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Main Points

* The coefficients of the KL mix model were set by
Dimonte to match RT and RM instabilities as
measured on the Linear Electric Motor (LEM).

e The KL mix model has been applied to directly-
driven capsule implosions with a variety of laser
energies, ablator materials, ablator thicknesses and
convergence ratios.

» The KL calculations nearly match the observed Y,
Yor Yp, Tion @and implosion times for many (but not

Ion

all) capsules.
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The KL model characterizes
sub-grid hydrodynamics with 2 variables s
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L is the characteristic
eddy size

Please see Guy Dimonte’s talk on the KL equations —
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All coefficients of the KL model can
be derived from four numbers

* ag=0.07 —Young’s RT bubble coefficient

e 0 =0.25 — RM exponent

» foz =0.50 — Ratio of turbulent to potential energy

« C. =0. —the compression coefficient in the L eq.

ag Inferred from LEM data is 0.06 rather than 0.07
The 1deal value of C, is 1/3 rather than O
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-

1D Calculations with CALEICF

Sn radiation transport

Electron thermal flux limiter of 0.05

L TE opacities from SHM

Lee-More thermal conductivities
Thermonuclear reactions

MC charged particle transport

T+D =>N + He4 reactions in flight
He3+D => P + He4 reactions In flight
Initialize L field to 50nm on inner surface
Initialize L field to 50-150nm on outer surface
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Three different types of capsules were tested

D, Fuel with DHe3 Fuel with DHe3 Fuel with
CH Ablator CH Ablator SiO, Ablator

Three types of direct drive laser capsules were fired with different fuel pressures,
ablator thickness and laser energies. Measured quantities include:

1 Primary DD neutrons and secondary DT neutrons
2 Primary DHe3 protons (for D, fuels secondary DHe? protons were measured)
3 lon temperatures (inferred from TOF spreading of the DD neutrons)

4 Implosion Time
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Carbon mass fraction front nearly
follows the free-fall line i3
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Streak plot of d log(p)/dL shows
shocks, rarefactions and ablation fronti
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Streak plot shows turbulent energy feeds through
from thermal-ablation front to fuel surface pa
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KL model predicts instabilities near laser absorption
will degrade performance. Outer surface roughness can

be adjusted to match data 5]
L0 Study for Shot 37840
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A surface roughness of 50-70nm gives good results for
most capsules however, some require 150nm (13
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Thin capsules need LO =50 nm
Thick capsules need LO =150 nm ps

LO nm

Wall Thickness Study
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Y pp from D,/CH Capsules gave
YOC(Clean) ~ 0.3-0.6 L3

D2/CH Capsules YOC Measured/Calculated(clean)
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Y pp from D,/CH Capsules gives
YOC(KL) ~0.8-1.05 L3

D2/CH Capsules YOC Measure/Calculated(KL)
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Y »p from DHe3/CH Capsules gave
YOC(Clean) ~0.1-0.4 L2

YOC Measured/Calculated(Clean)
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Y »p from DHe3/CH Capsules gives

YOC(KL) ~ 0.7-1.3 T

YOC Measured/Calculated(KL)
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Y pp from DHe3/SiO, Capsules gave
YOC(Clean) ~0.2-1.0
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Y pp from DHe3/S10, Capsules gave

YOC(KL) ~0.6-1.3

YOC Measured/Calculated(KL)
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Summary

* The coefficients of the KL mix model were set by
Dimonte to match RT and RM instabilities as
measured on the Linear Electric Motor (LEM).

e The KL mix model has been applied to directly-
driven capsule implosions with a variety of laser
energies, ablator materials, ablator thicknesses and
convergence ratios.

» The KL calculations nearly match the observed Y,
Yor Yp, Tion @and implosion times for many (but not

Ion

all) capsules.
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