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Abstract 
 

The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a 
stadium-sized facility containing a 192-beam, 1.8 Megajoule, 500-Terawatt, ultra-violet laser system together with a 10-
meter diameter target chamber with room for nearly 100 experimental diagnostics.  The NIF is operated by the Integrated 
Computer Control System (ICCS) which is a scalable, framework-based control system distributed over 800 computers 
throughout the NIF.  The framework provides templates and services at multiple levels of abstraction for the construction of 
software applications that communicate via CORBA (Common Object Request Broker Architecture).  Object-oriented 
software design patterns are implemented as templates and extended by application software.  Developers extend the 
framework base classes to model the numerous physical control points and implement specializations of common application 
behaviors.  An estimated 140 thousand software objects, each individually addressable through CORBA, will be active at full 
scale.  Many of these objects have persistent configuration information stored in a database. The configuration data is used to 
initialize the objects at system start-up.  Centralized server programs that implement events, alerts, reservations, data 
archival, name service, data access, and process management provide common system wide services.  At the highest level, a 
model-driven, distributed shot automation system provides a flexible and scalable framework for automatic sequencing of 
work-flow for control and monitoring of NIF shots.  The shot model, in conjunction with data defining the parameters and 
goals of an experiment, describes the steps to be performed by each subsystem in order to prepare for and fire a NIF shot.  
Status and usage of this distributed framework are described. 
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1. Introduction 
 
The ICCS is a distributed, layered, object-oriented 
control system that employs a framework of reusable 
software to build uniform programs to satisfy 
numerous functional requirements for NIF [1]. ICCS 
applications are developed using Ada95 or Java, 
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CORBA, and object oriented programming. Ada is 
used to implement most of the control system 
semantics.  Java is used for the production of 
graphical user interfaces as well as some of the 
central services; some new controls applications are 
also being written in Java. CORBA provides 
location- and language-transparent distributed 
communication utilizing TCP/IP transport. 
NIF is comprised of 192 laser beams, which are 
divided into 24 essentially identical 8-beam 
“bundles.”  The control system computers and 
processes are likewise largely partitioned by bundle, 
with the exception of central services and 
applications controlling front-end, target area, and 
industrial controls systems that are not replicated.  
This partitioning is a key element in assuring the 
scalability of the control system. 
The top layer of the ICCS bundle-based architecture 
is the shot automation system.  Shot Director 
software manages the progress of a NIF experiment 
through a sequence of states.  In each state, 
Collaboration Supervisors, one for each bundle and 
one for shared, non-bundle resources, manage the 
workflow of a sequence of steps defined in a shot 
model.  These steps, in turn, are distributed to 
subsystem shot supervisors for execution [2]. 

Operational experience and analysis indicates 
that ICCS will scale successfully to full NIF 
operations.  A full-power six-bundle shot was 
performed in late 2006, and preparations are 
underway for the first low-energy twelve-bundle test.  

 
2. Bundle-Based Architecture 
 

The NIF physical organization lends itself to a 
distributed, component-based communication 
architecture. Control system processes and 
computers are organized by bundle to achieve better 
parallelism, performance, and reduce the impact of 
localized failures.  This is referred to as “bundle 
based partitioning” and has no impact on framework 
or application layer software due to the location 
independent features of the CORBA based inter-
process communication architecture.  This ability to 
independently organize the hardware architecture 
without impact to the software is one of the 
significant benefits of CORBA and the design of the 
ICCS software framework. 

ICCS employs a layered, client-server computer 

architecture to control the NIF.  Each NIF bundle is 
supported by ~25 front-end processors (FEPs) 
connected to various laser diagnostic and control 
components.  Additional FEPs control and monitor 
common components that are not bundle based, such 
as target area systems.  Each bundle has a dedicated 
Unix server on which the supervisory and shot 
control applications for that bundle are run.  
Additional servers support central service 
applications and non-bundle based supervisors.  The 
control room contains Windows consoles dedicated 
to functional subsystems; GUIs run on these consoles 
and connect to the supervisory and FEP layers as 
needed.  At full scale, the ICCS will be distributed 
among approximately 800 computers running 1500 
processes containing 140 thousand individually 
addressable CORBA objects.  

Following strategies of object oriented software 
development, similar software components are 
defined as classes, and these classes are instantiated 
for each occurrence of a NIF component in each 
laser beam. Control components consist of various 
actuators, sensors, and instruments used to operate 
and diagnose each NIF laser beam and its interaction 
with a target. NIF physical control components, as 
well as the supervisory objects that aggregate the 
status and control of those physical components, are 
represented by named CORBA software objects in 
the ICCS.  The framework and application software 
combined have resulted in a design consisting of 
approximately 340 CORBA interface classes.  The 
ICCS framework allows client software to obtain a 
CORBA reference to an object from its name, and 
CORBA transparently connects that reference to the 
software component object located in the processor 
that is connected to the physical hardware. The client 
need not have explicit knowledge of the process or 
processor on which the object is running.  This gives 
computer/network location transparency to the ICCS 
application software.  

There are a number of challenges to making 
such a distributed system robust and resistant to 
failure.  A high number of distributed interfaces and 
objects performing concurrent, interdependent 
activities leads to non-deterministic messaging 
behavior and the potential for race conditions, 
distributed deadlock, or lost connections as a result 
of restarting a process.  ICCS employs a variety of 
mechanisms under the broad heading of “connection 
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management” to mitigate these failure modes, 
including interface decoupling, object reconnection, 
subscription management, process state heartbeats, 
status health heartbeats, and timed invocation.  This 
framework approach has enabled successful 
detection, notification, and recovery from 
communication failures, providing common benefits 
to all ICCS application software. 

 
3. Shot Automation System 
 

Fundamentally, this large, distributed system 
exists for the purpose of enabling frequent, reliable 
NIF shots in support of experimental goals.  The 
stated requirement for ICCS is to fire and diagnose 
each laser shot within 4-8 hours.   

In a typical shot sequence, the laser is first setup 
to meet the experimental requirements.  Automatic 
alignment software analyzes beam images and moves 
mirrors to align each beam accurately along the beam 
path and ultimately onto the target, and diagnostics 
are setup to obtain data from the shot.  Then multiple 
low-energy “rod” shots, for which the power 
amplifiers are not fired, are taken, and settings 

adjusted based on the results, until the pulse shape 
and pre-amplified energy of every beam on the shot 
meet the experimental requirements. Finally, a high-
energy “system” shot, in which the power 
conditioning system charges the main capacitor 
banks and fires the flashlamps that amplify the 
beams, is taken.  Each shot is preceded by a 4-minute 
countdown during which an automated sequence of 
final actions and verifications is performed, and 
followed by data acquisition, analysis, and archival.  
Three layers of shot automation software orchestrate 
this intricate sequence: a Shot Director, 
Collaboration Supervisors, and Subsystem Shot 
Supervisors. 

Figure 1 Bundle-based partitioning 

Upon selection of a predefined experiment by 
the Lead Operator, the Shot Director initiates 
calculations to determine operational settings and 
participation status for all of the NIF’s components.  
It then manages a high-level state machine that 
shepherds the Collaboration Supervisors 
participating in the experiment together through each 
phase of the shot sequence.  Once all Collaboration 
Supervisors have completed their activities for a 
state, the Shot Director moves them to the next state, 
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either automatically or at the request of the Lead 
Operator, depending on the state.  Additionally, in 
the countdown and post-countdown phases, the Shot 
Director publishes clock ticks and manages any 
holds issued when problems occur.  Two seconds 
before the shot (T-2), the Shot Director hands off 
control to the Integrated Timing System, which 
issues precise triggers to fire the laser so that all 
beams arrive at the target simultaneously. 

There is one Collaboration Supervisor per 
bundle, plus two for non-bundle based systems.  The 
Collaboration Supervisor is a workflow engine, 
coordinating all of the activities performed by the 
Subsystem Shot Supervisors in its area.  When the 
Shot Director initiates a new shot state, the 
Collaboration Supervisor queries the database for the 
workflow model for that state.  This model defines 
the high-level functions to be performed by each 
Subsystem Shot Supervisor, as well as their order 
and interdependencies.  These high-level functions 
are referred to as “Macro Steps.”  The ordered list of 
Macro Steps for a single Subsystem Shot Supervisor 
is its “line of execution.”  Macro Steps may have as 
preconditions the completion of other Macro Steps in 
different lines, or even in different collaboration 
spaces.  During countdown and post-countdown, a 
Macro Step may also have a clock tick as a 
precondition (e.g., do not execute until T-25, or 25 
seconds before the shot).  The Collaboration 
Supervisor manages all of its lines of execution in 
parallel, issuing each Macro Step when its 
predecessors have completed and all of its 
preconditions have been met.  All of the lines of 
execution and their preconditions comprise a 
collaboration graph, which is presented on a GUI and 
updated with the status of each Macro Step so that 
the Lead Operator may observe the progress of the 
shot state.  If a Macro Step fails, the Collaboration 
Supervisor allows the operator to select a reentry 
point at or prior to the point of failure, typically after 
the failure has been addressed.  The Collaboration 
Supervisor then analyzes the interdependencies and 
“backs up” other lines of execution as necessary.  
Once all Macro Steps for the state are completed, the 
Collaboration Supervisor notifies the Shot Director 
that it has completed the state and is ready to 
proceed. 

Roughly 10 Subsystem Shot Supervisors report 
to each Collaboration Supervisor.  They are 

responsible for executing Macro Steps upon request.  
Each Macro Step is executed in four phases; the 
contents of each phase are defined in the database.  
First, a “Pre_Done Check” tests the exit conditions 
of the Macro Step to determine whether it needs to 
be performed at all.  Second, a “Ready Check” 
verifies that the necessary equipment is in an 
appropriate state for the Macro Step to be performed. 
 Third, the “Perform” phase executes the individual 
steps and sub-steps defined for the Macro Step.  
Finally, the “Final Done Check” verifies that the exit 
conditions of the Macro Step are met.  All of these 
operations are described primarily in terms of 
setpoints.  A setpoint is a name associated with a 
position or state of an ICCS component, which 
typically corresponds directly to the position or state 
of the physical device or collection of devices 
represented by that component.  The three “Check” 
phases of a Macro Step typically consist of verifying 
that each of a set of components is either not 
participating in the shot, or is at the specified 
setpoint.  The “Perform” phase commands 
components to their shot setpoints, and in some cases 
performs more complex behavior by executing a 
script. 

The Shot Automation System provides a highly 
flexible framework for performing NIF shots.  The 
specifics of a model or a Macro Step may be 
modified in the database without requiring 
modification of code. Different shot models may be 
defined to describe procedurally different kinds of 
shots.  The initial experiment goals specify 
participating beams, energies, pulse shape, required 
diagnostics, etc.  Derived goals establish settings 
required to accomplish the experiment goals.  Based 
on these goals, database calculations determine the 
whether or not each component in the system is 
needed to participate in rod or system shots, as well 
as whether each Macro Step in the model is 
applicable (i.e., has any work to do) for the shot.  A 
single shot model, combined with these participation 
calculations, may be used to perform a wide variety 
of experiments. 

 
4. Scaling to 192 Beams 
 

The ability of ICCS to scale successfully, to 
operate a fully-commissioned, 192 beam NIF is 
fundamentally important.   
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The bundle-based architecture is a key 
component for ensuring scalability: by deploying all 
of the controls for a single bundle on dedicated 
computers, and demonstrating that one bundle can be 
operated successfully, the ability to successfully 
operate the other 23 bundles by merely replicating 
the computers is effectively assured.   

The remaining potential issue is the performance 
of the central services accessed by all bundles.  In 
order to address this concern, an analysis of the 
central services’ performance for a single bundle shot 
has been performed, and the results extrapolated to 
24 bundles.  Data on CPU utilization, memory 
utilization, and CORBA message traffic were 
included.  This analysis indicates that ICCS will 
scale successfully to 192 beams. 

In December 2006, a 960kJ 48-beam shot was 
fired, demonstrating the considerable capabilities of 
both NIF and ICCS on the largest scale to date.  
More recently, testing of simulated 96-beam shots 
has revealed the need to tune some CORBA 
configuration parameters to accommodate the 
increase in connections and concurrent operations.  
The first online 96-beam tests will take place later in 
2007. 

 
5. Summary 

 
The ICCS provides a reusable, extensible, 

object-oriented framework for the development of 
controls applications.  The framework and 
applications utilize CORBA for language- and 
location-transparent distributed communications. The 
framework provides a suite of connection 

management tools to address many of the 
complexities of a large distributed system.  The 
bundle-based partitioning of ICCS applications 
mirrors the repeating bundle structure of the NIF to 
allow the control system to scale by replication. 

The shot automation system leverages the ICCS 
framework and offers a highly flexible, data-driven 
mechanism for performing NIF shots that achieve 
experimental goals and collecting, analyzing, and 
archiving the results.  The Shot Director manages the 
shot sequence through a series of high-level states; 
Collaboration Supervisors manage workflow as 
described by a shot model, read from the database, 
for each state; and Subsystem Shot Supervisors 
execute the Macro Steps specified in the model to 
setup the laser for the shot. 

Operational experience performing multi-bundle 
shots, up to 48 beams, along with an analysis of the 
performance of the framework’s central services 
extrapolated to 192 beams, provide confidence that 
ICCS will scale successfully to operate the full 192-
beam NIF. 
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