-smooth muscle actin (Figure 3b) and that cells plated at low density were able 

to spread, whereas those at high density were not (Figure 3c).  This effect was not due to 

an inability of the high cell density cultures to respond to MMP3, as cells in both densities 

increased expression of Rac1b in response to MMP3 (Figure 3d). We also found that cells 

cultured at high density were unable to activate EMT in response to exogenous expression 

of Rac1b (Figure 3e; exogenous Rac1b expression levels were similar in the low and high 

cell density cultures, data not shown). These data show that blocking cell spreading by 

plating cells at high density effectively inhibits MMP3/Rac1b induction of EMT-related 

gene expression.  To determine whether MMP3/Rac1b-induced cell spreading is necessary 

 



for induction of ROS, we assessed induction of DCFDA fluorescence in cells treated with 

MMP3 or transfected with Rac1b and cultured at high and low densities.  We found that 

while MMP3 treatment or Rac1b expression caused significantly increased levels of ROS 

in cells cultured at low density, plating at high density to block cell spreading also 

inhibited induction of ROS by MMP3 (Figure 3f) or Rac1b expression (Figure 3g).  These 

results demonstrate that blocking cell spreading by plating cells at high density effectively 

inhibits MMP3/Rac1b  induction of cellular ROS. 

To assess whether high cell density blocks all inducers of EMT, we tested the response 

of high and low density cultures to treatment with TGFβ (Figure 4a).  We evaluated the 

response of cells to 25ng/ml TGFβ, a concentration which produces comparable amounts 

of cell scattering as cells treated with MMP3 (not shown).  We found that TGFβ increased 

cell spreading in the low density but not the high density cultures (Figure 4b).  However, 

TGFβ induced comparable activation of the SMAD-responsive reporter vector 3TP-luc 

(assessed as relative to expression of co-transfected Renilla luciferase reporter vector; 

Figure 4c) and comparable induction of EMT markers such as α-smooth muscle actin in 

both densities, when assessed as fold increase over untreated cells (Figure 4d).  These 

results demonstrate that TGFβ-induced EMT is not blocked by limiting cell spreading. 

MMP3-induced EMT was inhibited by siRNA knockdown of Rac1b (Figure 2c).  

Whereas TGFβ does not induce Rac1b in SCp2 cells (data not shown), previous studies 

have shown that it can activate Rac1 signaling in some cell types [Chiu et al., 2001; Groth 

et al., 2005].  This prompted us to investigate whether TGFβ might be inducing EMT in 

mammary cells through an action of Rac1 that does not depend upon altered cell 

morphology.  We assessed the response of cells transfected with dominant negative Rac1 

 



(Rac1N17), plated at low initial seeding density and treated with TGFβ. We found that 

unlike Rac1b, Rac1N17 did not significantly affect cell spreading (Figure 4e), did not 

block activation of the 3TP-luc reporter vector (Figure 4f) and did not significantly affect 

activation of EMT markers such as α-smooth muscle actin (Figure 4g). 

Our results had shown that inhibiting cell spreading by plating cells at high density 

blocked MMP3/Rac1b-induced expression of EMT markers, but did not affect TGFβ-

induced expression of EMT markers.  However, it is an important consideration that 

altering cell density changes parameters in addition to cell spreading.  In particular, cells 

cultured at high density form more stable adherens junctions; E-cadherin was found to be a 

substrate for MMP3 and loss of E-cadherin is a key step in the induction of EMT in a 

number of cell and tissue types [Thiery, 2002]. To isolate the effects of cell spreading from 

other parameters, we used a micropatterning approach to restrict the ability of single cells 

to spread further upon treatment with MMP3 or TGFβ.  We cultured single SCp2 cells on 

micropatterned substrata that contained either 20-µm square or 40-µm square islands of 

fibronectin surrounded by non-adhesive regions.  When cultured on 40-µm islands, 

treatment with MMP3 or TGFβ induced both additional cell spreading and EMT, assessed 

as reduced expression of epithelial keratins and increased expression of mesenchymal 

vimentin (Figure 5a).  However, cells cultured on 20-µm islands were prevented from 

spreading in response to MMP3 or TGFβ; these cells were refractory to EMT after MMP3 

treatment, but were responsive to TGFβ for induction of EMT (Figure 5a). Quantification 

of keratin positive epithelial cells showed that the inhibition of MMP3-induced EMT by 

blocking cell spreading was significant (Figure 5b). These data show that inhibition of 

MMP3-induced EMT by limitation of cell spreading on micropatterned substrata is not due 

 



to a general inhibition of cellular processes, and demonstrates that changes in cell shape 

are required for MMP3-induced EMT, but not TGFβ-induced EMT, and additionally 

demonstrate that MMP3 and TGFβ induce EMT through distinct and separable pathways 

(Figure 5c). 

 



Discussion 

In this study, we found that treatment of mouse mammary epithelial cells with 

MMP3 leads to increased cell spreading in a Rac1b-dependent fashion, and that this cell 

spreading is required for the induction of EMT by MMP3 or Rac1b.  While we observed 

that TGFβ also causes increased cell spreading against the substratum at lower cell 

densities, we found that this cell spreading is not necessary for TGFβ- induced 

EMT: culturing cells at high density or on micropatterned substrata to limit cell spreading 

did not block TGFβ-induced EMT.  These results reveal an important difference between 

the mechanisms by which these extracellular mediators exert their effects (Figure 5c).  The 

growing evidence that EMT-related processes are involved in fibrosis and cancer [Kalluri 

and Neilson, 2003] has prompted a large number of studies designed to elucidate the 

cytosolic signaling pathways that control EMT.  Whereas these studies have used a variety 

of different models and a number of different inducing agents, the fact that relatively few 

have examined interactions between the different signaling pathways has complicated the 

generation of global models of EMT-associated signaling networks.  Our results 

demonstrate that alterations in cell morphology, an often underappreciated aspect of 

experimental procedures, are critical for the induction of EMT.  We found that Rac1b-

induced cell spreading was specifically required for MMP3-mediated EMT in SCp2 cells, 

as knockdown of Rac1b using siRNA oligos that do not target Rac1 blocked cell spreading 

and induction of EMT.  Some studies have shown that morphological alterations are 

sufficient to induce characteristics of EMT in MCF10A human breast cancer cells and in 

bovine kidney cells [Ben-Ze'ev, 1984; Maeda et al., 2005; Sarrio et al., 2008]. We suggest 

that Rac1b may be expressed at higher levels in these cell types, or alternatively that other 

 



intrinsic factors that induce cell spreading can substitute for Rac1b to induce EMT.  

Identifying these factors would provide additional information about the relationship 

between cell morphology and important events in development and progression of cancer. 

Our results also give insight into specific differences between TGFβ signaling 

pathways and those initiated by MMP3.  In the canonical signaling pathway, binding of 

TGFβ to cell surface receptors stimulates phosphorylation of cytosolic SMAD proteins; 

phosphorylated SMADs translocate to the nucleus where they cause alterations in gene 

expression [Shi and Massague, 2003].  This direct connection from the cell surface to the 

nucleus may circumvent the cell spreading requirement of MMP3/Rac1b-induced EMT. 

While we have elucidated many intracellular signals required for MMP-3 to induce EMT, 

the exact cell-surface target(s) of MMP3 that are instrumental in Rac1b production have 

not been defined conclusively. We showed previously that MMP3 cleaves E-cadherin 

[Lochter et al., 1997a; Lochter et al., 1997b], a critical target of EMT and tumor 

progression [Thiery and Sleeman, 2006].  Our identification that MMP3 can induce EMT 

in isolated cells on micropatterned substrata suggests that E-cadherin cleavage is not the 

cause of EMT, but that it may be necessary to allow cell spreading after breakdown of cell-

cell junctions. Since we show also that in high density, MMP-3 induces Rac1b but is not 

sufficient to induce EMT, additional/alternative targets of MMP3 could play a role. 

Previous studies have demonstrated that active Rac1 can stimulate the production 

and release of mitochondrial superoxide [Kheradmand et al., 1998; Werner and Werb, 

2002], and that mitochondrial depolarization correlates with cell spreading [Bereiter-Hahn 

et al., 1990].  Our results demonstrate that changes in cell shape are required for the 

activation of mithchondrial ROS-dependent EMT.  Since Rac1 is normally localized to the 

 



plasma membrane [Michaely et al., 1999], it is possible that alterations in cell spreading 

facilitate translocation of Rac1b to the mitochondria leading  to release of superoxide.  

Alternatively, Rac1b could be acting indirectly, as the increased cytoskeletal tension 

associated with cell spreading is known to modulate mesenchymal differentiation 

[McBeath et al., 2004]. 

 MMP3 also induces EMT, tissue fibrosis, and development of tumors when over-

expressed in the mammary glands of transgenic mice [Sternlicht et al., 1999].  Our study 

could explain in part the relatively late appearance of tumors in these animals – the 

generation of ROS downstream of MMP3 and Rac1b requires cellular distention.  A 

prerequisite for cellular distention is stiffening of the surrounding tissue in vivo.  Increased 

tissue stiffness is a hallmark of fibrosis [Desmouliere et al., 2005], and has recently been 

noted to facilitate tumor progression and metastatic invasion [Paszek et al., 2005; 

Provenzano et al., 2006].  Given that MMP3 was shown to increase collagen deposition in 

vivo [Thomasset et al., 1998], and induces genomic instability in culture also through 

induction of ROS, our data would suggest that normal tissue architecture protects against 

both pathological EMT and genomic instability.  Identification of the specific processes by 

which cell spreading facilitates MMP3-mediated effects may be a useful avenue for 

identifying therapeutic targets for blocking MMP-mediated fibrosis and malignancy; the 

results presented here provide an experimental framework to begin these investigations. 
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Figure Legends 

Figure 1. MMP3-mediated EMT correlates with increased cell spreading.  a) Phase 

contrast images of SCp2 cells with and without MMP3 and GM6001.  b) Quantification of 

projected area of SCp2 cells with and without MMP3 and GM6001. (*), p<0.01. Scale bar, 

25 µm. 

 

Figure 2. MMP3-induced cell spreading is upstream of EMT-associated induction of 

ROS.  a) Phase contrast images of SCp2 cells transfected with Rac1b or control vector 

YFP.  b) Graph showing RT/PCR analysis for α-smooth muscle actin (αSM-actin) in 

SCp2 cells transfected with YFP or YFP-Rac1b, expressed relative to GAPDH expression.  

c) Quantification of projected cell area in SCp2 cells transfected with YFP (cntl) or YFP-

Rac1b (Rac1b).  d) Expression of α-smooth muscle actin in untreated cells, cells treated 

with MMP3, or cells transfected with siRNA reagents selectively targeting Rac1b and 

treated with MMP3.  e) Quantification of projected area of cells treated as control or 

treated with MMP3, or transfected with Rac1b siRNA and treated with MMP3.   f) 

Quantification of area (left) and representative images (right) of MMP3-treated SCp2 cells 

with and without 10 mM NAC, or in SCp2 cells treated with 25 µM H2O2. (*), p<0.01; 

(**), p<0.001. Scale bar, 50 µm. 

 

Figure 3. MMP3-induced EMT and cell spreading, but not Rac1b expression, depend 

on cell density.  a) Phase contrast images of MMP3-treated SCp2 cells at different initial 

seeding densities.  b) Graph quantifying projected cell area of MMP3-treated SCp2 cells as 

a function of initial seeding density.  c) Expression of α-smooth muscle actin, normalized 

 



to GAPDH, in MMP3-treated SCp2 cells at different initial seeding densities.  d) Rac1b 

expression (relative to GAPDH) in MMP3-treated SCp2 cells as a function of initial 

seeding density.  e) Expression of α-smooth muscle actin, relative to GAPDH, in Rac1b-

expressing cells at different initial seeding densities. f) Induction of ROS by MMP3 

treatment is blocked by growth of cells at high density (assessed by increased DCFDA 

fluorescence). g) Induction of ROS by Rac1b transfection is blocked by growth of cells at 

high density. (*), p<0.01; (**), p<0.001; (***), p<0.0001. Scale bar, 50 µm. 

 

Figure 4. TGFβ-induced EMT can occur at high density.  a) Phase contrast images of 

TGFβ-treated SCp2 cells at different initial seeding densities.  b) Quantification of 

projected cell area of TGFβ-treated SCp2 cells as a function of initial seeding density.  c) 

Activation of 3TP-luc expression construct (relative to co-transfected Renilla luciferase 

expression) in TGFβ-treated SCp2 cells grown at low and high density.  d) Expression of 

α smooth muscle actin in TGFβ-treated SCp2 cells at different initial seeding densities. e) 

Quantification of projected cell area of TGFβ-treated SCp2 cells transfected with YFP 

(vector) or YFP-Rac1N17.  f) Activation of 3TP-luc expression construct (relative to co-

transfected Renilla luciferase expression) in TGFβ-treated SCp2 cells transfected with YFP 

or YFP-Rac1N17.  g) Expression of α-smooth muscle actin in TGFβ-treated SCp2 cells 

transfected with YFP or YFP-Rac1N17.  (*), p<0.01; (**), p<0.001; (***), p<0.0001. 

Scale bar, 50 µm. 

 

Figure 5. Restricting cell spreading prevents MMP3-induced EMT but not TGFβ-

induced EMT.  a) Immunofluorescence images of cytokeratins (red) and vimentin (green) 

 



 

in SCp2 cells cultured on small (20 µm) and large (40 µm) squares, and untreated (cntl) or 

exposed to MMP3 or TGFβ.  Stamped islands outlined by white dotted line.  b) Graph 

quantifying loss of cytokeratin expression in MMP3 and TGFβ-treated SCp2 cells on 20-

µm and 40-µm squares.  (**), p<0.005. c) Scheme outlining distinct EMT induction 

pathways for MMP3 and TGFβ: MMP3 stimulates increased expression of Rac1b, which 

causes cell spreading, which leads to ROS-induced EMT, while TGFβ stimulates 

activation and nuclear localization of SMADs in a cell spreading-independent EMT 

induction pathway. 

 

 












