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1. Introduction 
Relatively minor perturbations to a crystal structure can in some cases result in apparently large changes in symmetry. Changes in 
space group or even lattice can be induced by heavy metal or halide soaking (Dauter et al, 2001), flash freezing (Skrzypczak-
Jankun et al, 1996), and Se-Met substitution (Poulsen et al, 2001). Relations between various space groups and lattices can 
provide insight in the underlying structural causes for the symmetry or lattice transformations. Furthermore, these relations can be 
useful in understanding twinning and how to efficiently solve two different but related crystal structures. Although (pseudo) 
symmetric properties of a certain combination of unit cell parameters and a space group are immediately obvious (such as a 
pseudo four-fold axis if a is approximately equal to b in an orthorhombic space group), other relations (e.g. Lehtio, et al, 2005) that 
are less obvious might be crucial to the understanding and detection of certain idiosyncrasies of experimental data. 

We have developed a set of tools that allows straightforward exploration of possible metric symmetry relations given unit cell 
parameters and a space group. The new iotbx.explore_metric_symmetry command produces an overview of the various relations 
between several possible point groups for a given lattice. Methods for finding relations between a pair of unit cells are also available. 
The tools described in this newsletter are part of the CCTBX libraries, which are included in the latest (versions July 2006 and up) 
PHENIX and CCI Apps distributions. 

2. Methods 
2.1. Determination of the lattice symmetry 

The determination of the lattice symmetry is based on ideas by Le Page (1982) and Lebedev et al. (2006). Given a reduced cell (e.g. 
Grosse-Kunstleve et al. 2004a), it is sufficient to search for two-fold axes to determine the full symmetry. Subjecting the two-folds to 
group multiplication produces the higher-order symmetry elements, if present. 

Le Page (1982) searches for the two-folds by computing angles between certain vectors in direct space and reciprocal space. This 
search is relatively expensive. Recently Lebedev et al. (2006) introduced the idea of simply enumerating all 3x3 matrices with 
elements {-1,0,1} and determinant one. As an additional requirement group multiplication based on each matrix individually has to 
produce matrices exclusively with elements {-1,0,1}. There are only 480 matrices that conform to all requirements. Lebedev et al. 
(2006) argue that this set covers all possible symmetry operations for reduced cells. We were able to confirm this intuitive argument 
empirically via simple brute-force tests. 

Only 81 of the 480 selected matrices correspond to two-folds. These are easily detected by establishing which of the matrices 
produce the identity matrix when multiplied with themselves (and are not the identity matrix to start out with). To replace the 
expensive search for two-folds in the original Le Page (1982) algorithm, the 81 two-fold matrices are tabulated along with the axis 
directions in direct space and reciprocal space. The axis direction in direct space is determined as described by Grosse-Kunstleve 
(1999). The axis direction in reciprocal space is determined with the same algorithm, but using the transpose of the matrix. The 
complete implementation of the algorithm for generating the table (essentially just six lines of Python code) can be found in the file 

 cctbx_sources/cctbx/cctbx/examples/reduced_cell_two_folds.py  

in the cctbx distributions. 

The search for two-folds computes the Le Page (1982) for each of the 81 tabulated pairs of axis directions. The corresponding 
symmetry matrix for each pair is immediately available from the table. In contrast, the original Le Page algorithm requires the 
evaluation of 2391 pairs of axis directions, and the computation of the symmetry matrices involves expensive trigonometric 
functions (sin, cos) and change-of-basis calculations. 

The matrices with a Le Page smaller than a given threshold are sorted, smallest first. Successive group multiplication as 
described in Grosse-Kunstleve et al. (2004b) and Sauter et al. (2006) yields the final highest lattice symmetry. The complete search 
algorithm is implemented in the file 

 cctbx_sources/cctbx/sgtbx/lattice_symmetry.cpp. 

Since the algorithm determines the lattice symmetry in a primitive setting (the reduced cell), the resulting symmetry matrices do not 
in general correspond to one of the usual space group settings for which a Hermann-Mauguin symbol is available. However, all 
lattice symmetries can be exactly characterized with Hall symbols. In contrast to Hermann-Mauguin symbols, Hall symbols uniquely 
define the orientation of the symmetry elements with respect to the cell axes. This property is vital for understanding relations 
between different point groups. 
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2.2. Construction of a point group graph 

In order to be able to systematically explore various possible point groups for a given set of unit cell parameters, a graph is 
constructed that encodes group-subgroup relations between various point groups. A graph is constructed in the following manner: 

• The lattice symmetry of the Niggli cell is deduced, as described above.  
• Starting from the base point group (P1 or the point group corresponding to a user specified space group), each symmetry 

elements from the point group of the lattice not present in the base point group is combined with the base point group to 
generate a supergroup.  

• The former procedure is carried out for the newly generated point groups. The procedure is iterated until no new point groups 
are generated. The relations between the constructed point groups are described in a graph.  

The resulting point group graph can be used to visualize relations between various symmetries or could be used to systematically 
assess the validity of a number of intensity symmetry hypotheses. It is important to note that the set of relations generated in this 
manner only describe the change in point group upon addition or removal of rotational symmetry, but does not cover changes due 
to addition or removal of translational symmetry. 

2.3 Generation of compatible space groups 

Only a limited set of space groups are compatible with a given point group of the lattice. This set of space groups compatible with a 
certain point group is for instance used in molecular replacement when the space group is not known. 

To further limit the set of set of compatible space groups, it is assumed that systematic absences dictated by the user supplied 
space group have to be retained. However, this set of systematic absences is not assumed to be complete. 

The list of possible space groups derived for each point group is constructed while ensuring that systematic absent Miller indices in 
the user supplied space group will also be absent. Non-absent reflections in the user supplied space group are not required to be 
non-absent in the new space group. 

A simple example illustrates the described rules in the selection of possible space groups. If the symmetry of the lattice is P 2 2 2 
and the user-supplied space group is P 21 21 2, the possible space groups are P 21 21 2 and P 21 21 21. The space group P 2 2 
2, 3 settings of P 2 2 21 and 2 settings of the space group P 21 21 2 all violate the systematic absences dictated by the user-
supplied space group. 

2.4. Sub-lattice generation 

Although the above methods allow the user to inspect the effect of removal or addition of rotational symmetry in the lattice, space 
group transitions often involve a change in the reduced cell volume as well. 

Generation of all sub-lattices that result in a certain volume change, can be obtained by generating all matrices with integer 
indices that have a determinant equal to the desired change in volume of the reduced cell. The resulting sublattice is than obtained 
from the original lattice via the relation: 

 

Generating all matrices with a specified determinant in a naive manner by looping over all matrix elements within in fixed range (say 
from -5 to 5) is however impractical (approximately 2.4 10^9 iterations). A more practical solution lies in the fact (Billet & Rolley Le-
Coz, 1980; Rutherford, 2006) that it is sufficient to only generate matrices in the Hermite normal form: 

 

The elements of are all integers. The elements , and are all larger than zero. The restrictions on the values of , and depend 
on the diagonal element of the row in which the elements occur : 

 
 

Similar restrictions for apply. 

Because the determinant (and thus the resulting volume change) of the matrix is equal to , all matrices with a determinant can 
be constructed by generating all triplets for which holds. Generation of triples is done using an algorithm known as 
trial division. 

After generating the new lattice as described above, the new unit cell parameters can be compared to a target unit cell. The new 
unit cell is reduced to a Niggli cell. The new Niggli cell cannot be compared directly to the target Niggli cell, because small 
differences in unit cell parameters, can result in large differences in reduced cell parameters (Andrews et al., 1980). Therefore, all 
unimodular transforms with matrix elements in the range from -1 to 1 are generated. After using these matrices to transform the new 
Niggli cell, it considered similar to the target Niggli cell if user-defined tolerances on length and angular deviations are fulfilled. An 
example of this procedure is shown in section 3.2, where two unit cells are compared. The Niggli cell with smallest volume will be 
used as a building block (denoted Lego cell in the output) to try and construct a unit cell similar to the Niggli cell with the larger 
volume (denoted as Target cell in the output). 



3. Examples 
3.1. Incorrectly processed Insulin 

An insulin dataset (kindly provided by C.B. Trame, Berkeley Center for Structural Biology) was purposely incorrectly indexed and 
scaled. 

As a test, the data was indexed, integrated and scaled in P1. The resulting cell is equal to: 

 
68.4 68.4 68.3 109.5 109.4 109.5 

As the symmetry of the lattice is cubic (Hall:  I 4 2 3 (y+z,x+z,x+y)), the resulting point group graph contains all point groups 
between cubic and anorthic (P1) symmetry. 

The point group graph generating algorithm is used in Xtriage (Zwart et al, 2005) in order to determine missing rotational symmetry. 
A scoring function based on R-values (similar to those used by Labelit (Sauter et al., 2006) ) is available to help guide the user to 
the most likely point group: 

 
------------------------------------------------------------------------------------------------------ 
| Point group                     | mean R_used | max R_used | mean R_unused | min R_unused | choice | 
------------------------------------------------------------------------------------------------------ 
| Hall:  I 4 (y+z,x+z,x+y)        | 0.309       | 0.436      | 0.280         | 0.042        |        | 
| P 1                             | None        | None       | 0.291         | 0.042        |        | 
| Hall:  C 2y (2*y,x+y+z,x+y)     | 0.432       | 0.432      | 0.260         | 0.042        |        | 
| Hall:  C 2y (x+y,z,x-y)         | 0.436       | 0.436      | 0.295         | 0.042        |        | 
| Hall:  C 2y (x+y,-x+y+z,z)      | 0.044       | 0.044      | 0.306         | 0.042        |        | 
| Hall:  R 3 (2*x-y,x+y,x+z)      | 0.043       | 0.043      | 0.271         | 0.042        |        | 
| R 3 2 :R                        | 0.435       | 0.436      | 0.433         | 0.432        |        | 
| Hall:  C 2y (z,x-y,x+y)         | 0.435       | 0.435      | 0.259         | 0.042        |        | 
| Hall:  R 3 (x+y,x+z,2*x-y)      | 0.044       | 0.044      | 0.270         | 0.042        |        | 
| Hall:  R 3 (x+z,2*x-y,x+y)      | 0.042       | 0.042      | 0.269         | 0.042        |        | 
| Hall:  I 4 2 (y+z,x+z,x+y)      | 0.340       | 0.436      | 0.240         | 0.042        |        | 
| Hall:  F 2 2 (-x+y+z,2*z,x+y+z) | 0.435       | 0.436      | 0.360         | 0.044        |        | 
| Hall:  I 4 (x+z,x+y,y+z)        | 0.307       | 0.435      | 0.280         | 0.042        |        | 
| Hall:  R 3 2" (2*x-y,x+y,x+z)   | 0.176       | 0.434      | 0.434         | 0.433        |        | 
| Hall:  I 4 2 (x+z,x+y,y+z)      | 0.339       | 0.435      | 0.434         | 0.433        |        | 
| Hall:  I 4 2 3 (y+z,x+z,x+y)    | 0.291       | 0.436      | None          | None         |        | 
| Hall:  F 2 2 (2*z,x-y+z,x+y+z)  | 0.433       | 0.435      | 0.359         | 0.044        |        | 
| Hall:  C 2y (x+y,2*y,x+y+z)     | 0.434       | 0.434      | 0.296         | 0.042        |        | 
| Hall:  C 2y (z,x+y,-x+y+z)      | 0.034       | 0.034      | 0.281         | 0.042        |        | 
| Hall:  R 3 2" (x+y,x+z,2*x-y)   | 0.434       | 0.436      | 0.176         | 0.042        |        | 
| Hall:  I 2 2 3 (y+z,x+z,x+y)    | 0.043       | 0.044      | 0.433         | 0.433        | <---   | 
| Hall:  C 2y (x-y,x+y,z)         | 0.435       | 0.435      | 0.224         | 0.034        |        | 
| Hall:  F 2 2 (x-y+z,x+y+z,2*z)  | 0.242       | 0.433      | 0.205         | 0.042        |        | 
| Hall:  I 4 (x+y,y+z,x+z)        | 0.304       | 0.435      | 0.280         | 0.042        |        | 
| Hall:  R 3 2" (x+z,2*x-y,x+y)   | 0.434       | 0.435      | 0.175         | 0.042        |        | 
| Hall:  C 2y (-x+y,z,x+y+z)      | 0.042       | 0.042      | 0.281         | 0.042        |        | 
| Hall:  I 4 2 (x+y,y+z,x+z)      | 0.244       | 0.435      | 0.434         | 0.433        |        | 
| R 3 :R                          | 0.042       | 0.042      | 0.269         | 0.042        |        | 
| Hall:  I 2 2 (y+z,x+z,x+y)      | 0.043       | 0.044      | 0.305         | 0.042        |        | 
| Hall:  C 2y (x+y+z,x+y,2*y)     | 0.433       | 0.433      | 0.188         | 0.034        |        | 
------------------------------------------------------------------------------------------------------ 
 
 
R_used: mean and maximum R value for symmetry operators *used* in this point 
        group 
R_unused: mean and minimum R value for symmetry operators *not used* in this 
          point group 
The likely point group of the data is:  Hall:  I 2 2 3 (y+z,x+z,x+y) 
 
Possible space groups in this point groups are: 
  Unit cell: (78.9732, 78.9732, 78.9732, 90, 90, 90) 
  Space group: I 2 3 (No. 197) 
 
  Unit cell: (78.9732, 78.9732, 78.9732, 90, 90, 90) 
  Space group: I 21 3 (No. 199) 

3.2. Unit cell comparison 

The presence of pseudo symmetric properties of a lattice associated with a set of unit cell parameters, is often discovered at the 
stage of indexing and scaling the data. If however a derivative or crystal from slightly different crystallization conditions is available, 
the presence of a relation to the native or other crystal form is often not immediately clear. Using the sublattice tools discussed in 
section 2.4, relations between two unit cells can easily be determined. 

For example, Poulsen et al. (2001) observed crystal of the native protein and two Se-Met derivatives with the following cell 
parameters and space groups: 

 
Native :  P 21 21 21    61.8   97.7  148.9  90  90  90 
SeMet1 :  P 1 21 1     115.5  149.0  115.6  90 115  90 (pseudo hexagonal) 
SeMet2 :  C 2 2 21     123.6  195.4  148.9  90  90  90 



Comparing Native and SeMet1 

Using the command 

 
iotbx.explore_metric_symmetry --unit_cell="61.8 97.7 148.9 90 90 90" 
   --space_group=P212121 --other_unit_cell="115.5 149.0 115.6 90 115 90" 
   --other_space_group=P21 --no_point_group_graph 

The following output is produced: 

 
-------------------- 
Unit cell comparison 
-------------------- 
 
The unit cells will be compared. The smallest Niggli cell, 
will be used as a (semi-flexible) lego-block to see if it 
can construct the larger Niggli cell. 
 
Crystal symmetries in supplied setting 
--------------------------------------  
Target crystal symmetry: 
    Unit cell: (115.5, 149, 115.6, 90, 115, 90) 
    Space group: P 1 21 1 (No. 4) 
Building block crystal symmetry:  
    Unit cell: (61.8, 97.7, 148.9, 90, 90, 90) 
    Space group: P 21 21 21 (No. 19) 
 
Crystal symmetries in Niggli setting 
------------------------------------ 
Target crystal symmetry: 
    Unit cell: (115.5, 115.6, 149, 90, 90, 115) 
    Space group: P 1 1 21 (No. 4) 
Building block (lego cell) crystal symmetry:  
    Unit cell: (61.8, 97.7, 148.9, 90, 90, 90) 
    Space group: P 21 21 21 (No. 19) 
 
Volume ratio between target and lego cell:  2.01 
 
Cartesian basis (column) vectors of lego cell: 
  /  61.8   0.0   0.0 \   
  |   0.0  97.7   0.0 |   
  \   0.0   0.0 148.9 /   
 
Cartesian basis (column) vectors of target cell: 
  / 115.5 -48.9   0.0 \   
  |   0.0 104.8   0.0 |   
  \   0.0   0.0 149.0 /   
 
A total of   20 matrices in the Hermite normal form have been generated. 
The volume changes they cause lie between    3 and    2. 
 
Trying all matrices 
 
   1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 
   . . . . . * . . . | . . . . . . . . . | 
   
 Listing all possible solutions 
 
Solution    1 
-------------------------------------------------------------- 
Target unit cell :     115.5 115.6 149.0  90.0  90.0 115.0 (Sub lattice) 
Lego cell :             61.8  97.7 148.9  90.0  90.0  90.0 (Super lattice) 
 
               /   2    1    0  \   
matrix :  M =  |   0    1    0  |   
               \   0    0    1  /   
 
Additional Niggli transform:      x,-y,-z 
Additional similarity transform:  x,y,z 
Resulting unit cell :  118.3 118.3 148.9  90.0  90.0 120.0 
Deviations :            -2.5  -2.4   0.1   0.0   0.0  -5.0 
Deviations for unit cell lengths are listed in %. 
Angular deviations are listed in degrees. 
-------------------------------------------------------------- 

This result indicates that the two cells are related. A graphical depiction of the unit cell transformations is shown below. 



 

Figure 1. The action of matrix M on the original lattice of the (P212121 native) lego cell is shown. The original orthorhombic cell 
is shown in black. The monoclinic cell obtained after application of matrix M is shown in red. A cell reduction of the red unit cell 
results in the blue SeMet1 cell. The C-centered cell of the SeMet2 derivative is shown in pink. The view is along the original c 
axis. 

Comparing Native and SeMet1 to SeMet2 

Although it is rather obvious that the Native data is related to SeMet2 (there is a factor 2 in the a and b axis), it might not be entirely 
clear where the centring comes from. The presence of the centring operator becomes however clear when comparing the Niggli 
cells of the two Se-Met derivatives 

 
Niggli cell SeMet1: 
   Unit cell: (115.5, 115.6, 149, 90, 90, 115) 
   Space group: P 1 1 21 (No. 4) 
 
Niggli cell SeMet2:       
   Unit cell: (115.6, 115.6, 148.9, 90, 90, 115.4) 
   Space group: Hall:  C 2c 2 (x-y,x+y,z) 

Since the Niggli cells of the derivatives are similar, the introduction of the centring is a direct result of the pseudo symmetric 
properties of the Niggli cells of the Selenium derivatives. A graphical depiction of the situation is shown in Figure 1. 

The relations found between these various crystal forms can be practically relevant when attempting to perform molecular 
replacement against multiple crystal forms (Di Constanzo et al., 2003) or when performing multiple crystal density modification. 

 

4. Availability 
The program iotbx.explore_metric_symmetry is open source code included in the CCTBX. 
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