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THE EFFECT OF PROBLEM PERTURBATIONS ON NONLINEAR
DYNAMICAL SYSTEMS AND THEIR REDUCED ORDER MODELS ∗

RADU SERBAN † , CHRIS HOMESCU ‡ , AND LINDA R. PETZOLD §

Abstract. Reduced order models are used extensively in many areas of science and engineering
for simulation, design, and control. Reduction techniques for nonlinear dynamical systems produce
models that depend strongly on the nominal set of parameters for which the reduction is carried
out. In this paper we address the following two questions: “What is the effect of perturbations in
the problem parameters on the output functional of a nonlinear dynamical system?” and “To what
extent does the reduced order model capture this effect?”

Key words. model reduction, small sample statistical condition estimation, adjoint method,
valid parameter range, singular value analysis
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1. Introduction. In this paper we consider nonlinear dynamical systems of the
generic form

M(t, y′, y, p) = 0 , y(t0) = y0(p) , (1.1)

where y are the model states, y0 are the initial conditions, and p are model parame-
ters. The system may be an ordinary differential equation (ODE), a semi-discretized
partial differential equation (PDE), or a differential algebraic equation (DAE). An
important problem which arises in a wide variety of engineering and scientific appli-
cations is to find the amount of change which can be expected in a model response
functional h(t, y(t), p) at a later time t, as a function of changes in the parameters
p. The direction in the parameter space of the perturbation that produces the max-
imum change in the output may also be needed. For example, in weather prediction
one wishes to find those perturbations in the initial conditions that can produce the
greatest change in the accuracy of the forecast, because they identify the locations
where the acquisition of additional data can be most effective [6, 15].

For large-scale dynamical systems, such decisions making use of the sensitivity of
the system to perturbations in the problem parameters may necessarily be based on
the corresponding sensitivities of a reduced order model (ROM). A ROM correspond-
ing to (1.1) is a system of the form

M̃(t, ỹ′, ỹ, p) = 0 , ỹ(t0) = ỹ0(p) , (1.2)

such that its solution ỹ is an approximation to the solution y of (1.1). The ROM must
be computationally less expensive than the full model. Depending on the particular
model reduction technique employed, this can be achieved either through a reduction
in the dimension of the state space, or through a reduction in the complexity of
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the forcing term, or both. Nonlinear ROMs have been obtained through Proper
Orthogonal Decomposition (POD) [13, 19], reduction of complexity [18, 20], Balanced
Truncation [8], Principal Component Analysis [11] and many other techniques [1].
An important property of nonlinear ROMs is that they are (necessarily) based on
a nominal set of parameters or a limited range of operating conditions. Thus the
question naturally arises, to what extent does a given nonlinear ROM capture the
changes in the output functional of the full system that result from perturbations in
the problem parameters?

We present in Section §2 an efficient method for the estimation of perturbation-
induced errors in the solution of a dynamical system. The method is based on a
combination of adjoint sensitivity analysis [4] and the small sample statistical condi-
tion estimate (SCE) method [12, 7]. We show how to apply these ideas to systems
described by ODEs, semi-explicit index-1 DAEs, and Hessenberg index-2 DAEs [9, 3].
This algorithm is closely related to our earlier work on estimating errors for POD-
based ROM applied to ODE systems [10], but extends those techniques to DAEs and
to more general nonlinear reduced-order models.

Using this methodology, in Section §3 we show how the direction in parameter
space of maximum error growth in the output functional can be computed with very
few solutions of the adjoint model. This is related to singular vector (SV) analysis in
the weather prediction literature, e.g., [5]. By interpreting the initial perturbation as
the error (or uncertainty) at the initial time, it was found in [5] that the maximum
possible error growth is the largest singular value of the operator obtained from the
linearization of the differential system. In section §4 we tackle the issue of estimating
the extent to which a given ROM preserves the value of the maximum perturbation-
induced error and/or the direction of the perturbations that induce it. We introduce
two types of similarity index which measure this property. The problem of estimating
the error which combines the effects of both model reduction and perturbations in
parameters is addressed in Section §5.

Numerical results are given in Section §6. Models described by both ODEs and
DAEs, and corresponding ROMs generated by several different methods are presented.
An example is given for which the ROM is quite accurate for the nominal values of the
parameters, but fails to capture the behavior of the full model when the parameters
are slightly perturbed. We demonstrate that the similarity index can be very effective
in detecting this type of situation.

2. Estimation of Perturbation-Induced Errors. In this section we present a
method for the estimation of errors induced by perturbations in the initial conditions
of a dynamical system. This approach, based on adjoint sensitivity analysis and small-
sample statistical condition estimation(SCE), will be used throughout this paper.

For dynamical systems of the form (1.1), we wish to find an estimate of the error
e(t) = Y (t) − y(t) at some time t > t0, where Y (t) is the solution of the perturbed
system

M(t, Y ′, Y, p+ δp) = 0 , Y (t0) = y0(p+ δp) . (2.1)

Subtracting (1.1) from (2.1) yields the following equation for the error e(t):

My′(t)e′ +My(t)e+Mp(t)δp+O(‖e‖2) = 0 ,

where My′ , My, and Mp are the Jacobians of M with respect to y′, y, and p,
respectively, evaluated at (t, y′(t), y(t), p). Thus, to a first order approximation, the
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error satisfies

My′(t)e′ +My(t)e+Mp(t)δp = 0, e(t0) = y0
p(p) δp . (2.2)

Note that the problem of estimating the error for perturbations in the initial conditions
is a particular case of the problem of estimating the error for perturbations in the
parameters, for which p = y0. For any given perturbation δp, one can solve the
forward sensitivity equation (2.2) to obtain the time evolution of the error e(t) at
any time t > t0. However, this forward approach to error estimation can become
expensive if one wishes to estimate the error over a range of perturbations, because
(2.2) must be solved for each perturbation of interest.

We can, with the SCE technique described below, obtain an estimate of the norm
of the error at some arbitrary but fixed time t > t0, i.e., ‖e(t)‖, as long as scalar
products of the form zT e(t) are available, for any given unit vector z. This estimate
takes the form

‖e(t)‖ ≈ Wq

Wn




q∑

j=1

∣∣zT
j e(t)

∣∣2



1/2

,

where {zj}j=1...q are q orthogonal vectors, uniformly and randomly selected from the
unit sphere Sn−1, where n is the dimension of y.

In the remainder of this section, after a short introduction to the SCE estimation
technique, we present an adjoint-based method for efficiently computing the scalar
products zT e(t). First, we consider dynamical systems that can be written as ODEs
and then we present the derivation for DAE systems. We base our SCE estimates on
the solution of adjoint systems that are independent of δp and can thus be used for
the estimation of errors induced by any perturbation.

2.1. Small sample statistical method for condition estimation. The small
sample statistical condition estimation (SCE) method, originally proposed in [12],
offers an efficient means for condition estimation for general nonlinear functions, at the
cost of allowing moderate relative errors in the estimate. The basic idea is described
below (for complete details, see [12, 7]).

For any vector v ∈ Rn, if u is selected uniformly and randomly from the unit
sphere Sn−1, the expected value of u

T v is proportional to the norm of v:

E(|uT v|) =Wn‖v‖ .

The proportionality factor, called the Wallis factor, depends only on n. It is defined
as W1 = 1 and

Wn =





1 · 3 · · · (n− 2)
2 · 4 · · · (n− 1) for n odd

2

π

2 · 4 · · · (n− 2)
1 · 3 · · · (n− 1) for n even

and can be approximated by Wn ≈
√

2

π(n− 1
2 )
.

Thus the expression ξ =
|uT v|
Wn

is used to estimate the norm ‖v‖. This estimate
is first order in the sense that the probability of a relative error in the estimate is
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inversely proportional to the size of the error. That is, for γ > 1, we have

Pr

(‖v‖
γ
≤ ξ ≤ γ‖v‖

)
≥ 1− 2

πγ
+O

(
1

γ2

)
.

Additional function evaluations can improve the accuracy of the estimate.
Suppose that we obtain estimates ξ1, ξ2, . . . , ξq corresponding to orthogonal vec-

tors u1, u2, . . . , uq selected uniformly and randomly from the unit sphere Sn−1. The
expected value of the norm of the projection of v onto the span U generated by
u1, u2, . . . , uq is

E

(√
|uT

1 v|2 + |uT
2 v|2 + · · ·+ |uT

q v|2
)
=

Wn

Wq
‖v‖ .

The estimate ν(q) =
Wq

Wn

√
|uT

1 v|2 + |uT
2 v|2 + · · ·+ |uT

q v|2 is q-th order accuracy, i.e., a
relative error of size γ in the estimate occurs with probability proportional to γ−q [12]:

Pr

(‖v‖
γ
≤ ν(2) ≤ γ‖v‖

)
≈ 1− π

4γ2
,

Pr

(‖v‖
γ
≤ ν(3) ≤ γ‖v‖

)
≈ 1− 32

3π2γ3
,

Pr

(‖v‖
γ
≤ ν(4) ≤ γ‖v‖

)
≈ 1− 81π2

512γ4
.

Usually at most four random vectors are required in practice.

2.2. Ordinary differential equation systems. Consider the following system:

f(t, y′, y, p) = 0 , y(t0) = y0(p) , (2.3)

for t ∈ [t0, tf ], y, y0 ∈ Rn and f : R× Rn → Rn. The partial derivative matrix fy′ is
nonsingular. The linearized error equation in this case is

M(t)e′ +A(t)e = −fp(t)δp , e(t0) = y0
p(p)δp , (2.4)

where the matrices of partial derivatives M(t) = fy′ , A(t) = fy, and fp are evaluated
at (t, y′(t), y(t), p). For the remainder of this section, for the sake of readability, we
will drop the time argument for these matrices, except where absolutely necessary.

We begin by noting that the solution of (2.4) can be written as

e(t) = Φ(t)

(
y0

p −
∫ t

t0

Φ−1(τ)M−1fp dτ

)
δp ,

where Φ(t) ∈ Rn×n is the fundamental matrix corresponding to (2.4), i.e.,

MΦ′ +AΦ = 0 , Φ(t0) = I . (2.5)

It is straightforward to verify that the solution λ of the adjoint system

(MTλ)′ −ATλ = 0 , (2.6)

with final condition λ(t) = z, satisfies

λT (τ) = zTΦ(t)Φ−1(τ)M−1(τ) , ∀τ ∈ [t0, t]
λT (t0)M(t0) = zTΦ(t)

(2.7)
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and therefore,

zT e(t) =

(
λT (t0)M(t0)y

0
p −

∫ t

t0

λT (τ)fp dτ

)
δp . (2.8)

The case of perturbations in initial conditions is obtained by setting fp(t) = 0 , ∀t
and y0

p = I, while the case of perturbations in the right-hand side only corresponds
to y0

p = 0.
If we consider q orthogonal vectors zj , 1 ≤ j ≤ q, uniformly and randomly selected

from the unit sphere Sn−1, we obtain the SCE estimate

‖e(t)‖ ≈ Wq

Wn




q∑

j=1

∣∣zT
j e(t)

∣∣2



1/2

=
Wq

Wn




q∑

j=1

∣∣∣∣
(
λT

j (t0)M(t0)y
0
p −

∫ t

t0

λT
j (τ)fp(τ) dτ

)
δp

∣∣∣∣
2



1/2

,

(2.9)

where λj are solutions of the adjoint systems (2.6) with final conditions based on zj .
An important property of this error estimate is that the adjoint system (2.6)

on which it is based is independent of the perturbation δp. Thus the same adjoint
solutions λj can be used to estimate the error induced by any perturbation. Finally,
we note that very few (less than four) unit vectors zj (and hence adjoint system
solutions) are usually sufficient for acceptable SCE estimates.

In preparation for using the above estimate in comparing two different models, let
us consider the perturbation-induced error in a model response functional h(t, y(t), p).
We seek the norm of this error, namely ε(t) := h(t, Y (t), p + δp) − h(t, y(t), p) (see
Fig. 5.1). A linearization around δp = 0 yields

ε(t) = hye(t) + hpδp .

Thus

‖ε(t)‖ ≈ Wq

Wnh




q∑

j=1

∣∣zT
j hye(t) + zT

j hpδp
∣∣2



1/2

=
Wq

Wnh




q∑

j=1

∣∣∣∣
(
λT

j (t0)M(t0)y
0
p −

∫ t

t0

λT
j (τ)fp(τ) dτ + zT

j hp

)
δp

∣∣∣∣
2



1/2

,

where λj is the solution of the adjoint system (2.6) with the final condition λj(t) =
hT

y (t)zj . We select the q vectors zj uniformly and randomly from the unit sphere
Snh−1, where nh is the dimension of h.

2.3. Semi-explicit index-1 differential-algebraic equation systems. A
semi-explicit index-1 DAE takes the form

f(t, y′, y, x, p) = 0

g(t, y, x, p) = 0

y(t0) = y0(p) , x(t0) = x0(p) ,

(2.10)
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where y are the differential variables, x are the algebraic variables, and p are model
parameters. The Jacobian matrices fy′ and gx are nonsingular. Note that the initial
conditions y0, x0 are assumed to be consistent with the algebraic constraints, that is,
g(t0, y

0, x0, p) = 0.
We are interested in estimating the norm of the error e(t) between the solution

(Y (t), X(t)) of the system with perturbed parameters and the solution (y(t), x(t))
of the unperturbed system. We decompose e(t) into the differential and algebraic
components: ed(t) = Y (t) − y(t) and ea(t) = X(t) − x(t). As in the ODE case, a
linearization along the solution of the unperturbed DAE leads to

M(t)e′y +A(t)ed +B(t)ea = −fp(t)δp

C(t)ed +D(t)ea = −gp(t)δp

ed(0) = y0
pδp , ea(t0) = x0

pδp ,

(2.11)

where the matrices of partial derivatives,M(t) = fy′ , A(t) = fy, B(t) = fx, C(t) = gy,
D(t) = gx, fp and gp are all evaluated at (t, y(t), x(t), p). Consistency of the initial
conditions for the above DAE is equivalent to the requirement that the perturbation
δp satisfies

(C(t0)y
0
p +D(t0)x

0
p + gp(t0))δp = 0 . (2.12)

We reduce the analysis to the ODE case by using the essential underlying ODE
(EUODE) [2]:

Me′y + (A−BD−1C)ed = −(fp −BD−1gp)δp , ed(t0) = y0
pδp . (2.13)

The corresponding fundamental matrix Φ1 satisfies

MΦ′
1 + (A−BD−1C)Φ1 = 0 , Φ1(t0) = I , (2.14)

and therefore

ed(t) = Φ1(t)

(
y0

p −
∫ t

t0

Φ−1
1 (τ)M

−1(fp −BD−1gp) dτ

)
δp

ea(t) = −D−1 (Ced(t) + gpδp) .

The SCE norm estimate of the error vector [eT
d (t); e

T
a (t)]

T is based on scalar products
of the form

zT
d ed(t) + zT

a ea(t) =
(
zT
d − zT

a D−1C
)
ed(t)− zT

a D−1gpδp ,

for some vector z = [zT
d ; z

T
a ]

T ∈ Sn−1. It can be easily verified that the differential
component λ of the solution of the adjoint system

(MTλ)′ −ATλ− CTµ = 0

−BTλ−DTµ = 0

λ(t) = zd − CTD−T za ,

(2.15)

satisfies λ(τ) =M−T (τ)Φ−T
1 (τ)ΦT

1 (t)λ(t). As a consequence,

(
λT (t0)M(t0)y

0
p −

∫ t

t0

λT (fp −BD−1gp) dτ

)
δp =

(
zd − CTD−T za

)T

×
(
Φ1(t)Φ

−1
1 (t0)y

0
p −

∫ t

t0

Φ1(t)Φ
−1
1 (τ)M

−1(fp −BD−1gp) dτ

)
δp .
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Thus

zT
d ed(t) + zT

a ea(t) =

(
λT (t0)M(t0)y

0
p −

∫ t

t0

λT (fp −BD−1gp) dτ − zT
a D−1gp

)
δp .

or, using µT = −λTBD−1,

zT
d ed(t) + zT

a ea(t) =

(
λT (t0)M(t0)y

0
p −

∫ t

t0

(
λT fp + µT gp

)
dτ − zT

a D−1gp

)
δp .

(2.16)
Following the same argument as in §2.2, an SCE norm estimate for the perturbation-
induced error ε(t) in a model response h(t, y(t), x(t), p) can be obtained by replacing
the final condition on λ with

λ(t) = (hy − hxD
−1C)T z , z ∈ Snh−1

and using

zT ε(t) =

(
λT (t0)M(t0)y

0
p −

∫ t

t0

(
λT fp + µT gp

)
dτ − zThxD

−1gp + zThp

)
δp .

If we consider only perturbations in the initial conditions (fp = gp = y0
p = 0,

implying x0
p = I) and if we are interested in the norm of the entire error vector e(t), the

following refinement of the above procedure, which takes advantage of the geometry
of the problem, results in more accurate SCE estimates. We begin by observing that,
since ed(t) and ea(t) must be consistent with the algebraic constraints, we need only
consider unit vectors z that satisfy the linearized constraint C(t)zd+D(t)za = 0. Let
ny = dim(y) be the number of degrees of freedom of the system (2.10). We start
by selecting q vectors zd uniformly and randomly from Sny−1 and, for each one of
them, construct the vector za = −D−1(t)C(t)zd. We then orthonormalize the set of
q vectors z = [zT

d ; z
T
a ]

T and thus obtain q orthogonal unit vectors in Rn which are
uniformly and randomly distributed over the sphere Sny−1 embedded on the linear
subspace of Rn of codimension n− ny.

2.4. Hessenberg index-2 differential-algebraic equation systems. Con-
sider next a dynamical system expressed in Hessenberg index-2 DAE form

f(t, y′, y, x, p) = 0

g(t, y, p) = 0

y(t0) = y0(p) , x(t0) = x0(p) ,

(2.17)

where y are the differential variables, x are the algebraic variables, and p are model
parameters. The matrices fy′ and gyf

−1
y′ fx are nonsingular and the initial conditions

are assumed to be consistent, i.e., g(t0, y
0, p) = 0 and

d

dt
g(t0, y

0, p) = 0.

Let A(t) = fy, B(t) = fx, C(t) = gy, and M(t) = fy′ . To keep the derivation as
simple as possible, we start by assuming that M(t) = I. Results for a general mass
matrix will be given at the end of this section. With M(t) = I, the linearized error
equation becomes

e′y +A(t)ed +B(t)ea = −fp(t)δp

C(t)ed = −gp(t)δp

ed(t0) = y0
pδp , ea(t0) = x0

pδp

(2.18)
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for the errors ed(t) = Y (t) − y(t) and ea(t) = X(t) − x(t), where Y (t), X(t) is the
solution of (2.17) with perturbed parameters. Consistency of the initial conditions in
(2.18) requires

Cy0
pδp = −gpδp

−(C ′ − CA)y0
pδp+ CBx0

pδp = (g
′
p − Cfp)δp

(2.19)

at t = t0.
For the Hessenberg index-2 DAE (2.18), the EUODE is derived as follows [2].

If B is sufficiently smooth, there exists a smooth bounded matrix function R(t) ∈
R(ny−nx)×ny whose linearly independent, normalized rows form a basis for the nullspace

of BT . Thus, RB = 0 and

[
R
C

]
is invertible.

With the change of variables u(t) = R(t)ed(t), ed is obtained as

ed =

[
R
C

]−1 [
u

−gpδp

]
= Su− Fgpδp ,

where S(t) ∈ Rny×(ny−nx) satisfies R(t)S(t) = I and C(t)S(t) = 0 and F = B(CB)−1.
The EUODE is obtained as u′ = (R′ − RA)Su − (R′ − RA)Fgpδp − Rfpδp. Before
proceeding further, we note that

F = B(CB)−1

SR = I −B(CB)−1C ,

and thus the EUODE can be written as

u′ = (R′ −RA)Su+R
(
(B′ +AB)(CB)−1gp − fp

)
δp , u(t0) = u0 , (2.20)

where we have used R′F = R′B(CB)−1 = −RB′(CB)−1. Note that to satisfy the
first condition in (2.19), a perturbation δp must be such that

y0
pδp = S(t0)u0 −B(t0)(C(t0)B(t0))

−1gp(t0)δp , (2.21)

for an arbitrary u0.
If Φ2 is the fundamental matrix corresponding to (2.20), that is,

Φ′
2 = (R

′ −RA)SΦ2 , Φ2(t0) = I ,

then

u(t) = Φ2(t)

(
u0 +

∫ t

t0

Φ−1
2 (τ)R

(
(B′ +AB)(CB)−1gp − fp

)
δp dτ

)

ed(t) = Su(t)− Fgpδp = Su(t)−B(CB)−1gpδp

ea(t) = (CB)−1

(
(C ′ − CA)ed(t) + (g

′
p − Cfp)δp

)
.

Consider next the adjoint system

λ′ −ATλ− CTµ = 0

−BTλ = 0 ,
(2.22)
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whose EUODE can be obtained with the change of variables v = STλ (implying
λ = RT v) as

v′ =
(
S′T + STAT

)
RT v = −ST (R′ −RA)T v , v(t) = ν .

Since the EUODE of the adjoint is the adjoint of the EUODE (2.20) we get

λ(τ) = RT (τ)v(τ) = RT (τ)Φ−T
2 (τ)ΦT

2 (t)ν . (2.23)

The scalar products required by the SCE procedure in this case are of the form

zT
d ed(t) + zT

a ea(t) = zT
d ed(t) + zT

a (CB)−1(C ′ − CA)ed(t) + zT
a (CB)−1(g′p − Cfp)δp

=
(
zT
d + zT

a (CB)−1(C ′ − CA)
) (

Su(t)−B(CB)−1gp

)
δp+ zT

a (CB)−1(g′p − Cfp)δp .

Using (2.23) and (2.21) we get

(
λT (t0)y

0
p +

∫ t

t0

λT
(
(B′ +AB)(CB)−1gp − fp

)
dτ

)
δp

= νΦ2(t)

(
u0 +

∫ t

t0

Φ−1
2 (τ)R

(
(B′ +AB)(CB)−1gp − fp

)
δp dτ

)
,

where we have used R(t0)S(t0) = I and R(t0)B(t0) = 0. Taking into account µT =
−λT (B′ +AB)(CB)−1 and selecting the final condition for (2.22) to be

λ(t) =
(
I −B(CB)−1C

)T (
zd + (C

′ − CA)T (CB)−T za

)
,

we get

zT
d ed(t) + zT

a ea(t) =

(
λT (t0)y

0
p −

∫ t

t0

(
λT fp + µT gp

)
dτ

− zT
d B(CB)−1gp + zT

a (CB)−1
(
g′p − (C ′ − CA)B(CB)−1gp − Cfp

))
δp .

If the final condition for λ is replaced with

λ(t) =
(
I −B(CB)−1C

)T (
hT

y + (C
′ − CA)T (CB)−ThT

x

)
z ,

for some z ∈ Rnh , the resulting adjoint variable can be used in evaluating the scalar
product zT ε(t), which is necessary in an SCE estimate of the norm of the perturbation-
induced error in the model response h(t, y(t), x(t), p), as

zT ε(t) =

(
λT (t0)y

0
p −

∫ t

t0

(
λT fp + µT gp

)
dτ

)
δp− zThyB(CB)−1gp

+ zThx(CB)−1
(
g′p − (C ′ − CA)B(CB)−1gp − Cfp

)
+ zThp

)
δp .

Finally, for a general mass matrix M(t), we note that the matrix CM−1B must
always be nonsingular. Then the scalar product zT

d ed(t) + zT
a ea(t) can be obtained,

using the solution {λ, ν} of the following adjoint system
(MTλ)′ −ATλ− CTµ = 0

−BTλ = 0 (2.24)

MT (t)λ(t) =
(
I −M−1B(CM−1B)−1C

)T (
zd + (C

′ − CM−1A)T (CM−1B)−T za

)
,
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as

zT
d ed(t) + zT

a ea(t) =

(
λT (t0)M(t0)y

0
p −

∫ t

t0

(
λT fp + µT gp

)
dτ

−zT
d M−1B(CM−1B)−1gp (2.25)

+zT
a (CM−1B)−1

(
g′p − (C ′ − CM−1A)M−1B(CM−1B)−1gp − CM−1fp

))
δp .

3. Singular Vector (SV) Analysis. SV analysis, introduced by Lorenz in the
1960’s [17], is employed to compute the largest error growth and to help estimate
model predictability. Finding the direction of maximal error growth implies solving
a generalized eigenvalue problem for a matrix involving the product ΦTΦ, where Φ
is the fundamental matrix of the differential system 1. Solving the resulting eigen-
value problem is quite computationally expensive. It is typically accomplished using
Lanczos-type algorithms which require only the evaluation of matrix-vector products.
However, every such product involves a forward integration of a linearized model fol-
lowed by a backward in time solution of the corresponding adjoint model. Based on
the combination of SCE estimate and adjoint models, we describe below a method for
finding an approximation to the leading SV (representing the direction of maximal
error growth) that requires only very few solutions of the adjoint model (equal to the
number of unit vectors considered in the SCE estimate).

Consider again the error ε(t) := h(t, Y (t), p + δp) − h(t, y(t), p) in some model
response functional h(t, y, p). We wish to find the direction of perturbations in the
parameters p that gives rise to the maximum error ‖ε(t)‖ at some time t ≥ t0. In
other words, we seek

E := sup
‖u‖ = 1
u ∈ Rnu

‖ε(t, u)‖, (3.1)

where ε is the response error induced by a perturbation δp = δp(u) in the parameters
p. The directions u over which we search for the maximum error norm growth are
constrained to belong to a search space RNu such that the resulting perturbations
δp(u) are admissible. The dimension Nu is model and problem dependent and will be
defined below for each of the dynamical systems discussed in §2.

Using an SCE estimate for the error norm in (3.1) we get

E2 =

(
Wq

Wnh

)2

sup
‖u‖ = 1
u ∈ Rnu

q∑

j=1

|zT
j ε(t, u)|2 ,

where, for the dynamical systems considered in this paper, the scalar products zT
j ε(t, u)

were derived in §2.2–2.4. The essence of these formulas is that, in all cases,

zT
j ε(t, u) = αT

j δp ,

1In the meteorological and weather prediction literature this matrix is often called the propagator.
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with αj defined in terms of the solution λj of an appropriate adjoint system. Therefore

E2 =

(
Wq

Wnh

)2

sup
‖u‖ = 1
u ∈ Rnu

q∑

j=1

|αT
j δp(u)|2 =

(
Wq

Wnh

)2

sup
‖u‖ = 1
u ∈ Rnu

δpT (u)

( q∑

j=1

αjα
T
j

)
δp(u)

=

(
Wq

Wnh

)2

sup
‖u‖ = 1
u ∈ Rnu

uTPT

( q∑

j=1

αjα
T
j

)
Pu ,

where we have assumed that the admissible perturbations can be written as δp(u) =

Pu, for some matrix P . Let Ψ := P T
(∑q

j=1 αjα
T
j

)
P . The matrix Ψ is symmetric

and has rank(Ψ) ≤ q. Thus its singular value decomposition (SVD) is Ψ = U TΣU =∑q
j=1 σjuju

T
j , and uTΨu =

∑q
j=1

(√
σju

Tuj

)2
. If the singular values of Ψ are num-

bered in decreasing order, it is easy to see that

sup
‖u‖ = 1
u ∈ Rnu

uTΨu = σ1 ,

which is attained for u∗ = u1. Thus

E = Wq

Wnh

√
σ1 , (3.2)

and the direction of perturbations along which the error is maximized is δp∗ = Pu1.
Next we establish the dimension nu in (3.1) and the corresponding matrix P

(defining the allowable parameter perturbations δp(u) = Pu) for the dynamical sys-
tems discussed in the previous section.
1. For an ODE system, any perturbation δp is admissible. Thus nu = np ≡ dim(p)
and P = Inp

.
2. For a semi-explicit index-1 DAE, requiring the initial condition for (2.12) to be
consistent is equivalent to requiring that δp be in the null-space of the matrix
Q1 = C(t0)y

0
p+D(t0)x

0
p+gp(t0). Then P = N (Q1) and nu = dim (N (Q1)), where

N (Q1) is a basis for the null-space of Q1. In the particular case of perturbations in
initial conditions ed(t0) = δp and ea(t0) = −D−1(t0)C(t0)δp. Therefore U ≡ Rny

and P = Iny
.

3. For a Hessenberg index-2 DAE, similarly to the index-1 DAE case, the conditions
(2.19), modified here to account for a general mass matrix, are equivalent to the
requirement that δp be in the null-space of

Q2 =

[
Cy0

p + gp

−(C ′ − CM−1A)y0
p + CM−1Bx0

p − g′p + CM−1fp

]

at t = t0. Thus P = N (Q2) and nu = dim (N (Q2)). In the case of perturba-
tions in the initial conditions, ed(t0) = δp and ea(t0) = (C(t0)B(t0))

−1(C ′(t0) −
C(t0)A(t0))δp. Consistent perturbations must then satisfy δp = S(t0)u, with
u ∈ Rny−nx . Note that ny − nx represents the number of degrees of freedom
of the system (2.18).

Finally, if the parameter perturbations δp are to be further restricted to the range of
some matrix Π, then P = Π in the ODE case, and P = ΠN (QΠ), where Q = Q1 for
index-1 DAEs or Q = Q2 for index-2 DAEs.
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4. Quality Measures for Reduced Order Models. The quality of a given
ROM can be judged by the extent to which it preserves the value of the maximum
possible error and/or the direction of perturbations that induce it. We begin by
constructing a matrix whose entries

mij = 〈ui , ũj〉2

are the squared scalar products of the i-th SV of the full model and the j-th SV of the
reduced model. These entries represent the amount of energy 2 of the i-th full model
SV that can be explained by the j-th reduced model SV. The SV analysis must be
based on a model response that is common to both the full and reduced-order models.
Based on the matrix mij , a similarity index can be defined ([16]) as

S1 =
1

q

q∑

i,j=1

mij . (4.1)

Although the proposed method (based on SCE norm estimation) provides only
an approximation to S1, since the evaluation of S1 requires several singular vectors,
it is more computationally attractive than the alternative offered by Lanczos-type
algorithms, not to mention the option of computing the entire fundamental matrix Φ.

A second measure of similarity can be defined in terms of the ratio between the
norms of the errors induced in the full model and in the reduced order model by a
perturbation of unit norm along the dominant SV of the full model

S2 = min

(‖ε̃(t, u1)‖
‖ε(t, u1)‖

,
‖ε(t, u1)‖
‖ε̃(t, u1)‖

)
. (4.2)

Since both similarity indexes are related to the assessment of ROM quality, one may
ask when one index is more relevant than the other. Each similarity index evaluates
different aspects of the ROM quality. The first index, S1, quantifies the similarity
between subspaces spanned by the first q SVs for the full model and, respectively,
for the reduced model. Thus it provides an overall picture of ROM approximation
of the phenomena described by the full model. The second index, S2, gives a more
localized result, by estimating the extent to which the ROM preserves the error due
to perturbations along the direction of maximal error growth, given by the dominant
SV of the full model.

Finally, we note that both indexes take values between 0 and 1 and that for
identical models, they will equal unity. The index S2 is a more stringent ROM quality
test, in the sense that, typically, S2 < S1.

5. ROM Error under Perturbations. Consider next the problem of esti-
mating the error ‖Θ(t)‖, which combines the effects of both model reduction and
perturbations in parameters (see Fig. 5.1). For an arbitrary, but fixed, time t > t0,
let 3

Θ(t) = h(Y )− h̃(Ỹ ) =
(
h(y)− h̃(ỹ)

)
+
(
h(Y )− h(y)

)
−
(
h̃(Ỹ )− h̃(ỹ)

)

= θ(t) + ε(t)− ε̃(t)

≈ θ(t) + hye(t)− h̃ỹ ẽ(t) +
(
hp − h̃p

)
δp ,

(5.1)

2The energy depends on the particular inner product used. Here we use the usual Euclidean
inner product.

3For the sake of clarity, only the relevant function arguments were kept.
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Fig. 5.1. Graphical representation of model reduction and perturbation-induced errors. Solid-line
trajectories and quantities in lower case (y, ỹ, θ) correspond to unperturbed systems, while
dash-line trajectories and states in upper-case (Y, Ỹ ,Θ) correspond to the perturbed sys-
tems. Quantities with a tilde correspond to reduced order models.

where θ(t) = h(t, y(t), p)− h̃(t, ỹ(t), p) is the error in the model response due solely to
model reduction, e(t) = Y (t)− y(t) is the error introduced by the perturbation in the
original system, and ẽ(t) = Ỹ (t)− ỹ(t) is the error introduced by the perturbation in
the reduced system. We distinguish two cases. In both, the projections zT

j hye(t) and

zT
j h̃ỹ ẽ(t) are based on the solution of adjoint problems corresponding to the full and
reduced models, respectively, using the procedure of §2.
1. If the components of the error θ(t) are known, we can directly use an SCE estimate
for the norm ‖Θ(t)‖:

‖Θ(t)‖ = ‖θ(t) + hye(t)− h̃ỹ ẽ(t)‖

≈ Wq

Wnh




q∑

j=1

∣∣∣zT
j θ(t) + zT

j

(
hp − h̃p

)
δp+ zT

j hye(t)− zT
j h̃ỹ ẽ(t)

∣∣∣
2




1/2

.

2. If only the norm ‖θ(t)‖ is available, we use the bounds
∣∣∣ ‖θ(t) +

(
hp − h̃p

)
δp‖ − ‖hye(t)− h̃ỹ ẽ(t)‖

∣∣∣ ≤ ‖E(t)‖

≤ ‖e(t) +
(
hp − h̃p

)
δp‖+ ‖hye(t)− h̃ỹ ẽ(t)‖

and the following SCE estimate:

‖hye(t)− h̃ỹ ẽ(t)‖ ≈
Wq

Wnh




q∑

j=1

∣∣∣zT
j hye(t)− zT

j h̃ỹ ẽ(t)
∣∣∣
2




1/2

.

6. Numerical Results. We have implemented our methodology to problems
representative of the dynamical systems considered in this paper. We consider models
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described by systems of ODEs: the 2-D Brusselator (modeling autocatalytic, oscillat-
ing chemical reactions) and the GRI combustion model (from chemical kinetics); and
by DAEs (the heat shock model in biology).

6.1. 2D Brusselator. The following 2D time-dependent PDE models a chemi-
cally reacting system:

ut = ε1∆u+A+ u2v − (B + 1)u
vt = ε2∆v +Bu− u2v ,

where the diffusion coefficients are ε1 = ε2 = 2 ·10−3 and the chemical parameters are
given by A = 1 and B = 3.4. The PDE is defined over the square Ω = [0, 1] × [0, 1],
for t ∈ [0, 1]. Homogeneous Neumann conditions are imposed at the boundary of the
domain, while the initial conditions are

u(x, y, 0) = 1− 0.5 · cos(πy) , v(x, y, 0) = 3.5− 2.5 · cos(πx) . (6.1)

Using the method of lines, we convert this PDE to an ODE initial value problem
(IVP) using central finite differences to approximate the spatial derivatives on a grid
of Nx×Ny = 16× 16 interior points, with the boundary conditions explicitly used to
define the necessary ghost boundary points. The resulting system, of the form (2.3),
has dimension n = 512.

POD provides a method for finding the best approximating affine subspace to a
given set of data. When using POD for model reduction of dynamical systems, the
data are time snapshots of the solution obtained via numerical simulations or from
experiments. Consider next the solutions of (1.1) at m time points, collected in the
n ×m matrix Y = [y(t1) − y, y(t2) − y, . . . y(tm) − y], where y is the mean of these
observations. POD seeks a subspace S ∈ Rn and the corresponding projection matrix
P = ρρT so that the total square distance

‖Y − PY‖2 =
m∑

i=1

‖ (y(ti)− y)− P (y(ti)− y) ‖2

is minimized. The solution to the above minimization problem can be easily obtained
by considering the SVD of the correlation matrix R = YYT (see [19, 10] for details).
A POD-based reduced model that approximates the original problem can then be
constructed by projecting onto S the model (1.1):

ρTM(t, ρỹ + y, ρỹ′) = 0 , ỹ(t0) = ρT (y0 − y) .

Returning to the Brusselator model, a POD-based ROM is constructed using 100
equally-spaced snapshots from the trajectory corresponding to the initial conditions
(6.1) and retaining 12 modes. We note that the resulting ROM retains 99.52% of
the “energy” of the full system. Moreover, comparing the solutions of the full and
reduced models at the final time, we find that

‖y(t)− ỹ(t)‖
‖y(t)‖ · 100.0 = 0.3661% . (6.2)

We are therefore led to believe that this ROM (of dimension only 12) can very accu-
rately represent the solution of full model. However, using the analysis of the preceding
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Table 6.1

Brusselator example: SV analysis results. For both the full and reduced models the
following quantities are given: the estimated maximum perturbation-induced error norm
given by (3.2) at the final time t = 1.0, the actual norm of the error in the estimated
direction of maximum error growth and the norms of errors induced by several random
perturbations.

Full model Reduced-order model

E 6.70690e+01 Ẽ 6.50318e+00
‖e(t, u1)‖ 5.18372e+01 ‖ẽ(t, ũ1)‖ 5.85795e+00
‖e(t, urnd)‖ 2.82639e+00 ‖ẽ(t, ũrnd)‖ 2.54461e+00

5.18880e+00 2.58347e+00
3.79540e+00 3.32946e+00
5.81685e+00 1.59148e+00
4.14449e+00 1.65752e+00

sections, it turns out that this ROM does not perform well under perturbations in
the initial conditions.

We have applied the approach presented in §3 to estimate the leading singular
vectors for both the full model and the ROM, using q = 12 and q = 4 unit vectors for
the SCE, respectively. The results are summarized in Table 6.1. Next, applying the
approach presented in §4 and using the first four leading singular vectors, Eq. (4.1)
gives a similarity index of only S1 = 0.03287, while Eq. (4.2) gives S2 = 0.02328. The
reason for this poor agreement is that the direction of maximum error growth for the
full system is almost orthogonal to the POD subspace in which the ROM is bound to
evolve. Indeed, if u1 is the leading singular vector for the full system, we have that
‖(I − ρ ∗ ρT )u1‖ = 0.95266, while ‖ρTu1‖ = 0.30404, where ρ is the POD projection
matrix. Moreover, the leading singular vector ũ1 of the ROM fails to approximate
well even the projection of u1 on the POD subspace: the angle ](ũ1, ρ

Tu1) = 150.87
◦

(an angle of 0◦ or 180◦ indicates perfect agreement). The discrepancies between the
leading singular vector of the full model and that of the ROM can also be seen in
Fig. 6.1 in which the singular vectors are color coded and superimposed over the
unperturbed initial conditions.

As a final verification, introducing a perturbation along u1 of magnitude of only
1/100 · ‖y0‖, the quantity (6.2) becomes

‖Y (t)− Ỹ (t)‖
‖Y (t)‖ · 100.0 = 16.268% ,

which is in perfect agreement with the similarity index S2 (indeed, 0.02328 = S2 ≈
0.3661/16.268 = 0.0225).

6.2. GRI combustion model. Given ns chemical species with mass fractions
yi and m reactions, the constant-volume batch reactor is modeled by the ODE system

y′ = S(y)F (y) , y(t0) = y0 , (6.3)

where S ∈ Rns×m includes the stoichiometric matrix and the thermodynamic equa-
tions. F ∈ Rm is the vector of nonlinear responses corresponding to elementary
reactions, with Fi(y) denoting the reaction rate of the i-th physical elementary reac-
tion.
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(b) Leading singular vector for the reduced-order model.
Fig. 6.1. Brusselator example: Singular vectors color coded and superimposed over the initial con-

ditions (u component on the left, v component on the right).

A ROM can be constructed by choosing some (small) subset of the reactions to
use in the mechanism so that the behavior of the reduced system is as close as possible
to that of the original system, given a range of operating conditions. Often this is
done by a chemist based on physical knowledge and intuition. A numerical method
for the construction of such reduced models is given by [18]. In that approach, one
seeks a ROM in the form

ỹ′ = S(ỹ)DF (ỹ) , ỹ(t0) = y0 , (6.4)

such that the norm of the error e = y− ỹ is minimized over a given interval [t0, t]. In
(6.4), D ∈ Rm×m is a diagonal matrix whose diagonal elements di are either 1 or 0
(depending on whether or not the reaction i is selected for the reduced mechanism).
The problem of finding the reduced mechanism is written as a discrete constrained
optimization where the minimum is over d1, d2, . . . , dm, with di ∈ {0, 1} and

∑
di =

k ¿ m is prescribed.

The GRI combustion model is a set of m = 177 reactions describing the combus-
tion of natural gas and involves ns = 32 chemical species. For more details on this
model, see [18, 20]. The resulting ODE system has dimension n = ns+1 = 33, the last
differential equation describing the evolution of the temperature; i.e., y = [c, T/T0],
where c are the species concentrations and T is the temperature, scaled by its initial
value T0.

We consider two different ROMs, corresponding to k = 32 and k = 78 reactions
selected in the reduced mechanism and denoted by ROM32 and ROM78, respectively.
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Fig. 6.2. GRI combustion example: Full system (thin line) and ROM solutions (ROM32: thick
solid line, ROM78: thick dashed line).

Table 6.2

GRI combustion example: Similarity indexes.

ROM32 ROM78

t1 = 5 t2 = 10 t1 = 5 t2 = 10
S1 0.8991 0.6076 S1 0.3656 0.6306
S2 0.4992 9.366 · 10−3 S2 1.870 · 10−2 7.206 · 10−2

The time evolution of O2, CH4, and CO2, as well as T/T0 are shown in Figure 6.2.
The full system solution is depicted with a thin solid line, while the ROM solutions
are depicted with thick lines (solid for ROM32 and dashed for ROM78).

For each ROM the similarity indexes S1 and S2 were calculated using q = 5 SCE
unit vectors. The model parameters were defined to be scaling factors, with nominal
values of 1.0, for the m = 177 reaction rates in the full model. The model response
was taken to be the set of all species concentrations; i.e. h(t, y, p) = c(t). Table 6.2
provides the similarity indexes at two different times, t1 = 5 and t2 = 10, before and
after ignition, respectively.

As these results show, ROM78 is more robust than ROM32 based on the similarity
indexes at t2 = 10, but much less robust at the time before ignition, t1 = 5. To explain
this (apparently) surprising result, note first that the selection of reactions kept in
the reduced-order models was based on minimizing the norm ‖e‖L2

= ‖y− ỹ‖L2
over

the time interval [t0, t2]. For ROM78 we have ‖e∗78‖ = 1.3736 ·10−2, while for ROM32,
‖e∗32‖ = 3.0349 ·10−1. In this global measure, ROM78 is a better reduced-order model,
but, as can be seen in Fig. 6.2, at the price of predicting an earlier ignition. Secondly,
note that a parameter perturbation along the direction of largest error growth at
t1 = 5 for the full model also leads to an earlier ignition time. As a consequence,
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Fig. 6.3. GRI combustion example: Evolution of the temperature over the time interval [t0, t1] for
the full model (solid line), ROM32 (dashed line), and ROM78 (dot-dashed line). Both
unperturbed solutions (thin lines) and perturbed solutions (thick lines) are represented.
The perturbation is in the direction of maximum error growth in the norm of the concen-
trations at time t1 = 5 for the full model.

ROM32 is better at predicting a perturbation-induced hastening of the ignition. This
can also be seen in Fig. 6.3 which depicts the time evolution up to t1 = 5 of the
temperature for the perturbed and unperturbed, full and reduced-order models.

6.3. Heat shock model. This problem models the production of heat shock
proteins in Escherichia coli cells as a response to extreme heat. These special pro-
teins refold other cell proteins, essential to cell survival, that have become unfolded
due to excessive heat. The optimization problem is to find a balance between the
effect of the protective proteins and the cost of their production. The mathemati-
cal model of the heat shock response is reported in [14]. The model employs first
order kinetics (law of mass-action) to describe the various components of the heat
shock system, namely the synthesis of heat shock proteins and their regulator σ32, in
addition to protein folding and the association/dissociation activity of molecules. Re-
actions involving association/dissociation of molecules are often faster than synthesis
and degradation of new molecules. Therefore the model exhibits a wide range of time
scales and is subject to numerical stiffness. The differential equations that describe
the fast states were transformed into algebraic constraints by means of a partial equi-
librium approximation, yielding an index-one DAE system. This system describes the
evolution of 11 differential variables, coupled to the evolution of 20 algebraic variables,
and includes 31 parameters:

y′ = F (t, y, x, p1, p2) = 0

G(t, y, x, p2) = 0

y(0) = y0 , x(0) = x0 ,

where we have split the model parameters p ∈ R31 into two subsets, with the pa-
rameters p1 ∈ R11 appearing only in the differential equations. The integration time
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Table 6.3

Heat shock example: SV analysis results. Errors induced by parameter perturbations
along the direction of maximum error growth are compared against errors inducd by
perturbations in random directions.

Full model Reduced-order model

δ in: p1 p1 and p2 δ in: p1 p1 and p2

E 8.2541 · 104 5.6598 · 104 Ẽ 5.2887 · 103 7.4958 · 103
‖e(t, u1)‖ 6.0817 · 104 6.7626 · 104 ‖ẽ(t, ũ1)‖ 6.6292 · 103 6.6292 · 103
‖e(t, urnd)‖ 1.7648 · 104 4.2042 · 103 ‖ẽ(t, ũrnd)‖ 1.8461 · 103 4.7902 · 102

1.9156 · 104 2.2488 · 104 1.3622 · 103 1.3374 · 103
1.8371 · 104 7.3998 · 103 2.2759 · 103 1.1942 · 104
1.9269 · 103 9.5864 · 103 1.4381 · 103 1.2135 · 103

interval was taken such that the heat shock response occurs exactly at the middle of
the time interval.

The reduced model is obtained in two steps. During the first step we reduce the
number of differential variables from 11 to 5 by using an approximation which relates
6 variables (through a proportionality constant) to 2 other variables. The second step
reduces further the number of variables by 15, taking advantage of the fact that the
reduced variables can be well approximated by constants before and after the heat
shock response. In the heat shock response region their behavior is highly nonlinear,
but the length of this region is much smaller than the length of any neighboring region,
allowing us to make the approximation.

We analyze the full and reduced-order models under perturbations in the model
parameters. The following two cases are considered:
a) Perturbation only in the subset p1 of model parameters representing those param-
eters that do not appear in the algebraic equations.

b) Perturbation in all model parameters p1 and p2.
For both the full and reduced-order models, the direction of maximum error growth
was estimated with the method described in §3 using 4 adjoint systems, i.e, 4 unit
vectors in the SCE estimates. We considered perturbations either only in the subset
p1 of model parameters, or in all the model parameters. In both cases, all the states
of the corresponding model were included in the perturbation-induced errors. Table
6.3 provides the estimated value E compared against the norm of the error along the
estimated direction of maximum error growth computed by integrating the forward
error equation, ‖e(t, u1)‖. We also provide the norms of errors due to perturbations
along a few random directions, ‖e(t, urnd)‖, to emphasize the fact that it is very
unlikely to get close to the “worst-case” scenario by only using random perturbations.
All perturbations were 0.01 · u (with u either u∗ = u1 or some random unit vector).

Next, we computed the similarity indexes of §4 for this example. If we base the
errors on all states of the ROM, the two indexes are:

Perturbation in p1 Perturbation in p1 and p2

S1 0.9788 0.4844
S2 0.1089 0.0882

Considering only the differential variables in the ROM in the error estimates, the
reduced-order model is found to be closer (in the sense of these similarity indexes) to
the full model:
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Table 6.4

Heat shock example: Cumulative error due to model reduction and perturbations in
parameters.

δp Perturbation in p1 Perturbation in p1 and p2

(%) ‖Θ‖true ‖Θ‖fwd ‖Θ‖SCE ‖Θ‖true ‖Θ‖fwd ‖Θ‖SCE

0.25 7.498 · 102 7.510 · 102 7.098 · 102 8.437 · 101 8.428 · 101 8.962 · 101
0.50 1.497 · 103 1.502 · 103 1.420 · 103 1.722 · 102 1.719 · 102 1.835 · 102
0.75 2.243 · 103 2.254 · 103 2.131 · 103 2.601 · 102 2.595 · 102 2.774 · 102
1.00 2.985 · 103 3.005 · 103 2.841 · 103 3.493 · 102 3.481 · 102 3.723 · 102
1.25 3.726 · 103 3.756 · 103 3.552 · 103 4.367 · 102 4.347 · 102 4.652 · 102
1.50 4.464 · 103 4.508 · 103 4.262 · 103 5.253 · 102 5.223 · 102 5.590 · 102
1.75 5.199 · 103 5.259 · 103 4.973 · 103 6.141 · 102 6.102 · 102 6.529 · 102
2.00 5.931 · 103 6.011 · 103 5.684 · 103 7.032 · 102 6.982 · 102 7.468 · 102
2.25 6.662 · 103 6.762 · 103 6.394 · 103 7.920 · 102 7.846 · 102 8.402 · 102
2.50 7.389 · 103 7.514 · 103 7.105 · 103 8.822 · 102 8.727 · 102 9.346 · 102
5.00 1.451 · 104 1.502 · 104 1.421 · 104 1.796 · 103 1.748 · 103 1.873 · 103
10.00 2.791 · 104 3.005 · 104 2.842 · 104 3.774 · 103 3.503 · 103 3.751 · 103

Perturbation in p1 Perturbation in p1 and p2

S1 0.9998 0.7340
S2 0.1499 0.1213

Table 6.4 summarizes the analysis of the effect of parameter perturbations on the
ROM through the estimation of the norm of the cumulative error due to model reduc-
tion and perturbations in parameters. The same information (in a slightly different
form) is shown in Fig. 6.4. The norms of the following quantities were computed: the
true (nonlinear) error (‖Θ‖true), the estimation using integration of the forward error
equation (‖Θ‖fwd), and the SCE estimate based on q = 4 unit vectors (‖Θ‖SCE). All
the ROM variables (which are a subset of the full model variables) were considered in
these errors. The calculations were done for different perturbation magnitudes, given
as a percentage of the norm of the perturbed parameters. The perturbation itself was
along some random direction.

7. Conclusions. Our research extends the work presented in [10], focusing on
estimating validity concepts for general nonlinear reduced order models (ROMs) of dy-
namical models, with application to systems described by ordinary differential (ODE)
and differential algebraic equations (DAE). Our estimates, based on a combination of
adjoint sensitivity analysis and the small sample statistical condition estimate (SCE),
quantify how well a given ROM captures the changes in the output functional of the
full system that result from perturbations in the problem parameters. We measure the
extent to which the ROM preserves the value of maximum perturbation-induced error
(and/or the direction of the perturbations that induce it) by considering two types
of similarity indexes. The direction in parameter space of maximum error growth in
the output functional is efficiently computed within the framework of singular vector
analysis, using the SCE estimate for the error norm. Numerical examples (for both
ODE and DAE systems) validate our approach. They also show that the similarity
index concept is very effective for detecting situations where the ROM fails to capture
the behavior of the full model when the parameters are slightly perturbed.
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(a) Only those parameters not affecting
the algebraic equations were perturbed.
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(b) All model parameters were perturbed.

Fig. 6.4. Heat shock example: Cumulative error due to model reduction and perturbations in pa-
rameters. The plots show the ratio of the estimated norm of the cumulative error and
the norm of the true (nonlinear) cumulative error for different magnitudes of parameter
perturbations along some random direction.
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