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ABSTRACT 
 
Video images of laser beams imprinted with distinguishable features are used for alignment of 192 laser beams at the 
National Ignition Facility (NIF). Algorithms designed to determine the position of these beams enable the control 
system to perform the task of alignment. Centroiding is a common approach used for determining the position of beams. 
However, real world beam images suffer from intensity fluctuation or other distortions which make such an approach 
susceptible to higher position measurement variability. Matched filtering used for identifying the beam position results 
in greater stability of position measurement compared to that obtained using the centroiding technique. However, this 
gain is achieved at the expense of extra processing time required for each beam image. In this work we explore the 
possibility of using a field programmable logic array (FPGA) to speed up these computations. The results indicate a 
performance improvement of 20 using the FPGA relative to a 3 GHz Pentium 4 processor.  
 
Key word: pattern recognition, matched filtering, optical alignment, automated optical alignment, automated target 
recognition, parallel computing, FPGA. 
 
 
1. INTRODUCTION 
 
The National Ignition Facility, currently under construction at the Lawrence Livermore National Laboratory, is a 
stadium-sized facility containing a 192-beam, 1.8-megajoule, 500-terawatt, ultraviolet laser system for the study of 
inertial confinement fusion and the physics of matter at extreme temperatures and pressures [1].  Automatic alignment 
(AA) based on computer analysis of video images adjusts the laser beams quickly and accurately enough to meet 
stringent system requirements in less than 30 minutes. The AA system directs all 192 laser beams along the 300-m 
optical path to focus on a 50 micron spot at the target chamber center [2]. At the heart of this alignment technique is the 
image processing algorithm that determines the position of beam features that are embedded in images recorded along 
the beam path. Varieties of alignment fiducials incorporated in the optical system designate various beam types, such as 
reference beams and main beams. Many beam images have well-defined spot profiles (e.g., Gaussian beams) for which 
centroiding is an acceptable technique to determine positions within the required accuracy of one half pixel. However, 
laser beam images often exhibit intensity variation or other distortions for which the centroid-based approach may result 
in high position uncertainty. In these cases, matched filtering provides an excellent and stable position measurement 
[3,4], albeit at the expense of extra processing time required for each beam image. This paper discusses an approach to 
speed up these computations using field programmable logic array (FPGA). A performance improvement of 20 was 
achieved using the FPGA relative to a 3 GHz Pentium 4 processor. 

 
 

2. MATCHED FILTER BASED POSITION DETECTION 
 
The matched filtering technique utilizes a given object as a template, whose position is known, to find the position of a 
second object by detecting the template’s matching position in the correlation domain. The classical matched filter 
(CMF) [5] and its variation phase only filter (POF) [6] has gained popularity due to its ability of detecting an object 
with high discrimination to the presence of strong noise and background distortions. In the CMF, the complex 



amplitude and phase of the reference pattern is used, whereas POF only uses the phase of the reference pattern to 
perform the correlation [6]. The amplitude modulated phase only filter (AMPOF) [7,8] was designed to further enhance 
filtering performance by modulating the POF by an inverse type of amplitude. 
 
The Fourier domain treatment of the matched filter is described next. Let the Fourier transform of the to-be-detected 
object (template) function f (x, y) be denoted by: 

 )),(exp(),(),( yxyxyx UUjUUFUUF Φ=  (1) 

and that of the input scene g(x, y) containing the desired object to be represented by  

 )),(exp(),(),( yxyxyx UUjUUGUUG Ψ=  (2) 

 
A classical match filter (CMF) corresponding to this function f (x, y) is expected to produce its autocorrelation. From 
the Fourier transform theory of correlation, the CMF is given by the complex conjugate of the input Fourier spectrum as 
denoted by Eq. 3. 

 )),(exp(),(),(*),( yxyxyxyxCMF UUjUUFUUFUUH Φ−==  (3) 

The inverse Fourier transformation of the product of F (Ux, Uy) and HCMF (Ux, Uy) results in the convolution of f (x, y) 
and f (-x, -y), which is the equivalent of the autocorrelation of f (x, y). Moreover, when |F (Ux, Uy)| is set to unity, HCMF 
becomes a phase only filter (POF): 

 )),(exp(),( yxyxPOF UUjUUH Φ−=  (4) 

The correlation of input image with the template is simply: 

 ( ) ( ){ }yxCMFyxCMF UUHUUGFyxC ,,),( 1−=ΔΔ  (5) 

 
 
The position of the object can be found from the position of the cross-correlation, auto-correlation, and the position of 
the template using Eqs. 6-7. 

 cautocrosspos  x  x   x x +−=  (6) 

 cautocrosspos y  y  y   y +−=  (7) 



where (xpos, ypos) is the to-be-determined position of the pattern in the image plane, (xauto, yauto) is the position of the 
template autocorrelation peaks and (xcross, ycross) is the position of the crosscorrelation peak. The position of the cross-
correlation peak was estimated using a polynomial fit to the correlation peak. The center of the template (xc, yc) and 
(xauto, yauto) are normally constant and may be calculated off-line, while the cross-correlation peaks move with changes 
in the object. 
 
 
3. AUTOMATIC ALIGNMENT ALGORITHMS  
 
The alignment system in each NIF beam line contains 26 control loops that analyze high resolution beam and reference 
images. A number of beam image types require matched filtering to determine the object positions. One such set of 
corner-cube reflected pinhole images is shown in Fig. 1. Here, the image processing algorithm exploits a template 
correlation to determine the pinhole centers.  
 
A variety of distortions can challenge position finding algorithms. Examples in figure 1 exhibit a wide variety of 
distortions such as illumination, shade, shape, and size. A weighted, or even a binary centroid, measurement [9] will be 
severely affected by beam non-uniformity, intensity gradient, beam elongation or diffraction effects. The purpose of the 
template shown in Fig. 2 is to find the center by matching the edge of the beam. Since the beam size varies, the 
algorithm must search over a range of radii to determine the best matched circle [10]. The center of the circle that yields 
the highest correlation is chosen as the position of the pinhole image. While this template works for the majority of the 
beam images, a more accurate template was recently determined to represent beam images [11] that have minimal 
distortion. 
  

  
Fig. 1. A set of corner-cube reflected pinhole images of various image qualities 

 
In the example, the radius of the template shown in Fig. 2 was varied from 33 to 42 pixels. The correlation peak at 
various radii is plotted as shown in Fig. 3. The peak reaches its maximum between a radius of 35 and 37. A second 
order polynomial fit [3] through the correlation plane provides the x and y position of the correlation peak, from which 
Eqs. 6-7 are used to find the center location. 
 
 

   
Fig. 2. Image of the template used for pinhole images    
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Fig. 3. Correlation peak versus template radius  

 
In another application, where the same template is used, the pinhole images are shown in Fig. 4. Whereas the small 
pinholes vary from 32 to 45 pixels, these pinhole radii vary from 60 to 250 pixels. In order to reduce the processing 
time, instead of searching the whole range from 65 to 250 pixels, a measurement process is carried out to estimate the 
range to a smaller interval of 10 pixels [10].  

 
 

Fig. 4. Image with 160 pixel radius 

 
In some alignment beam images, two types of fiducials (circles and squares) [12] are used to indicate the beam position 
and the alignment reference location. The diameter of the circle is similar to the side of the square resulting in 
correlation peak values that may be hard to discriminate. 
 



 
Fig. 5. Two classes of fiducial patterns with positions identified 

 
To enhance the discrimination, and hence the detection accuracy, of the to-be-detected objects, features such as object 
edges are used as shown in Fig. 6. Instead of using circle templates, the circle edge is used for the filters. The resulting 
correlation cross-section from the right side of the wings is shown in Fig. 7. Note from Fig. 7 that the circle 
autocorrelation is higher than crosscorrelation with the squares exhibiting a 2:1 discrimination between the two. Based 
on the normalized autocorrelation value, a dynamic threshold (as a percentage of the maximum peak) can be selected to 
reject the non-circles correlations. After selecting the circles, the image is correlated with a second template consisting 
of a square mask. Now using Eqs. 6-7, the position of the objects can be found from the position of the crosscorrelation 
peak, the autocorrelation peak, and the template. 
 

 
Fig. 6. The edge of the image in Fig. 5 



 
Fig. 7. The correlation with circle of the image in Fig. 5 (the cross-section through the right wing shown)  

In all these applications, the basic operation performed is a matched filtering via Eq. 5. 
 
 
5. FPGA Acceleration of Image Correlation 
 
The most computationally intensive portion of the image processing is the 2-D image correlation. Thus to shorten the 
alignment time, one can reduce the image processing time. For continuous high performance alignment operation such 
as may be required in a laser fusion power plant, faster methods of beam alignment will be necessary. One advantage of 
these computations is a significant amount of parallelism, thus enabling hardware acceleration. We evaluated the 
potential of hardware acceleration by implementing the correlation computations on an FPGA. The test system utilized 
was a Cray XD1 with 864 2 GHz AMD Opteron processing cores and 144 Xilinx Virtex II Pro FPGAs. In this system, 
only one FPGA and AMD processor was utilized for the testing. The AMD processor sends the input image to be 
processed to the FPGA and receives back the location and peak value in the correlation output. A more practical 
approach for FPGA acceleration would be to utilize an FPGA accelerator card in a desktop computing system (such 
cards average about $2500 per FPGA at present). 
 
 
5.1 Hardware design 
 
Fig. 8 presents a system overview of the FPGA implementation. Input data and intermediate values are stored in buffers 
(shown as the shaded boxes). These are on-chip memories on the FPGA. The inputs to the system, f and g, represent the 
filter and source image in Eqs. 1 and 2, respectively. Up to 16 filters can be loaded into the FPGA (in the buffers labeled 
f0 to f15) and applied to each image. The two-dimensional FFTs in Eqs. 1 and 2 are performed using two consecutive 
one-dimensional FFTs. Similarly, the inverse FFT in Eq. 5 is implemented with two one-dimensional forward FFTs. 
The FFT units were built using Xilinx-supplied library components.  
 
To enable high-throughput computation, the system is pipelined into four phases as shown in Fig. 8. Each phase works 
on a particular image–filter combination. Since the same set of filters is used for each image, the filters are preloaded in 
on-chip buffers. This allows high speed access to the filters that accelerated the system performance. Note the time to 
load each filter onto the FPGA is longer than the pipeline phase computation time. Since each phase requires multiple 
cycles to compute (about 22.4k cycles), two buffers are needed between consecutive phases. For example, in Fig. 8, the 
upper buffer (F1) between phases 1 and 2 holds the output being generated by phase 1. The lower buffer (F2) holds the 
completed output previously generated by phase 1, for use by phase 2. Switches pipe data to the appropriate buffers. 
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Fig. 8: The block diagram of the FPGA operations. The boxes labeled “sw” are switches. 

 
The four phases in the architecture perform the following functions: 
 
Phase 1: Complex Fourier transform represented by Eqs. 1 and 2 are computed. These two computations can be carried 
out in parallel. The inputs to this phase are unsigned 8 bit values. Since an 8 bit FFT unit would treat the inputs as 
signed values, a larger bit width FFT unit is needed.  Therefore a 12 bit FFT unit is used for the first stage. As the 
maximum output value is 14 bit, a 20 bit FFT unit is used for the second stage. The second stage 20 bit FFT outputs are 
stored in buffers labeled F and G. 
 
Phase 2: Part of Eq. 5 is evaluated. Here the output of Eq. 1 is conjugated and multiplied by the output of Eq. 2. An 
FFT shift operation is executed in parallel with the multiplication in order to center the image. The 40 bit output is 
stored in a buffer.  
 
Phase 3: The inverse FFT in Eq. 5 is evaluated. Since the inverse FFT is implemented with two 24-bit forward FFT 
units, they use only the most significant 24 bits of the inputs. This introduces round-off error as the computations take 
place in the integer domain. 
 
Phase 4: Location of the peak in the output of Eq. 5 (CCMF) is determined. The coordinates and amplitude of the peak 
along with the amplitude of the four surrounding locations are stored and returned to the processor. 
 
 
5.2 Hardware Performance 
 
The system above was implemented on a Xilinx Virtex II Pro FPGA (part number XCVP50) on a Cray XD1. The 
FPGA synthesized system ran at 158 MHz. The logic utilization was 74% while the block RAM utilization was 93%. 
The algorithm was also run on a 3GHz Pentium 4 processor based desktop computer using Matlab version 6. We tested 
both systems with 64x64 images and 16 filters per image. The overall runtime of the FPGA system to process an image 
through 16 filters was about 3.32 ms, while the desktop system required 66.40 ms. This is equivalent to a speedup of 20 



times. Newer generation FPGAs with larger resources and higher clock speeds would allow multiple pipelines to 
analyze more images in parallel, thus resulting in greater speedups. Fig. 9 shows the output error between the Matlab 
and the FPGA implementations for both auto and cross correlation examples. Only the peak and it neighboring four 
locations are shown. The average absolute error for these values is 0.33%.  
 
 
 

Matlab FPGA Error (%)
4.9806 4.989 0.17 
4.9806 4.9452 -0.71 
4.8208 4.822 0.02 
4.7942 4.796 0.04 
4.7409 4.748 0.15 

(i) Cross correlation between a square and a circle 
 

Matlab FPGA Error (%)
6.2324 6.198 -0.55 
5.8862 5.885 -0.02 
5.8862 5.889 0.05 
5.753 5.784 0.54 
5.753 5.784 0.54 

(ii) Auto-correlation of a square 
 

Matlab FPGA Error (%)
4.9806 4.948 -0.65 
4.6344 4.635 0.01 
4.6344 4.635 0.01 
4.5278 4.5591 0.69 
4.5278 4.561 0.73 
(iii) Auto-correlation of a circle 

 
Fig. 9: Output comparison between Matlab and FPGA implementations for the peak and surrounding four locations 

(output values are to be multiplied by 1010). 
 

 
6. SUMMARY 
 
Automatic alignment of the NIF laser is dependent on computationally intensive image processing. One important 
component of the image processing is matched filtering. This paper describes an approach to speed up this computation 
using low cost parallel computing hardware. The results indicate a speedup of 20 using an FPGA over a 3 GHz Pentium 
4 processor.  Other applications that can benefit from the speed enhancement include associative recall of extremely 
large databases of medical or other images using a partial queue.  
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