
UCRL-CONF-236998

CORBA-Based Distributed Software
Framework for the NIF Integrated
Computer Control System

E. A. Stout, R. W. Carey, C. M. Estes, J. M. Fisher, L. J.
Lagin, D. G. Mathisen, C. A. Reynolds, R. J. Sanchez

December 5, 2007

Sixth IAEA Technical Meeting on Control, Data Acquisition,
and Remote Participation for Fusion Research
Inuyama, Japan
June 4, 2007 through June 8, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71316626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

CORBA-Based Distributed Software Framework for the NIF
Integrated Computer Control System

E.A. Stout*, R.W. Carey, C.M. Estes, J.M. Fisher, L.J. Lagin, D.G. Mathisen,

C.A. Reynolds, R.J. Sanchez

 Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550, USA

Abstract

The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a
stadium-sized facility containing a 192-beam, 1.8 Megajoule, 500-Terawatt, ultra-violet laser system together with a 10-
meter diameter target chamber with room for nearly 100 experimental diagnostics. The NIF is operated by the Integrated
Computer Control System (ICCS) which is a scalable, framework-based control system distributed over 800 computers
throughout the NIF. The framework provides templates and services at multiple levels of abstraction for the construction of
software applications that communicate via CORBA (Common Object Request Broker Architecture). Object-oriented
software design patterns are implemented as templates and extended by application software. Developers extend the
framework base classes to model the numerous physical control points and implement specializations of common application
behaviors. An estimated 140 thousand software objects, each individually addressable through CORBA, will be active at full
scale. Many of these objects have persistent configuration information stored in a database. The configuration data is used to
initialize the objects at system start-up. Centralized server programs that implement events, alerts, reservations, data
archival, name service, data access, and process management provide common system wide services. At the highest level, a
model-driven, distributed shot automation system provides a flexible and scalable framework for automatic sequencing of
work-flow for control and monitoring of NIF shots. The shot model, in conjunction with data defining the parameters and
goals of an experiment, describes the steps to be performed by each subsystem in order to prepare for and fire a NIF shot.
Status and usage of this distributed framework are described.

Keywords: National Ignition Facility, NIF, CORBA, Integrated Computer Control System, Eric Stout, Lawrence Livermore National
Laboratory, Object-Oriented software

* Corresponding author. Tel: +1-925-423-8863;
Fax: +1-925-422-1930
E-mail address: stout6@llnl.gov (E. A. Stout)

1. Introduction

The ICCS is a distributed, layered, object-oriented
control system that employs a framework of reusable
software to build uniform programs to satisfy
numerous functional requirements for NIF [1]. ICCS
applications are developed using Ada95 or Java,

1

CORBA, and object oriented programming. Ada is
used to implement most of the control system
semantics. Java is used for the production of
graphical user interfaces as well as some of the
central services; some new controls applications are
also being written in Java. CORBA provides
location- and language-transparent distributed
communication utilizing TCP/IP transport.
NIF is comprised of 192 laser beams, which are
divided into 24 essentially identical 8-beam
“bundles.” The control system computers and
processes are likewise largely partitioned by bundle,
with the exception of central services and
applications controlling front-end, target area, and
industrial controls systems that are not replicated.
This partitioning is a key element in assuring the
scalability of the control system.
The top layer of the ICCS bundle-based architecture
is the shot automation system. Shot Director
software manages the progress of a NIF experiment
through a sequence of states. In each state,
Collaboration Supervisors, one for each bundle and
one for shared, non-bundle resources, manage the
workflow of a sequence of steps defined in a shot
model. These steps, in turn, are distributed to
subsystem shot supervisors for execution [2].

Operational experience and analysis indicates
that ICCS will scale successfully to full NIF
operations. A full-power six-bundle shot was
performed in late 2006, and preparations are
underway for the first low-energy twelve-bundle test.

2. Bundle-Based Architecture

The NIF physical organization lends itself to a
distributed, component-based communication
architecture. Control system processes and
computers are organized by bundle to achieve better
parallelism, performance, and reduce the impact of
localized failures. This is referred to as “bundle
based partitioning” and has no impact on framework
or application layer software due to the location
independent features of the CORBA based inter-
process communication architecture. This ability to
independently organize the hardware architecture
without impact to the software is one of the
significant benefits of CORBA and the design of the
ICCS software framework.

ICCS employs a layered, client-server computer

architecture to control the NIF. Each NIF bundle is
supported by ~25 front-end processors (FEPs)
connected to various laser diagnostic and control
components. Additional FEPs control and monitor
common components that are not bundle based, such
as target area systems. Each bundle has a dedicated
Unix server on which the supervisory and shot
control applications for that bundle are run.
Additional servers support central service
applications and non-bundle based supervisors. The
control room contains Windows consoles dedicated
to functional subsystems; GUIs run on these consoles
and connect to the supervisory and FEP layers as
needed. At full scale, the ICCS will be distributed
among approximately 800 computers running 1500
processes containing 140 thousand individually
addressable CORBA objects.

Following strategies of object oriented software
development, similar software components are
defined as classes, and these classes are instantiated
for each occurrence of a NIF component in each
laser beam. Control components consist of various
actuators, sensors, and instruments used to operate
and diagnose each NIF laser beam and its interaction
with a target. NIF physical control components, as
well as the supervisory objects that aggregate the
status and control of those physical components, are
represented by named CORBA software objects in
the ICCS. The framework and application software
combined have resulted in a design consisting of
approximately 340 CORBA interface classes. The
ICCS framework allows client software to obtain a
CORBA reference to an object from its name, and
CORBA transparently connects that reference to the
software component object located in the processor
that is connected to the physical hardware. The client
need not have explicit knowledge of the process or
processor on which the object is running. This gives
computer/network location transparency to the ICCS
application software.

There are a number of challenges to making
such a distributed system robust and resistant to
failure. A high number of distributed interfaces and
objects performing concurrent, interdependent
activities leads to non-deterministic messaging
behavior and the potential for race conditions,
distributed deadlock, or lost connections as a result
of restarting a process. ICCS employs a variety of
mechanisms under the broad heading of “connection

2

NIFTarget Area

Target Shot
Supervisors

Target Area
Collaboration

Supervisor

LRU
Managers

NIF Shot Director

Front-End
Processor

Layer

Supervisory
Layer

Bundle Control
Systems Bundles 3-24

24 Replicated
Bundles

Bundle 1

Bundle
Collaboration

Supervisor

Subsystem
Shot

Supervisors

LRU
Managers

Bundle 1

Bundle
Collaboration

Supervisor

Subsystem
Shot

Supervisors

LRU
Managers

~25 FEPs per
bundle

NIF Shot
Supervisors

NIF
Collaboration

Supervisor

LRU
Managers

NIF Devices

Shot
Automation

System

Beam
Control

Pulse
Power

Laser
Diagnostics

Injection
Laser

Beam
Control

Pulse
Power

Laser
Diagnostics

Injection
Laser

Target
Diagnostics

Target
Alignment

Integrated
Timing

Master
Oscillator

Industrial
Controls

Device
Status and

Control

NIF Scale

50 Servers

1,500
Distributed
Processes

140,000
Distributed

Objects

800 FEPs

6,000 Line-
Replaceable

Units (LRUs) –
modular

subassemblies

45,000 Control
Points

management” to mitigate these failure modes,
including interface decoupling, object reconnection,
subscription management, process state heartbeats,
status health heartbeats, and timed invocation. This
framework approach has enabled successful
detection, notification, and recovery from
communication failures, providing common benefits
to all ICCS application software.

3. Shot Automation System

Fundamentally, this large, distributed system
exists for the purpose of enabling frequent, reliable
NIF shots in support of experimental goals. The
stated requirement for ICCS is to fire and diagnose
each laser shot within 4-8 hours.

In a typical shot sequence, the laser is first setup
to meet the experimental requirements. Automatic
alignment software analyzes beam images and moves
mirrors to align each beam accurately along the beam
path and ultimately onto the target, and diagnostics
are setup to obtain data from the shot. Then multiple
low-energy “rod” shots, for which the power
amplifiers are not fired, are taken, and settings

adjusted based on the results, until the pulse shape
and pre-amplified energy of every beam on the shot
meet the experimental requirements. Finally, a high-
energy “system” shot, in which the power
conditioning system charges the main capacitor
banks and fires the flashlamps that amplify the
beams, is taken. Each shot is preceded by a 4-minute
countdown during which an automated sequence of
final actions and verifications is performed, and
followed by data acquisition, analysis, and archival.
Three layers of shot automation software orchestrate
this intricate sequence: a Shot Director,
Collaboration Supervisors, and Subsystem Shot
Supervisors.

Figure 1 Bundle-based partitioning

Upon selection of a predefined experiment by
the Lead Operator, the Shot Director initiates
calculations to determine operational settings and
participation status for all of the NIF’s components.
It then manages a high-level state machine that
shepherds the Collaboration Supervisors
participating in the experiment together through each
phase of the shot sequence. Once all Collaboration
Supervisors have completed their activities for a
state, the Shot Director moves them to the next state,

3

either automatically or at the request of the Lead
Operator, depending on the state. Additionally, in
the countdown and post-countdown phases, the Shot
Director publishes clock ticks and manages any
holds issued when problems occur. Two seconds
before the shot (T-2), the Shot Director hands off
control to the Integrated Timing System, which
issues precise triggers to fire the laser so that all
beams arrive at the target simultaneously.

There is one Collaboration Supervisor per
bundle, plus two for non-bundle based systems. The
Collaboration Supervisor is a workflow engine,
coordinating all of the activities performed by the
Subsystem Shot Supervisors in its area. When the
Shot Director initiates a new shot state, the
Collaboration Supervisor queries the database for the
workflow model for that state. This model defines
the high-level functions to be performed by each
Subsystem Shot Supervisor, as well as their order
and interdependencies. These high-level functions
are referred to as “Macro Steps.” The ordered list of
Macro Steps for a single Subsystem Shot Supervisor
is its “line of execution.” Macro Steps may have as
preconditions the completion of other Macro Steps in
different lines, or even in different collaboration
spaces. During countdown and post-countdown, a
Macro Step may also have a clock tick as a
precondition (e.g., do not execute until T-25, or 25
seconds before the shot). The Collaboration
Supervisor manages all of its lines of execution in
parallel, issuing each Macro Step when its
predecessors have completed and all of its
preconditions have been met. All of the lines of
execution and their preconditions comprise a
collaboration graph, which is presented on a GUI and
updated with the status of each Macro Step so that
the Lead Operator may observe the progress of the
shot state. If a Macro Step fails, the Collaboration
Supervisor allows the operator to select a reentry
point at or prior to the point of failure, typically after
the failure has been addressed. The Collaboration
Supervisor then analyzes the interdependencies and
“backs up” other lines of execution as necessary.
Once all Macro Steps for the state are completed, the
Collaboration Supervisor notifies the Shot Director
that it has completed the state and is ready to
proceed.

Roughly 10 Subsystem Shot Supervisors report
to each Collaboration Supervisor. They are

responsible for executing Macro Steps upon request.
Each Macro Step is executed in four phases; the
contents of each phase are defined in the database.
First, a “Pre_Done Check” tests the exit conditions
of the Macro Step to determine whether it needs to
be performed at all. Second, a “Ready Check”
verifies that the necessary equipment is in an
appropriate state for the Macro Step to be performed.
 Third, the “Perform” phase executes the individual
steps and sub-steps defined for the Macro Step.
Finally, the “Final Done Check” verifies that the exit
conditions of the Macro Step are met. All of these
operations are described primarily in terms of
setpoints. A setpoint is a name associated with a
position or state of an ICCS component, which
typically corresponds directly to the position or state
of the physical device or collection of devices
represented by that component. The three “Check”
phases of a Macro Step typically consist of verifying
that each of a set of components is either not
participating in the shot, or is at the specified
setpoint. The “Perform” phase commands
components to their shot setpoints, and in some cases
performs more complex behavior by executing a
script.

The Shot Automation System provides a highly
flexible framework for performing NIF shots. The
specifics of a model or a Macro Step may be
modified in the database without requiring
modification of code. Different shot models may be
defined to describe procedurally different kinds of
shots. The initial experiment goals specify
participating beams, energies, pulse shape, required
diagnostics, etc. Derived goals establish settings
required to accomplish the experiment goals. Based
on these goals, database calculations determine the
whether or not each component in the system is
needed to participate in rod or system shots, as well
as whether each Macro Step in the model is
applicable (i.e., has any work to do) for the shot. A
single shot model, combined with these participation
calculations, may be used to perform a wide variety
of experiments.

4. Scaling to 192 Beams

The ability of ICCS to scale successfully, to
operate a fully-commissioned, 192 beam NIF is
fundamentally important.

4

The bundle-based architecture is a key
component for ensuring scalability: by deploying all
of the controls for a single bundle on dedicated
computers, and demonstrating that one bundle can be
operated successfully, the ability to successfully
operate the other 23 bundles by merely replicating
the computers is effectively assured.

The remaining potential issue is the performance
of the central services accessed by all bundles. In
order to address this concern, an analysis of the
central services’ performance for a single bundle shot
has been performed, and the results extrapolated to
24 bundles. Data on CPU utilization, memory
utilization, and CORBA message traffic were
included. This analysis indicates that ICCS will
scale successfully to 192 beams.

In December 2006, a 960kJ 48-beam shot was
fired, demonstrating the considerable capabilities of
both NIF and ICCS on the largest scale to date.
More recently, testing of simulated 96-beam shots
has revealed the need to tune some CORBA
configuration parameters to accommodate the
increase in connections and concurrent operations.
The first online 96-beam tests will take place later in
2007.

5. Summary

The ICCS provides a reusable, extensible,

object-oriented framework for the development of
controls applications. The framework and
applications utilize CORBA for language- and
location-transparent distributed communications. The
framework provides a suite of connection

management tools to address many of the
complexities of a large distributed system. The
bundle-based partitioning of ICCS applications
mirrors the repeating bundle structure of the NIF to
allow the control system to scale by replication.

The shot automation system leverages the ICCS
framework and offers a highly flexible, data-driven
mechanism for performing NIF shots that achieve
experimental goals and collecting, analyzing, and
archiving the results. The Shot Director manages the
shot sequence through a series of high-level states;
Collaboration Supervisors manage workflow as
described by a shot model, read from the database,
for each state; and Subsystem Shot Supervisors
execute the Macro Steps specified in the model to
setup the laser for the shot.

Operational experience performing multi-bundle
shots, up to 48 beams, along with an analysis of the
performance of the framework’s central services
extrapolated to 192 beams, provide confidence that
ICCS will scale successfully to operate the full 192-
beam NIF.

References

[1] R.W. Carey, et al, “Status of the Use of Large-Scale

CORBA-Distributed Software Framework for NIF
Controls,” ICALEPCS 2005, Geneva, Switzerland,
October 2005.

[2] L. Lagin, et al, “Shot Automation for the National

Ignition Facility,” 2005, Geneva, Switzerland, October
2005.

* This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory

under Contract DE-AC52-07NA27344.

5

