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The interactions of charged particles in a plasma are in a plasma is governed by

the long-range Coulomb collision. We compare two widely used Monte Carlo models

for Coulomb collisions. One was developed by Takizuka and Abe in 1977, the other

was developed by Nanbu in 1997. We perform deterministic and stochastic error

analysis with respect to particle number and time step. The two models produce

similar stochastic errors, but Nanbu’s model gives smaller time step errors. Error

comparisons between these two methods are presented.

I. INTRODUCTION

A plasma consists of a large number of charged particles. An appropriate method to

describe a plasma state is a statistical approach, i.e. a distribution function provides a

complete description of the system. If a plasma is highly collisional, its distribution function

will be rapidly driven to thermodynamical equilibrium, and the plasma kinetics can be

approximated by a fluid description. On the other hand, if a plasma is collisionless, the

plasma is not in equilibrium, and each particle interacts with the rest of the plasma through

collective effects of long-range electromagnetic fields. In the intermediate regime between

the two cases, collisional effects have to be included specifically to provide an adequate

description of plasma kinetics. One significant example is the edge plasmas (scrape-off layer)

in a confinement fusion device. A fluid approximation is not valid since the high energy

(superthermal) electrons result in a relatively large ratio of mean free path to the system’s

characteristic length. A kinetic approach is essential for satisfactory physical modeling and

numerical simulations for such plasmas [1].

One feature which distinguishes a plasma from a fluid is that its particles are charged



and have long-range Coulomb interactions. A particle in a plasma has distance encounters

with many other particles simultaneously, and each encounter produces a small collisional

effect on the particle. The scattering of particles due to multiple small collisions is dominant

and is more important than the single large-angle scattering. For this reason, the Coulomb

scattering angle can be treated as the cumulative deflection of a series of small angle binary

collisions [2].

One of the earliest and most influential Monte Carlo binary collision models was proposed

by T. Takizuka & H. Abe in 1977 [3]. In their method, the domain is divided into cells and

particles are grouped within each cell. Randomly chosen pairs of particles undergo binary

collisions. The resulting scattering angle is sampled through a Gaussian distribution to

compute the change in velocities. Their method simulates each small angle collision and

requires a time step much smaller than the overall relaxation time for the entire velocity

distribution function.

Nanbu proposed a new Monte Carlo binary collision model in 1997 [4]. His method uses

the idea that a Coulomb collision can be described by many continuous small angle binary

collisions [2]. Nanbu’s method computes the cumulative scattering angle for many small

binary deflections. Successive small angles are grouped into one single collision angle. This

suggests that a larger time step may be used in his method.

The two methods proposed by Takizuka & Abe and Nanbu have been widely used in

the plasma physics community. Nanbu’s method has been considered more efficient than

Takizuka & Abe’s method because it computes an accumulative Coulomb scattering angle

rather than a single Coulomb scattering angle one by one. For this reason, we are interested

in performing convergence analysis to compute the errors and to derive the orders of accuracy

for both methods to quantitatively compare their performance and relative efficiencies. We

also believe their models have potential to be used to extend the hybrid method for rarefied

gas [5] to plasma with Coulomb collisions.

For simplicity, in this article we call the collision model developed by Takizuka and Abe

“TA’s method” and the model developed by Nanbu “Nanbu’s method”. To test these two

models, we use a test problem that consists of a spatially homogeneous plasma with no

electric or magnetic fields, as described in [3], [4]. We simulate the relaxation of anisotropic

Maxwellian distribution (i.e. a distriubtion with anisotropic temperatures) over time due to

collisions, using the results to evaluate the accuracy and efficiency of these two methods. We
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test both electron-electron and electron-ion collision cases and obtain comprehensive con-

vergence results. We find a few similarities of the results computed using the two methods.

For the average solutions, both methods have square root time step accuracy O(
√

∆t). The

random errors are independent of time step, and diminish like O(N− 1

2 ) when the number of

particles N grows. In the conclusion, we evaluate the significance of the results, as well as

consider some advantages to Nanbu’s method and its possible applications.

The article is organized as follows. First we describe the collision models formulated by

Takizuka & Abe, and Nanbu in section 2. In section 3, we propose a test case and define the

quantities for the convergence analysis. Next, we present the simulation results for Nanbu’s

method and TA’s method, and compare the differences in the results obtained in section 4.

Concluding remarks and a summary are offered in section 5.

II. GENERAL FORMULATION

We first introduce the governing equation for the physical process, and describe TA and

Nanbu’s Monte Carlo binary collision models. We will emphasize the major distinguishing

aspect of the two collision models: computing the scattering angle of two colliding particles.

We consider collisions between N particles from two species alpha and beta. For simplicity,

we assume that N is even. If alpha and beta are different, we also assume that there are

N/2 α particles and N/2 β particles.

A. Governing equation

The time evolution of the particle distribution in a non-equilibrium plasma is described

by the Fokker Planck equation:

∂fα

∂t
+ v · ∇xfα +

e

m
(E + v × B) · ∇vfα = (

δfα

δt
)c

fα(v,x, 0) = fα0(v,x)

where fα is the distribution function of the α species, E is the electric field, and B is the

magnetic field. ( δf
δt

)c is the collision operator and defined as the following:

(
δfα

δt
)c = −

∑

β

∂

∂vj

e2

αe2

βλ

8πǫ2

0
mα

∫

dv
′

[
δjk

u
− ujuk

u3
][

fα

mβ

∂fβ(v
′

)

∂v
′

k

−
f

′

β

mα

∂fα

∂vk
]. (1)
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The equation for fβ is similar.

TA and Nanbu’s collision models can be considered as numerical approximations to the

Fokker Planck collision operator. We will discuss the two models for a spatially homogeneous

plasma in the following two sections.

B. Takizuka and Abe’s Collision Model

The scattering angle in TA’s method is defined in the relative velocity frame. First two

particles with velocity vα and vβ are selected. Let Θ be the scattering angle between two

particles in the relative frame. The angle Θ is sampled randomly through a random variable

δ related to Θ by the function tan. Specifically,

δ ≡ tan(Θ/2) (2)

where δ is a Gaussian random variable which has mean 0 and the following variance

< δ2 >= (
e2

αe2

βnL log Λ

8πǫ2

0
m2

αβu3
)∆t

where eα and eβ are electric charges for the species α and β, nL is the smaller density of the

particle species α and β, Λ is the Coulomb logarithm, u = |vα − vβ | is the relative speed,

∆t is the time step , and mαβ is the reduced mass and is defined as follows:

mαβ =
mαmβ

mα + mβ

.

To compute the velocity changes of the particles due to collision, a Gaussian random variable

δ is sampled and used to compute sin Θ and cos Θ through the following formulas derived

from (2):

sin Θ =
2δ

(1 + δ2)

1 − cos Θ = 2δ2/(1 + δ2).

sin Θ and cos Θ are then used to compute the postcollisional velocities v
′

α, v
′

β of the two

particles [3].

v
′

α = vα +
mαβ

mα
∆u
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v
′

β = vβ − mαβ

mβ

∆u

and ∆u is defined as follows:

u = vα − vβ,

∆ux = (ux/u⊥)uz sin Θ cos Φ − (uy/u⊥)u sin Θ sin Φ − ux(1 − cos Θ),

∆uy = (uy/u⊥)uz sin Θ cosΦ + (ux/u⊥)u sinΘ sin Φ − uy(1 − cos Θ),

∆uz = −u⊥ sin Θ cos Φ − uz(1 − cos Θ),

and u⊥ =
√

u2
x + u2

y. The azimuthal angle Φ is randomly chosen from on the uniform interval

[0, 2π].

In each time step, TA’s method groups all of the N particles into N/2 pairs, each consisting

of an alpha particle and a beta particle, and performs a single collision for each pair. The

random selection of partcle pairs through many time steps approximates the integration

of the distribution function over the particles. The method’s cross section represents the

Fokker-Planck process. Hence, TA’s method directly simulates the Fokker-Planck collision

operator (1).

C. Nanbu’s Collision Model

Coulomb collisions in a plasma can be treated as the simulation of many continuous small

angle binary collisions [2]. Rather than computing every small angle binary collisions as in

TA’s method, Nanbu’s method provides a procedure to compute the aggregated scattering

angle of many small angle binary collisions for a given pair of velocities vα and vβ.

Let g0 be the initial velocity and g1, g2, ..., gN be the postcollision velocities after first,

second,..., and N collisions. Let χN be the cumulative scattering angle after N collisions.

χN is defined as the following

cos χN = g0 · gN/g2

where g = |g0|. χN can be obtained through the following three steps:

1. At the beginning of the time step, calculate a quantity s

s = nβgπb2

0
(lnΛ)∆t

where b0 is the impact parameter, nβ is the density of field particles, Λ is the Coulomb

logarithm and ∆t is the time step.

5



2. Use s to determine a constant A from the following equation:

cothA − A−1 = e−s

The constant A will be used to define the probability density of χN .

3. Sam;ple cumulative scattering angle χN with the following probability density function

F (χN):

F (χN) =
2πA

4π sin hA
eA cos χ sin χN .

The velocities after cumulative collisions are

v
′

α = vα − mαβ

mα

[g(1 − cos χ) + h sin χ],

v
′

β = vβ +
mαβ

mβ
[g(1 − cos χ) + h sin χ],

where g = vα − vβ and h = (hx, hy, hz) with

hx = g⊥ cos ǫ,

hy = −(gygx cos ǫ + ggz sin ǫ)/g⊥

hz = −(gzgx cos ǫ − ggy sin ǫ)/g⊥

and g⊥ =
√

g2
x + g2

y and ǫ is a random number uniformly distributed in [0, 2π].

Nanbu’s method is motivated by physical considerations associated with Coulomb col-

lisions in the Fokker-Planck limit. In a subsequent work, Bobylev and Nanbu [6] derive

a time-explicit formula to approximate the time evolution of plasmas from the Boltzmann

equation. Their analysis theoretically verifies that, when ∆t → 0, the numerical solutions

computed using Nanbu’s method are the solutions of the Fokker-Planck equation. More

specifically, the method approximates the collision operator J of the Boltzmann equation by

an exponential operator defined by J and then solves an initial value problem using spherical

harmonic functions to define the time evolution formula. Similar to the idea that is used

to derive Fokker-Planck equation from the Boltzmann equation [7], small-angle scattering

leads to the formula for computing the evolution of a velocity distribution:

fα(v, t + ∆t) =

n
∑

β=1

παβ

∫

R3×S2

dwdnDαβ(
g · n

g
, Λ

∆t

g3
)fα(v

′

α, t)fβ(v
′

β , t).
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Figure 1: Time relaxation of anisotropic temperatures due to collisions

The function Dαβ is defined by an infinite sum of Legendre polynomials, see [6] for details.

Within an error of O(∆t), Dαβ can be further approximated by functions which are simpler

and easier to be computed. In particular, D⋆ can be defined as follows:

D⋆(µ, τ) =
A

4π sin hA
exp µA.

In this case, the distribution of accumulated scattering angle of Nanbu’s method is F (χN) =

2π sin χND⋆(cos χN

2
, s

2
), and the method may be considered as a special case of a general

framework developed in [6]. We note that both TA and Nanbu’s methods integrate the

Fokker-Planck equation from t to t + ∆t with an explicit scheme using only velocity distri-

bution function data evaluated at t; such an integration scheme is no better than first-order

accurate in ∆t. Error accumulation in the TA and Nanbu methods is examined in the

convergence analysis in Sec. 4.

III. TEST CASE AND DEFINITIONS

We perform simulations for the equilibration of a plasma which has a spatially homo-

geneous distribution function with anisotropic initial temperature for an electron-electron

case and for an electron-ion collision case. Due to the stochastic nature of the Monte Carlo

model, we extract the deterministic errors by computing the mean of multiple statistically

independent solutions. The stochastic errors are computed using the empirical variance of

these solutions. The comparison includes both the deterministic errors and stochastic errors

when the time steps or number of particles are varied. The error in the numerical solution
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is evaluated by comparing it to a highly accurate solution, using a very small time step and

a large number of particles.

A. Test Case

Our task is to compare the accuracy of the two collision models. For this reason, we

assume spatial homogeneity and that no electrical or magnetic fields exist in the system.

Then the physical governing equation becomes the following:

∂fα

∂t
= (

δfα

δt
)c

fα(v, 0) = fα0(v).

TA and Nanbu’s collision methods are numerical approximations to the analytic model of

the Fokker Planck collision term ( δfα

δt
)c.

We consider the time relaxation of charged particles due to electron and electron collisions

or electron and ion collisions. The initial distribution has small anisotropy, i.e. the parallel

temperature and the perpendicular temperature are slightly different, as shown in Figure 1

at t = 0. Specifically we use Tz = 0.008 and Tp = 0.01 for our simulation.

An approximate analytic solution of the test case was derived in [8] using Fokker Planck

equation in Landau form and assuming small temperature anisotropy. In [8] the initial

distribution is assumed to be the following:

f0(0,v) = (
m

2π
)3/2

1
√

T‖T⊥

exp(−
mv2

‖

2T‖

− mv2

⊥

2T⊥
).

The temperature T of the system is

T =
1

3
T‖ +

2

3
T⊥.

The conservation of the kinetic energy implies T is constant at all time, hence we have

dT⊥

dt
= −1

2

dT‖

dt
=

∫

df

dt

mv2

‖

2
dv

Replacing df
dt

by the Fokker Planck operator, and assuming |T‖ − T⊥| < T‖, the following

equation was derived:

8



dT⊥

dt
= −1

2
· dT‖

dt
= − T⊥ − T‖

15

8

√
2πτ0(T )

then
d∆T

dt
= 3 · dT⊥

dt
= −∆T

τ

τ =
5

8

√
2πτ0(T ),

and

τ0(T ) =

√
mα

π
√

2e4
α

T 3/2

ln Λnα

.

Then we have

∆T (t) = ∆Te−
t

τ .

B. Simulations

We perform two types of comparison for the e−e case and for the e− i case. For the first

type of comparison, we keep the number of particles N at a constant value in the simulation

and compare the numerical results at different time steps ∆t. This comparison enables us

to see how changes in time step ∆t will effect the accuracy of the simulation solutions. In

the second comparison, we keep the time step ∆t constant and vary the number of particles

N in the simulation. This enables us to see how changes in particle number N will effect

the accuracy of the simulation solutions. We also perform more than one set of simulations

for each type of comparison. For example, we perform simulation on N = 200 and 3200,

and for each N we perform simulation at various ∆t, see figure 2. This way we can see the

effects of N on the simulation results over different ∆t’s.

To separate the effects of stochastic fluctuations from deterministic errors, we compute the

mean and variance of M independent solutions. We call the average of such M independent

realizations the deterministic solution ū

ū(∆t, N) =
1

M

M
∑

i=1

ui

where ui = ui(∆t, N) is the ith independent realization of the solution, and ū is the average

of these independent realizations.
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Figure 2: ν0∆t and N combinations

We designate eD(∆t, N) as the deterministic error when the time step is ∆t and the

number of particles is N . Specifically, let uf be a numerical solution computed using a large

number of particles and a small time step. An error eD(∆t, N) is defined as the difference

between the average of M independent solutions computed using ∆t and N and a fine

solution uf . In other words,

eD(∆t, N, t) = |ū(∆t, N, t) − uf(t)|.

The quantity σ2 = σ2(∆t, N) represents the stochastic fluctuations of the M independent

solutions computed at a time step ∆t and a number of particles N . σ2 is defined by the

empirical variance in the following way:

σ2(∆t, N) =
1

M

M
∑

i=1

(ui − ū)2.

Hence σ2(∆t, N) represents the mean square deviation of the realizations ui from the average

solution ū.

To compute the order of accuracy with respect to time step ∆t, we first compute the

error ratio R(∆t)

R(∆t) =

∣

∣

∣

∣

ū(4∆t) − ū(2∆t)

ū(2∆t) − ū(∆t)

∣

∣

∣

∣

.

Let u0 be the exact solution, and assume the average solution ū has order of accuracy of r,

i.e.

ū(∆t) = u0 + C(∆t)r.
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where C is a constant. Then

R(∆t) = 2r

and therefore the order of accuracy r

r = log2 R(∆t).

For all the computations we present here, ui represents the temperature difference between

parallel direction Tz and perpendicular direction Tp normalized by the initial temperature

difference. That is

ui(t) =
Tz(t) − Tp(t)

Tz(0) − Tp(0)

is used in the formulas above to define ū and uf . In the computational results described

in Sections IV, we have used 160,000 independent simulations. These were divided into

M = 160 groups of 100 simulations each with N particles. The temperatures Tz and Tp

were computed by averaging over each group of 100 simulations. Then the average ū and

the variance σ2 were computed by averaging over the M = 160 groups.

IV. CONVERGENCE RESULTS

The graphs of the computational results are organized as follows:

The first three plots show the simulation of deterministic solutions when N is constant,

and ∆t varies:

• The average of 160,000 independent solutions are shown in figure 3 for e-e collisions

and in figure 10 for e-i collisions. The independent simulations were used both to

compute temperatures and to compute averages, as described at the end of Section

III.

• The pointwise errors are shown in figure 4 for e-e collisions and figure 11 for e-i colli-

sions.

• The pointwise order of accuarcy r = log2 R(∆t) are shown in figure 5 for e-e collisions.

The next two plots show the deterministic solutions when ∆t is constant, and N varies:

• The average of 160,000 independent solutions are shown in figure 6 for e-e collisions

and figure 12 for e-i collisions.
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• The deterministic pointwise errors eD are shown in figure 7 for e-e collisions and figure

13 for e-i collisions.

The simulation of stochastic fluctuations is shown in the following part of the graphs:

• Figure 8 and figure 14 show the stochastic fluctuations when N is constant and ∆t

varies for e-e collisions and e-i collisions, respectively .

• Figure 9 and figure 15 show the stochastic fluctuations when ∆t is constant and N

varies for e-e collisions and e-i collisions, respectively.

The convergence results are presented in the following manner. We first present results

computed using Nanbu’s method and then results computed using TA’s method. In the

discussion about each method, we first describe the results of deterministic (i.e. averaged)

solutions. We show the simulations with constant number of particles N and varying time

step ∆t, as well as constant ∆t and varying N . In order to understand the order of time

step accuracy, we also include the pointwise error ratio r. We then explain the results of

stochastic fluctuations with the same set of ∆t and N combinations as the deterministic

case.

For all the plots presented here, computational results obtained using Nanbu’s method are

shown in the left-hand column, whereas results obtained using TA’s method are represented

in the right-hand column.

The fine solution uf we use in the convergence results is obtained using 6,400 particles

and v0∆t = 0.0076.

A. Simulation Results Using Nanbu’s Method

In this section, we present the simulation results using Nanbu’s model. We discuss both

the e-e and the e-i cases.

1. Deterministic Solutions ū(∆t,N, t) and Errors eD(∆t,N)

We begin with the deterministic solutions ū, when N is held constant and equal to 200 and

3200 and ∆t varies, see figure 3 for the e-e case and figure 10 for the e-i case. It is evident that
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random fluctuations from the Monte Carlo simulation are eliminated after computing the

average solutions, resulting in smooth time relaxation curves ū. Clearly, when the time step

∆t is smaller, simulation solutions approach the fine solution uf . Additionally, if the number

of particles is increased, we also see an improvement in accuracy. Figure 4 (e-e) and figure

11 (e-i) shows the result that when we keep N constant, eD(·, N) decreases as ∆t becomes

smaller. To see the order of accuracy, we compute the order of accuracy r = log2 R(∆t).

In the e-e case, Nanbu’s method does not produce a precise order of accuracy but rather

oscillates around the value r = 0.5, see figure 5. In the e-i case, we could not reach a

conclusion about the order of accuracy so the corresponding figure is not included.

When ∆t is held constant and N increases, the results for the e-e and the e-i cases are

relatively different. In the e-e case, the average solutions approach the fine solution uf ,

see figure 6. The corresponding pointwise errors eD(∆t, ·) of the average solutions ū are

depicted in figure 7. For each constant time step ∆t, eD(∆t, ·) decreases linearly as the

number of particles N increases. In other words, the order of accuracy for the number

of particles is O(N−1). Moreover, as might be expected, for any number of particles N ,

eD(N, ∆t = 0.0613) is less than eD(N, ∆t = 0.24525). In the e-i case, we see generally the

errors eD(∆t, N) decrease when the number of particles N increases, but the result is not

as clearcut as the e-e case, see figure 12 and figure 13.

2. Stochastic Fluctuations σ2(∆t,N)

The numerical solutions computed using the Monte Carlo method are composed of de-

terministic components and stochastic fluctuations. In order to completely understand the

statistical accuracy of the solutions, we analyze the stochastic fluctuations σ2 of the solu-

tions.

We first calculated the stochastic fluctuations σ2(·, N) at various time steps ∆t for N =

200 and 3200 and 16,000 realizations. From figure 8 (e-e case) and figure 14 (e-i case) we

can see that for each constant N , stochastic fluctuations σ2(·, N) have approximately the

same values and are independent of the time steps ∆t’s. In other words, reducing the time

step ∆t does not have any influence on σ2(·, N).

We then compute σ2(∆t, ·) when the time step ∆t is held constant. The time step ∆t in

the e-e case is equal to 0.2452 and 0.06013, and ∆t in the e-i case is 0.22214 and 0.05528, see
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figure 9 (e-e case) and figure 15 (e-i case). The stochastic fluctuations σ2(∆t, ·) decreases

linearly as the number of particles N increases. This means that the order of particle number

accuracy is O(N− 1

2 ), and one can reduce random fluctuations by increasing the number of

particles N , as is commonly expected.

B. Simulation Results Using TA’s Method

In this section, we describe the computational results obtained using TA’s method. We

perform exactly the same computations as for Nanbu’s model. This requires determining

the average solutions ū and errors eD and stochastic fluctuation σ2 at various time steps ∆t

and number of particles N .

1. Deterministic Solutions ū(∆t,N, t) and Errors eD(∆t,N)

We use the same procedure as we used with Nanbu’s method. Specifically, we compute

the average of 16,000 independent solutions when the number of particles N are held con-

stant and equal to 200 and 3200, see figure 3 for the e-e case and 10 for the e-i case. The

average solutions eliminate random fluctuations from the Monte Carlo simulation, resulting

in smooth time relaxation curves ū. When time step ∆t is smaller, simulation solutions

approach the fine solution uf . If the number of particles is increased, we also see an im-

provement in accuracy. Figure 4 (e-e case) and figure 11 (e-i case) shows that when we keep

N constant, eD(·, N) decreases as ∆t becomes smaller.

When ∆t is held constant, ū approaches the fine solution uf as N increases, as shown

in figure 6 (e-e case) and 12 (e-i case), however, the results for e-e and e-i cases are again

different. In the e-e case, the corresponding pointwise errors eD(∆t, ·) decreases linearly as

the number of particles N increases, see figure 7. For any number of particles N , eD(N, ∆t =

0.0613) is smaller than eD(N, ∆t = 0.24525). In the e-i case, overall the errors eD(∆t, N)

decrease when the number of particles N increases, and eD(N, ∆t = 0.0613) is generally

smaller than eD(N, ∆t = 0.24525), but the result is not as distinct as the e-e case, see figure

13.

TA’s method in the e-e case yields a clear value of order r = 0.5 when the number of

particles N = 3200, as shown in figure 5; however, we can not obtain the order of accuracy
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r through error ratio in the e-i case so that this value is not plotted (as mentioned above).

In general ∆t has to be small enough to see any improvement in accuracy when the

number of particles N increases. If ∆t is too large, the time step errors dominate, and no

improvement of accuracy will occur when N increases. Figure 7 also shows the relation

between time step errors and particle number errors for the e-e case. When ∆t = 0.24525,

we can not reduce the errors eD by increasing the number of particles N . For the e-i case,

the corresponding results are not so clear, so that this figure is omitted.

2. Stochastic Fluctuations σ2(∆t,N)

The numerical solutions computed using the Monte Carlo method have deterministic

components and stochastic fluctuations. We examine the stochastic fluctuations σ2 of the

solutions in this section. We again calculate the stochastic fluctuations σ2(·, N) at various

time steps ∆t for N = 200 and 3200. The e-e case and the e-i case produce similar results.

We observe that for each constant N , stochastic fluctuations σ2(·, N) have approximately

the same values and are independent of the time steps ∆t’s, as shown in figure 8 and figure

14. Evidently, reducing the time step ∆t does not have significant effect on σ2(·, N). The

fluctuations are independent of the time step ∆t.

Once again we compute σ2(∆t, ·) when the time step ∆t is kept fixed and is equal to

0.2452 and 0.06013, see figure 9 and figure 15. The stochastic fluctuations σ2(∆t, ·) diminish

linearly as the number of particles N grows. This means when the time step ∆t is constant,

the fluctuations decrease like O(N− 1

2 ).

C. Comparison of the two methods

Simulation results obtained using the TA’s model were actually very similar to Nanbu’s

model in the e-e case and e-i case. Both methods yield a more conclusive results in the e-e

case than the e-i case. The major advantage of Nanbu’s method is that the results are more

accurate in terms of deterministic errors eD. Specifically, it yields approximately half the

pointwise errors eD(∆t, N) compared to TA’s method, see figure 4

eDNanbu(∆t, N) ≈ 1

2
eDTA(∆t, N)
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However, as discussed in previous sections of this article, Nanbu’s method does not yield

a higher order of accuracy r. Using TA’s method we obtain a clearly defined r equal to 0.5,

whereas the order of accuracy r for Nanbu’s method oscillates around 0.5 in the e-e case, as

shown in figure 5.

The stochastic fluctuations σ2 for both methods decreases linearly as N increases, as

shown in figure 9:

σ2

Nanbu(∆t, ·) ≈ cNanbu(N
−1)

σ2

TA(∆t, ·) ≈ cTA(N−1)

where cNanbu ≈ cTA and both are independent of N . However, when the particle number N

is held constant, the statistical fluctuations are independent of the time step ∆t, and using

both methods results in approximately the same fluctuations, see figure 8:

σ2

Nanbu(·, N) ≈ cNanbu

σ2

TA(·, N) ≈ cTA

where cNanbu ≈ cTA and both are independent of ∆t. As we have pointed out, two error

sources, from time step and number of particles, exist in the simulation. One can see the

relation between time step errors and particle number errors for both methods from figure

7. To see any improvement in accuracy when the number of particles N increases, ∆t has

to be small enough so the major errors come from the number of particles N . From this

point of view, Nanbu’s method also has advantages over TA’s method. One can use larger

∆t, i.e. ∆t = 0.24525, and still see the improvement in accuracy when N increases. This

also shows Nanbu’s method produces smaller time step errors.

V. SUMMARY AND DISCUSSION

In this paper, we have performed a convergence analysis to compare the two widely-used

Monte Carlo binary collision models proposed by Takizuka & Abe and Nanbu. Our test

case is a spatially homogeneous plasma with no electric or magnetic fields. We compute

the relaxation of anisotropic temperatures over time due to collisions, using the results to

evaluate the accuracy and efficiency of these two methods. Extensive simulation results are

presented for both electron-electron and electron-ion collision cases. To facilitate the error
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analysis, we extract the deterministic errors by computing the mean of multiple statistically

independent solutions. The stochastic errors are computed using the empirical variance of

these solutions. The comparison includes both the deterministic errors and stochastic errors

when the time step or number of particles is varied. We also compute the order of accuracy

in time using an error ratio.

There are a number of similarities between the two methods. Both methods yield more

conclusive results in the e-e case. In the e-e case, the two methods have the approximately

O(
√

∆t) time step accuracy computed from log of the error ratio log
2
R . Our convergence

results differ from the result described by Bobylev and Nanbu in [6]. According to their

derivation of time-explicit formula, the order of time step error is formally O(∆t), but our

study found the accumulated error scales as O(
√

∆t). We do not have a definite explanation

for this. One possible reason is that there are only limited number of particles in our

simulation, and perhaps our results are still dominated by the errors generated by the

particles. Bobylev and Nanbu’s time evolution formula does not take into account the finite

number of particles, i.e., only time-discretization effects are captured in their formula.

In the e-e case and e-i case, the stochastic fluctuations σ2(·, N) are independent of time

step ∆t when N is kept fixed, i.e.

σ2(·, N) ≈ c

in which c is a constant independent of ∆t and is the same for both methods. When ∆t is

held constant, the fluctuations σ2(∆t, ·) diminish linearly when the number of particles N

grows, i.e.

σ2(∆t, ·) ≈ cN−1

in which c is a constant independent of N and is the same for both method In our analysis,

the overall errors come from two sources: deterministic errors due to the time step and

random errors due to the number of particles. Another similarity between the two methods

is that the errors originating from one source - either time step ∆t or number of particles

N - may dominate the total errors. For example, to see the decrease in errors when ∆t

decreases, N has to be large enough and ∆t cannot be too small. Once ∆t becomes too

small, we cannot see any improvement in accuracy when reducing the time step ∆t unless

we increase the number of particles N .
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While both methods have the same order of accuracy O(
√

∆t) in the e-e case, Nanbu’s

method is more accurate. Specifically, it produces time step error that is smaller by a factor

of 1/2, i.e. :

eDNanbu(∆t, N) ≈ 1

2
eDTA(∆t, N)

This means that Nanbu’s method can use 4∆t to achieve the same accurate results as TA’s

method. This translates to a considerable savings in time and cost.

Nanbu’s method is more complicated and therefore harder to implement. Nanbu’s method

involves solving a nonlinear function for A for every s. However, the value of A can be

computed in advance and stored in a table; therefore, this disadvantage is not that significant

because ultimately it does not slow down the computation.

To conclude, many similarities exist between the two methods. However, we note the

advantage of Nanbu’s method in reducing the computational cost and achieving higher ac-

curacy. We are currently exploiting Nanbu’s method in extending the earlier hybrid method

developed for rarefied gas to the simulation of plasmas with Coulomb collisions with im-

proved computational efficiency.
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Figure 4: (e-e case) Deterministic errors eD; the results using Nanbu’s method are depicted in the

left-hand column; results using TA’s method are shown in the right-hand column. In each graph,

the top row results are computed using N = 200 particles and the bottom row results using N=

3200; average of 16,000 independent realizations.
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Figure 5: (e-e case) Order of accuracy r = log2 R(∆t); the results using Nanbu’s method are

depicted in the left-hand column; results using TA’s method are shown in the right-hand column.

In each graph, the top row results are computed using N = 200 particles and the bottom row

results using N=3200; average of 16,000 independent realizations.
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Figure 7: (e-e case) Deterministic error; The results using Nanbu’s method are depicted in the left-

hand column; results using TA’s method are shown in the right-hand column. In each graph, the top

row results are computed using ν0∆t = 0.24525, and the bottom row results using ν0∆t = 0.0613
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Figure 8: (e-e case) Variance σ2 of the results using Nanbu’s method are depicted in the left-hand

column; results using TA’s method are shown in the right-hand column. In each graph, the top row

results are computed using N = 200 particles and the bottom row results using N=3200; average

of 16000 independent realizations.
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Figure 9: (e-e case) Variance σ2 of the results using Nanbu’s method are depicted in the left-hand

column; results using TA’s method are shown in the right-hand column. In each graph, the top

row results are computed using ν0∆t = 0.24525, and the bottom row results using ν0∆t = 0.0613.
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Figure 10: (e-i case) Average solutions ū(·, N); The results using Nanbu’s method are depicted in

the left-hand column; results using TA’s method are shown in the right-hand column. In each graph,

the top row results are computed N = 200 particles and the bottom row results using N=3200;

average of 16,000 independent realizations.
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Figure 11: (e-i case) Deterministic errors eD; the results using Nanbu’s method are depicted in

the left-hand column; results using TA’s method are shown in the right-hand column. In each

graph, the top row results are computed using N = 200 particles and the bottom row results using

N=3200; average of 16000 independent realizations.
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Figure 12: (e-i case) average solutions; The results using Nanbu’s method are depicted in the left-

hand column; results using TA’s method are shown in the right-hand column. In each graph, the top

row results are computed using ν0∆t = 0.2211, and the bottom row results using ν0∆t = 0.05528.
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Figure 13: (e-i case) Deterministic error; the results using Nanbu’s method are depicted in the left-

hand column; results using TA’s method are shown in the right-hand column. In each graph, the top

row results are computed using ν0∆t = 0.2211, and the bottom row results using ν0∆t = 0.05528.
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Figure 14: (e-i case) Variance σ2 of the results using Nanbu’s method are depicted in the left-hand

column; results using TA’s method are shown in the right-hand column. In each graph, the top row

results are computed using N = 200 particles and the bottom row results using N=3200; average

of 16,000 independent realizations.
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Figure 15: (e-i case) Variance σ2 of the results using Nanbu’s method are depicted in the left-hand

column; results using TA’s method are shown in the right-hand column. In each graph, the top

row results are computed using ν0∆t = 0.2211, and the bottom row results using ν0∆t = 0.05528.
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