
UCRL-CONF-235206

User Interface Framework for the
National Ignition Facility (NIF)

J. M. Fisher, G. A. Bowers, R. W. Carey, S. A. Daveler,
K. B. Herndon Ford, J. C. Ho, L. J. Lagin, C. J. Lambert,
J. Mauvais, E. A. Stout, S. L. West

October 2, 2007

International Conference on Accelerator and Large
Experimental Physics Control Systems
Knoxville, TN, United States
October 14, 2007 through October 20, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71316559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Figure 1 The Navigator serves as a starting point for
NIF operators

USER INTERFACE FRAMEWORK FOR THE NATIONAL IGNITION
FACILITY (NIF)*

J. Fisher, G. Bowers, R. Carey, S. Daveler, K. Herndon Ford,
J. Ho, L. Lagin, C. Lambert, J. Mauvais, E. Stout, S. West

Lawrence Livermore National Laboratory, Livermore, CA, U.S.A.

Abstract
A user interface (UI) framework supports the

development of user interfaces to operate the National
Ignition Facility (NIF) using the Integrated Computer
Control System (ICCS). [1] This framework simplifies UI
development and ensures consistency for NIF operators. A
comprehensive, layered collection of UIs in ICCS
provides interaction with system-level processes, shot
automation, and subsystem-specific devices. All user
interfaces are written in Java, employing CORBA to
interact with other ICCS components. ICCS developers
use these frameworks to compose two major types of user
interfaces: broadviews and control panels. Broadviews
provide a visual representation of the NIF beamlines
through interactive schematic drawings. Control panels
provide status and control at a device level. The UI
framework includes a suite of display components to
standardize user interaction through data entry behaviors,
common connection and threading mechanisms, and a
common appearance. With these components, ICCS
developers can more efficiently address usability issues in
the facility when needed. The ICCS UI framework helps
developers create consistent and easy-to-understand user
interfaces for NIF operators.

INTRODUCTION
The ICCS User Interfaces give NIF operators access to

all NIF layers, from individual devices through the
highest layers of NIF workflow (referred to as the shot
automation cycle). All UIs are implemented using Java
version 6 and JacORB CORBA.

All user interactions with ICCS begin with a UI called
the Navigator (Figure 1). On startup, the Navigator
queries the ICCS configuration database for an inventory
of current connection points. A tree of UIs is then
presented to the user. Using search and filtering tools,
operators drill down to other, more specific UIs. Adding
connectivity to a new device requires only adding an entry
to the ICCS configuration database.

Distributed object references for ICCS components
(either actual devices or virtual software components such
as the Shot Director) are obtained from a name server
using the component’s “taxon.” A taxon contains several
elements, including a component’s subsystem, its
location, a unique ID name, and a user-friendly alias
description.

CONNECTION FRAMEWORK
UIs communicate with other ICCS components using

CORBA, both for direct control and status propagation
(Figure 2). [2]

Direct control is performed through the CORBA
interfaces – devices can be moved, tasks can be started,
data can be retrieved, etc. In most cases, UIs can control
devices directly when needed.

Constantly clicking buttons to poll the NIF devices for
status updates would be inefficient for NIF operators.
Automatic status propagation, employing a
publish/subscribe design pattern, is handled by
intermediate data propagation servers, called
“supervisors”, which provide data sources, or “mappers”,
that deliver data updates to subscribers using CORBA
Any type objects. When data changes occur updates
propagate to all subscribed UIs which perform the
appropriate data extraction and screen updates.

Supervisors reduce the stress on the Front End
Processors (FEPs) by acting as a fan-out mechanism;
FEPs publish status updates to only one other entity (a
supervisor) rather than many (all connecting UIs).

UIs have four different connection patterns:
• Taxon Connectable: The input for connection is

a single taxon. Most connectivity to individual
devices is done this way, and the UIs are referred
to as “control panels.”

• Location Connectable: The input for connection
is a single location string, which is then used to
derive a whole suite of taxons. These are
generally higher level status UIs, and are referred
to as "broadviews."

• Framework Service: Access to top-level
framework services requires specialized UIs.
Such services include system manager,
reservations, alerts, and data archiving.

• Other: ICCS developed a collection of
specialized UIs for performing tasks such as
browsing log files and data-driven, spreadsheet-
like views of arbitrary data points across the NIF
facility.

DISPLAY FRAMEWORK

The ICCS UI development team created a
comprehensive display framework that enables
developers to create new UIs efficiently. The UI
framework helps enforce a standard look and feel and
includes mechanisms for safely implementing
connection management, threading, and other low-level
behaviors.

In addition to the standard Java Swing API, a number
of third-party products are employed, including ILog
JViews for interactive vector-based drawings, Jidesoft's
JIDE for rich component interaction, and JFreeChart for
dynamic charting.

Each UI is built on a standard base class, called a
BaseDisplay. As shown in Figure 3, the BaseDisplay
includes a title, status bar, and other parent behaviors
such as the ability to dynamically change locations after
a UI has already been displayed.

Broadviews
The broadview framework employs live, scalable

schematic-like diagrams, as shown in Figure 2, that
graphically depict the high level status and positions of

different devices, the laser pathway, current device
reservations, and any associated alerts. From these
broadviews, the operator can drill down to individual
device control panels. ILog JViews manages the low-level
drawing behaviors. In addition to handling broadviews,
JViews also handles the workflow diagrams used during
the shot cycle through its hierarchical layout engine. [3]

Control Panels
Control panels provide detailed status and control of

specific devices. The UI framework includes a variety of
display classes, referred to as “composites,” to simplify
control panel construction and insure standardization
across NIF subsystems. Each composite encapsulates a

Figure 2 Communication flow between ICCS UIs and other control system components

Figure 3 A broadview displays a subsystem overview, with
drilldown to specific device

label, a data display mechanism, and a data input
mechanism. Each composite type is specialized to handle
a certain type of data display (e.g. a number, or a health
status indicator) and a certain type of data input (e.g., a
numeric entry field or a combo box).

One of the challenges of developing a UI solution for a
control system is separating the current status of a device
from the last request made against a device. For example,
at a certain point in time, a motor exists at a particular
position x. If the operator uses a UI to request the device
move to a new position y, a long period of time could
potentially pass while the device moves from x to y.
Before, during, and after that process, the operators may
need to know any of the following:

• The current position
• The last time the current position was updated
• The last requested position
• The time that position was requested
• The range of valid data inputs (min, max, etc)
• Any motor-level failures that may have occurred

as a result of the move
• Any connectivity-level failures that may indicate

the data on the UI is stale
A UI must include all the above information for every

data point, but avoid clutter and usability problems. The
display framework composites help to enforce the design
principles and features described above. In addition, since
all ICCS control panels utilize the composites extensively,
usability enhancements to the composites are immediately
reflected on all control panels. The composite classes
come in a variety of flavors, each geared toward handling
different forms of entry and display. Figure 4 depicts a
sample control panel utilizing a number of composite
objects. For each composite, the LED indicators report
any failures, and tooltips provide details on valid data
inputs and recent changes.

Threading Behaviors
In addition to handling the user I/O, the composites

handle the tricky threading behaviors required for highly
responsive and usable UIs. For Swing, all screen
management events are handled through a single thread
called the AWT (Abstract Windowing Toolkit) event
thread. Any delays in processing events in this thread will
degrade the usability of the UIs. Due to the highly
threaded nature of CORBA, special consideration must be
made to properly handle interaction with outside ICCS
components.

The composite classes are designed to encapsulate
threading behavior, which simplifies the implementation
of high performance UIs and allows the UI implementer
to focus on application-level issues.

For the automatic status updates, the model is reversed;
each UI acts as a server, accepting incoming updates
through a CORBA interface. To free the supervisor as
soon as possible, a mapper queue is used for each UI. A
separate thread processes the incoming events and
performs the appropriate screen updates.

The mapper content is stored in a CORBA Any, which
is a general container object. It may contain one of a
number of "basic" data types (for strings, floats, booleans,
etc) or a custom structure (e.g., a large data array).

When a UI makes a subscription to a supervisor, it
associates that subscription with a particular composite
instance. If the subscription is for one of the basic map
types, no further coding is required; the UI framework
will automatically handle incoming updates and update
the correct composite. If a custom structure is used, code
for updating the composite must be written manually.

SUMMARY
The ICCS UI Framework provides building blocks used

by over 120 broadviews and control panels in daily use by
NIF. By focusing on a standard set of building blocks, the
ICCS UIs work in a highly consistent and stable manner,
and can be updated rapidly to address any usability issues
that arise.

Given the generality of the ICCS UI framework, it
could likely be tailored to other control system
applications.

REFERENCES
[1] P. Van Arsdall, et al., “Status of the National Ignition

Facility and Control System,” ICALEPCS 2005
[2] R. Carey, et al., “Status of the Use of Large-scale

CORBA-distributed Software Framework for NIF
Controls,” ICALEPCS 2005

[3] L. Lagin, et al., “Shot Automation for the National
Ignition Facility”, ICALEPCS 2005

*This work performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract No. DE-AC52-07NA27344.

Figure 4 A control panel built on the UI Framework

