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1 Introduction

For ICF applications, the temperatures are hot enough th&trials can transition to an atomic state
or plasma. If we are simulating an ICF capsule, then eithrer ALE, physical diffusion, transmutation by
nuclear reactions, a mix model, or numerical diffusion @ are running an Eulerian code), we will generate
zones that contain multiple materials. It may be desiredstat icertain mixtures of materials or mixed zones
as atomic mixtures rather than as chunk mixtures. For examspppose we have a deuterated material that
is initially separated from a tritiated material. As thesugtities come into contact at the atomic level, high
energy neutrons will be generated from thet 1" reaction. However, if we had a chunk of deuterium and
a chunk of tritium in the same computational zone, thenl?he 7" reaction would not take place.

In dealing with atomic mixtures, two topics that immedigitebme to mind are mixed equations of state
and mixed opacities. This report will only focus on the egquabf state (EOS) aspect and its implementation
in the Kull code. Imagine we have a zone that contains an atomiture of plastic and steel. If we know
the density, temperature, and isotopics of this mixturen th natural question is how will we compute the
pressure and specific internal energy of the mixture as weleaderivatives of these quantities with respect
to density and temperature. Let’s consider the case wheteawe tabular thermodynamic data for plastic
and steel (as a function of density and temperature), andaalris to determine how to use these tables to
compute the thermodynamic quantities of interest.

The first step is to decide a priori which isotopes should Be@ated with which table (we will let table
1 refer to the plastic table and talileefer to the steel table). This step is necessary so that wearapute
mass fractions for each table. Let's assume that the plestisists of isotopes of hydrogen and carbon,
while the steel consists of iron, manganese, and zinc. Wéhearuse a simple Z-range (here, Z refers to the
atomic number of the element in question) to decide whictofses go where. For example, talileould
have a Z-range df0, 10.5) so that it captures all of the hydrogen and carbon isotopeésadnte2 could have
arange 0f10.5,50.5) to capture all of its higher Z elements. Since we have accegetmixture density,
number fractions and number density, we can readily cortilernumber fractions to mass fractiong)(
where they are defined g5 = Mplastic/(Mplastic + Msteel) andy2 = Msteel/(Mplastic + Msteel)-

The second step is to bring the atomic mixture into equiiorithrough a Newton-Raphson iteration
scheme and solve for the sub-densities,defined a1 = Mpastic/ Vpiastic aNdpa = Mieer/Viteer- IN
many instances it will be more useful to work with specificurok, v;, which is simply the reciprocal
of the density, and we will use whichever qunantity will makparticular derivation more transparent. An
important constraint in the Newton-Raphson procedureaisttte mixture density remains unchanged by the
iteration procedure. Therefore, for an N material exampkewould have the specific volumes satisfying:

1 N
U:_:Zyivi . (l)
A
By equilibration, we mean that we iterate on the sub-desssitintil
f=filpr,T) = falp2,T) = ... = fn(pon,T) 2

where f is the quantity we want to equilibrate. Here the subscriplenrthe f refers to the particular
table that is used to perform the thermodynamic lookup (&tational simplicity, we will usually omit this
subscript in future equations). Also, for mathematicallypelsednessf (p;, T') should be monotonic ip;
to obtain unigue solutions.

In Kull, there are four different equilibrate options. Wendat f be the total pressure, chemical potential,
analytic electron density, or tabular electron densitye €lectron density;., is directly related to a quantity
known as the effective charge B ;¢ by the simple relatiom, = Z. ¢ xp/A, whereA is the average atomic
weight. We can comput&, ;¢ using an analytic formula based on Thomas-Fermi theory ocavequery
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the EOS table to return a value g ;. Hence, the two equilibrium options for electron densigliserefer
to how one compute&, .



2 Quantities of Interest

Once we have iterated the sub-densities to convergence iNdékvton-Raphson solver (subject to the
mixture density constraint), we can compute mixture prigeusing the following formulae:

N
81),

P = Zyl P(pi, T €)
e = E yiei(pi, T) 4)
88_; _ é Z@ez pl, iv: avl oe;( pt T) ()
5 - (G D) @

i=1

de i ov; dei(pi, T)

A “ov Oy ’ (8)

where P is the mixture pressure andis the mixture specific internal energy (energy/mass). Bomd

A constitute the physics, while e@3[5-8 follow purely frdme functional dependence &f ande on the
independent variables. Also, since the thermodynamiesalibep; as an independent variable, rather than
v;, the following formulas can be substituted above:

oo = i - o
oX 09X  ,0X
oy Vo (10)

Let us consider for a moment how we would derive equation®ffoT andoP/dv. The derivations
for de /0T andde/dv will follow by analogy. SinceP; is a function ofp; (or v;) andT, we have
0P, 0P,
AP = —AT + —Av; 11
ar =" " au 1D
Using the definition of pressure given by Eb. 3, we see thaeifltiply eq[Il byy;0v;/0v and sum over
all tables, the result is

N N

Ov; OF; Z?v 8P

DI NS
part ov T

Dividing this last equation byAT" and taking the limit as the differedt’s — 0 gives eq[b. Note that we
can’t simply drop the second term on the right hand sidEl of BatTs, even thouglWP/0T is taken at
constant, the constituent specific volumes can still have changdsme#ipect to temperature. On the other
hand,0P/0v is taken at constant temperature. Thus, when we dividE_éhy ¥%v, we can seAT = 0.
Taking the limit as the remainind’s — 0 gives the desired expression @P/0v.

The final result we need is to develop expressionsofgydv and dv;/0T. We begin by assuming
fj = fj(v;,T). What follows is

12)

o of;
Af; = aTATJra Av; (13)



Since} "}, yjv; = v, we also have that

N
Av = Z yjAv; . (14)
j=1

Solving eq[IB forAv; and inserting this into e@ 14 gives:

%Af] y] aT
Z ATZ o (15)
Jj=1 811] Jj=1 ov;

As we are iterating until all th¢’s are equal, we can pull th& f; out of the summation, call i\ f, and then
re-express this using dq.13 where wejlet: . The result of these manipulations is:

a1,
of; ofi Yj Yior

Av = (aTAma A)‘ la_fj_ATzl ol (16)
J= v J]= v

Now divide eq[Ib byAv (assuming temperature is constant) and solvéfgydv. Then divide ed 16 by
AT and solve folv; /0T. The desired quantities are:

oy o (%) .
)z Y 13/3(25;)
Oy 0w o i w2 <%>‘1 (’m(afz) | (18)
— v oT \ dv;

As a sanity check, we observe from the previous two equattwats

N

> v ) =5 =1 (19)
as well as N

Suigr), = o), =0 @)

The reason we can takg inside the differential is that the isotopics are fixed dgrihe Newton-Raphson
procedure. Hence, the masses of the different isotopesliianefore they;'s) are constant.



3 Application

The above discussion has shown at a high level how to brindgcemi@mixture with a known mixture
density, temperature, and isotopics into thermodynamiglibgum and how to compute mixture thermo-
dynamic quantities of interest. For example, using EfS.vBe-8an construct derived quantities like sound
speed, bulk modulus, etc. . We will not delve into the mireibd how the Newton-Raphson procedure con-
ducts its iterations, however, the choice of quantitiesdimate on warrants some discussion. The EOS tables
are constructed using density and temperature as indepevatégables and so the straightforward approach
is to do forward lookups of using the current values for the sub-densitigs) and the known temperature.
Then we develop a way of adjusting the changes in the subitisn® arrive at better guesses for the next
iteration. An alternative procedure is to iterate on tha@leiquantity f by performing reverse or inverse
lookups. By reverse lookups, we mean that we interrogateathie forp;(f,T) instead of the forward
lookup procedure which give&(p;, T'). The advantage with the reverse lookups is that we are @igtihg
on a single quantityf, which is adjusted until the mixture density constraintaisied. The disadvantage
is that iteration is necessary to provide the reverse lodiam the table. Also, forward and reverse lookups
are not necessarily compatible or consistent. Therefoechave decided in the current implementation to
iterate on more quantities by using forward lookups, evengh when more than two tables are involved,
it may be more difficult to reach a converged equilibriumestat

It is often desired to compute the temperature from the mexinternal energy and density. For sim-
plicity, let's assume that we have maodified the internal gnebut the density has remained fixed. The
procedure we use for the atomic mixture is to adjust the teatpee and do forward lookups of energy until
we satisfy the constraint that:

N
e(p,T) = _wiei(pi, T) . (21)
=1

In the Lagrange hydro, we have the more complicated circamestwhere both the material density and
internal energy are being updated in #ié order Runge-Kutta time integration scheme. The sub-dessit
that are used in the above constraint, however, will sumeatti mixture density and not the new density.
Also, we can't simply re-equilibrate the mixture with the difted density to find the new sub-densities,
since the needed temperature is unknown. Fortunatelye tirer a few ways out of this chicken and egg
dilemma. The most computationally expensive way (and golybne most accurate as well) is to do a
double iteration on the sub-densities and temperaturd, that after we are equilibrated, we also satisfy the
density and energy constraints. A simpler procedure woaltblonly iterate on temperature, but to use a
modified sub-density for the table lookups that is consistgtin the current mixture density. Thus, we will
use the following energy constraint:

N
e(va) = Zyzez(l/vj>T) : (22)
i=1
There are two obvious choices for thg, with the first one given by the simple scaling

v = vy (U"ﬂ) =v; + ﬂ(’unew —v) . (23)
v v
The second approach is to make a Taylor-series in specificnal The result is

v =v; + %(Unew —v) . (24)



Note that from ed. 17 and ed3[93-10, we have the result that

4 21:) ™! 2 (0L "
% TN (av.i)afj =17~ NﬁUZ (_62 )ij - (25)
j=1Yj (8_1)]) j=1Y;5V5 (a_pj)

Also, sincedf;/dp; > 0, we know that0 < dv;/dv < 1. This means that all the}’s will increase or
decrease, depending on the signgf, —v. The advantage of the first approach is that the sub-densiile
never go negative. The disadvantage to this approach isttisaessentially approximating the derivative
Ov; /Ov by v; /v, which is only zeroeth order accuarate. The Taylor seriggcamation is first order

accurate, but has the potential of driving the sub-dessitegative (particularly in the casewf.,, >> v).

4  Analytic Zeff

It was noted earlier that there azeways of computingZ. s, when we want to use the electron density
equilibrate option. One way is to simply do a forward tablekiap of Z.;; based orp; andT'. The table
also provides values fadZ,;;/0p and0Z.;;/0T. The alternative is to use an analytic data fit #
developed by Dick More based on Thomas-Fermi theory. Theténfor the analytic formula ar€ (KeV),

pi (g/em?), < z >;, and< 2 >;. Here,< z >;, and< 2 >; are given by

<z> = ZXij
J

R 2<zIlnz >;
DR PP
?

<zlnz>; = ZXijanj ,
J

where it is understood in the above formulas thatre number fractions and thien the summation refers
to all isotopes that are associated with ttetable.
We start the formula foZ, s by defining a scaled temperatuFfeand a dimensionless temperatdtas:

T = ol
T — L_,
1+7T

wherea = 1000/< 2 >2. We then definey-, a function of scaled temperature drdandcy-, two functions
of dimensionless temperature by the following:

ay = alTGQ + CL3Ta4
by = —exp [bo + 1)1T + bg’fq
cy = c1T +c
where
a; = .003323467
ag = .97183224

a3 = 9.26148e — 05
aqy = 3.1016524



bp = —1.762999
by = 1.4317567
by = 0.31546338
cg = —.36666667
co = .98333333 .

We then define two functions, andp- by:

p1 = ay®Y Zghvev phvey (26)
pa = ZR™phrey (27)
< z>
Zp = —~7
A< 2 >2/3

Finally, the relation forzZ, s ; takes the form:

Zeff = <Z>Zeff
~ . X
Zefs = l+z+1+2z

v o= 293(p1+ ) (28)
Mmo= 2.6752506

v = 0.33120023 .

Now that we have a closed expression gy ;, we need to take analytic derivativesf; » with respect
to density and temperature. To this end, we express thetgelesivative using the chain rule as:

0Zess _ 0Zess 0Zeyy O

- . 29
dp 0Z.sp Ox Op (29)
Using simple calculus, we obtain:
aZeff d -1 -1
= w%(l+w+\/1+2w) +(1+z+v1+2x)
s (14 )|
= - Z (14— ,
T 71 + 142z
O Ay 2y /ey —1 (E?pl 3172)
op oy (p1+p2) ap + ap
_ 2m2x(bypr + p2)
(p1+p2)p
0Z,
el = <>
aZeff
Therefore we obtain the relatively straightforward resugit
0Zcsr  27v2Zess(byp1 + p2) { . ( 1 )]
= 1—Zepr [ 14+ — 30
dp (p1 + p2)p LY 7 30)

Proceeding in a similar fashion, we can derive the followiegult for the derivative of ; ; with respect
to temperature. R
OZeyy _ 0Zeyy OZeyy Oz
or aZeff oxr 0T

(31)
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If we take the natural log of e@._R8 (the definition foy and then differentiate both sides with respect to
temperature, we obtain:

@ _ 2y9x [Op1 /0T + Opo/OT B In(p1 + p2) 86}/} (32)
oT ¢y p1+ P2 cy or
Equatior 33l now assumes the form of:
8ZEff 2’VQZeff [ A < 1 )] {apl/aT + 8p2/(9T ln(p1 + pg) aCY}
= 1—Zege (1 - 33
or cy i\ V14 2z p1 + P2 cy oT (33)

To find 9p, /0T anddp, /0T, we use the same trick as before. That is, we take the natgraffleqs2Z6=27
and differentiate both sides with respect to temperatuhe. résult is:

1 — —
o1 pl{CY{ aa—Y—Faﬂlan]—Faﬂ[lnay—I—bylan]}

T ay 0T = 0T oT
Opa Oy .

E?_—T = p28—TanR

ZR = pZR .

Now we simply need derivatives af/, by, andcy with respect to temperature to finish the derivation.

8aY o « a2 a4
a—T = ?(alCLQT +CL36L4T )
by _ by OT 0T
or 9T 9T oT
dey _ Oey 9T OT
or 9T T T
aby A6
— = by (by +7bT
oF v (b1 oT7)
Ocy
— = (1
oT
oror _ T(-T)
or oT T ’

Finally, recall that it is really the electron density thatput into equilibrium and not the effective charge.
Therefore, from the perspective of the Newton-Raphsonguhoie, what we really need are the derivatives
of electron density with respect to density and temperafue to the simple relation betweepandZ, ¢,

the desired derivatives are:

ane _ ﬁaZeff 4 Zeff
dp A Op A
ane - paZeff
or — A 9T

5 Thermodynamic Consistency

It was mentioned previously that the relations for expresshe mixture pressure and energy in terms
of its constituents come from physics, while their deridi are purely the result of mathematics. An
interesting consequence of a more fundamental approablatisve can check the validity of the relations
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for the mixture energy and pressure by working witlthe specific Helmholtz free energy andhe specific
entropy.
For example, the mixture free energy can be expressed as:

a=e—Ts . (34)

Now we assume a specific form for the constituent free erergieand how they are related to the mixture
free energy.

a; = e —1Ts; (35)
N
a = Zyial = Zyl e; —Ts;) . (36)
i=1
The first law of thermodynamics can be expressed as

de=Tds— Pdv . (37)

Taking the differential of ed._34 and making use of the firgt talation gives:

da=—-sdl — Pdv , (38)
which implies that
s = <<’?‘_a)
* = \or/,
Oa
—-pP = e
<5U)T
Differentiating eq[C3p with respect to temperature gives:
862 asi 862' 33i 81)2-
Z%KaT 157) -5+ (on T ow) ot - (@)

To simplify this equation for the entropy, let's expressfingt law for a particular component in the mixture:
dei =T dsi — PZ dUi . (40)

Dividing eq.[40 bydT (at constant;) gives the result

8€i 882‘ .
Similarly, if we divide eq[4D bylv; (at constant temperature) we arrive at
8€i asi
— Tt =-P . 42
(0% 8vi) “2)

Inserting these last two results into Egl 39 gives:

S—Zy,[s,—kPg } . (43)

=1
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Now that we have relations farands in terms of their constituents, we can use[€q. 34 to solve.fdthe
result is:

= ivj [ L TP avl} (44)

€ P yl e’l (2 aT N

Thus, the specific internal energynst simply a sum of its parts. As John Castor points out in his memo
on Mixing Free-Energy Based EOSModels, this is probably not a good thing. However, for the case @i to
pressure equilibration, all of thB; are equal. This means that the pressure can be pulled out aebthve
summation and that this term is identically zero, from[ed. 206 for the case of total pressure mixing, we
do recover the result that the mixture energy is a simple duta parts. Note that by using the fundamental
definition for pressure we can show that:

pe_ (@) sy up 45)
i av T - yl a’l} (2]

i=1

which isidentical to eq.[3. Thus, a rigorous derivation of the mixture pressumg energy shows that we
have a discrepency in the energy definition for the case dfileqiing a quantity other than totoal pressure.
We will focus our future work on assessing what consequetiee are to omitting this extra term in the
mixture energy definition for the cases of electron density éhemical potential equilibration.

6 Test Case

For the case of an atomic mixture of two ideal gases that arnéil@ted under the total pressure option,
there exists an analytic solution for the sub-densitiesthadnixture pressure. Thus we can run a simple test
case at a variety of densities and temperatures to verifyttieaNewton-Raphson method converges to the
analytic solution. Let the ideal gas mixture have the follmywumber fractions for its isotopics:p = .25,
ny = .25, ny14 = .25, no1g = -25. We will also let the subscript refer to the light gas (the part of the
mixture made up of the hydrogen isotopes) and the substrigfer to the heavier isotopes. Converting the
number fractions into mass fractions givas= .144 andys = .856. Note that for this example, we are
using analytic equations of state to represent the two gestber than tabular ones. At equilibrium, we will

have:
leuT _ pZRuT

Ay Ay
whereR,, is the universal gas constant adgdare the average molecular weights of the two sub-gasesgUsin
the mixture density constraint givesquations ir2 unknowns forp; andp,. The solution is:

- ofnen)
pr = Pl y2A2

- ofnen)
p2 = plYy2 ylAl

Figurel shows the mixture pressure (computed analytically and cbedafter the Newton-Raphson proce-
dure using the summation formula for the mixture pressurergearlier in the text) as a function of density
for a fixed temperature of KeV. Figure2 shows pressure vs. temperature at a fixed mixture density of
.001g/cm?. In both figures, we see that there is excellent agreemertpftcoximately 9 decimal places)
between the analytically computed pressure and the peessanputed using efjl 3.

P=P =P =

(46)
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Figure 1: Pressure vs DensityBt= 1KeV.
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Figure 2: Pressure vs Temperaturg at .001g/cm?3.
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