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Abstract.  Motional Stark effect (MSE) measurements constrain equilibrium

reconstruction of DIII-D tokamak plasmas using the equilibrium code EFIT. In 2007, two

new MSE arrays were brought online, bringing the system to three core arrays, two edge

arrays, and 64 total channels. We present the first EFIT reconstructions using this

expanded system. Safety factor and 

€ 

ER  profiles produced by fitting to data from the two

new arrays and one of the other three agree well with independent measurements.

Comparison of the data from the three arrays that view the core shows that one of the

older arrays is inconsistent with the other two unless the measured calibration factors for

this array are adjusted. The required adjustments depend on toroidal field and plasma

current direction, and on still other uncertain factors that change as the plasma evolves.

We discuss possible sources of calibration error for this array.

PACS:  52.55.Fa, 52.70.-m, 52.70.Kz
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I.  INTRODUCTION

The DIII-D tokamak [1] now has five operating motional Stark effect (MSE)

polarimeters [2] that provide the primary internal constraints for equilibrium

reconstruction. The last two arrays built were brought online in 2007. These view a

neutral beam injected counter to the plasma current. One array views the core, and the

other the edge, and both use a single fold mirror. The design of these polarimeters and the

expected measurement improvements are described in reference 2. In general, the

geometry of the new views, henceforth labeled collectively as the “counter-MSE”, is

more favorable than the “radial-MSE” core view in terms of spatial resolution and 

€ 

Bz

and 

€ 

ER  uncertainty (Figs. 1, 2, and 3 in Ref. 2).

To test how well the counter-MSE meets these expectations we have produced EFIT

[3] reconstructions for a wide variety of plasma discharge conditions using only the

original tangential array (

€ 

φ = 315° in Ref. 2, Fig. 1) and the counter-MSE arrays (

€ 

φ =

195°). These would then be compared to reconstructions that used the tangential and

radial (

€ 

φ = 15°) arrays without the counter arrays. The remaining MSE array that views

the edge (

€ 

φ = 45°) is not considered here, as it has a coating on the plasma facing optic

and typically gives unreliable results without a significant ad-hoc calibration adjustment.

Replacement of this component is planned for later this year.

We find that using the tangential+counter MSE set of constraints in EFIT with a

calibration without ad hoc adjustments produces current profiles that are in good

agreement with independent measurements that infer current profile details — most

notably MHD activity. This agreement holds for a wide variety of plasma discharges and

toroidal current and field polarities. (The plasma current and toroidal field directions are
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independently reversible in DIII-D.) In contrast, the tangential+radial MSE set of

constraints in EFIT does not produce good agreement with observed MHD without

applying significant adjustments to the measured calibration. The adjusted calibrations

must be arrived at empirically, and separate calibrations are needed for each field and

current polarity. The new counter-MSE data thus identifies the radial array as the most

likely source of systematic calibration error or measurement interpretation error.

In the next section, we discuss the calibration procedures that have been used on the

DIII-D MSE diagnostic. This is followed by examples of EFIT reconstructions that use

the counter-MSE with a calibration without ad hoc adjustments. These reconstructions

are benchmarked by independent measurements. The last section shows the results of

attempting to correct the radial array calibration using a series of benchmarked EFITs

that rely on the tangential+counter array constraints and discusses possible sources of

error affecting this array.

II.  CALIBRATION

The DIII-D MSE polarimeters are calibrated using a four-parameter fitting function

[4] i n - s i t u .  The formula to interpret  the measurements  is

€ 

S1 S2 =Gain • tan 2 γ + Phase + BTscale •BT( )[ ] + dc offset , where 

€ 

S1 and 

€ 

S2 are the

measured amplitudes of the second harmonics of the photo-elastic modulators, 

€ 

BT  is the

vacuum toroidal magnetic field, and 

€ 

γ  is the angle of the electric field vector projected

into the MSE optics (i.e. the quantity to be inferred). All fitting parameters except

€ 

BTscale  are determined by placing a linear polarizer at the neutral beam-sightline

intersection, and scanning through 360° 

€ 

BTscale  accounts for Faraday rotation, and it is

determined by placing a stationary linear polarizer in the sightline at several values of
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€ 

BT . Calibrations determined from firing the neutral beam into a gas with vacuum

magnetic fields applied have not been adequate, and recent atomic physics calculations

confirm that the polarization state of the spectrum is different in this case [5].

When only the tangential, radial and edge arrays were available, this set of constraints

produced EFITs that were inconsistent with observed MHD, or in some cases would not

converge, unless the Phase of one or more arrays were empirically varied from the values

determined in-situ. Typically all arrays were adjusted by an average of 0.3°, and separate

final calibrations were required for each field and current polarity.

III.  EFITS USING COUNTER MSE

The following example EFITs use only the tangential and counter-MSE channels as

internal constraints. All cases use a calibration measured in-situ without any further

empirical adjustments. Figure 1 shows data from a discharge with the standard 

€ 

BT  and

€ 

Ip polarities. It compares the safety factor profile [Fig. 1(c)] (

€ 

q-profile) with a 41.1kHz

rotating magnetic fluctuation observed on the pick-up coils [Fig. 1(a)]. Fourier analysis

indicates the best-fit poloidal/toroidal mode numbers are m/n=5/3. According to MHD

theory [6,7], the magnetic island producing this fluctuation should be centered about the

€ 

q = 5 /3 flux surface, which is at 

€ 

R = 2.04 m in Fig. 1(c), and rotating toroidally at

approximately 41.1kHz/n. The charge exchange recombination (CER) diagnostic carbon

impurity rotation profile [Fig. 1(b)] shows a 13.7 kHz rotation (41.1 kHz divided by

€ 

n = 3) approximately at 2.02-2.04 m. These observations form a consistent picture that

locates the mode within 1-2 cm, which is approximately the spatial resolution of the MSE

channels at this radius and the 65x65 EFIT grid spacing.
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It is possible to predict the value of 

€ 

qmin  using electron cyclotron emission

measurements of internal transport barriers that form when 

€ 

qmin  is an integer and half-

integer [8]. Interferometer measurements also provide data on reverse shear Alfven

eigenmode frequencies that evolve in a known way with 

€ 

qmin  [9]. Figure 2(a) shows

such measurements and the predicted 

€ 

qmin  values at a number of times for a reverse-

€ 

BT

discharge. Figure 2(b) shows the MSE constrained EFIT 

€ 

q-profiles at these same times.

All these profiles agree well with the predictions from ECE and interferometry, except

two which are at most 0.2 too low (

€ 

t =  530 ms and 

€ 

t =  1110 ms).

Another check on the accuracy of the MSE calibration comes from including pressure

profile constraints in the EFIT. If MSE measurements are a good constraint on the local

toroidal current density 

€ 

jφ = −R ′ p − F ′ F µ0R , then including additional pressure profile

constraints may be expected to modify 

€ 

′ p  and 

€ 

F ′ F  individually, but the resulting 

€ 

jφ

should not be grossly different. If it is - and this is sometimes the case when using an

empirically adjusted MSE calibration - then either the MSE data is in error, the pressure

data is in error, both are in error, or EFIT is somehow insufficient. Figure 3 shows

profiles of the flux surface averaged parallel 

€ 

j  for a relatively extreme discharge with the

plasma current reversed so up to five neutral beams are injected counter to it. This creates

a very hollow current profile and broad pressure profile with internal transport barriers.

The solid trace is the result of using edge magnetics and MSE constraints only, and the

dashed trace uses these plus a total pressure constraint. The so-called kinetic EFIT

confirms the gross features of the MSE-only EFIT in the core. The chief difference is in

the edge where MSE channels have not yet been optimized and do not properly constrain

the narrow bootstrap current peak at the H-mode pedestal. In this case, the kinetic EFIT
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has also not been set-up with enough spline knots in the edge 

€ 

′ p  or 

€ 

F ′ F  to properly

capture the bootstrap current here either.

Figure 4 compares the radial electric field determined from MSE and the same

determined using CER for a DIII-D hybrid discharge. They agree well to within the MSE

random error uncertainty of ~10 kV/m, except near the edge for the same reasons as the

last example

IV.  CALIBRATION OF THE RADIAL MSE ARRAY

Figure 5 shows one dramatic example of how the radial array is inconsistent with the

other core arrays when only an unadjusted calibration is applied. The points are the

individual measured pitch angles 

€ 

γ  versus major radius in a standard monotonic 

€ 

q-

profile, sawtoothing discharge. At the magnetic axis, 

€ 

Bz = ER = 0, so 

€ 

γ = 0 from Eq. (1)

of Ref. [1]. While the tangential and counter MSE arrays both interpolate 

€ 

γ = 0 at about

the same 

€ 

R, the radial array predicts 

€ 

γ = 0 several centimeters away. Estimates of the

error in 

€ 

γ  due to the spatial averaging of the radial array in a typical monotonic 

€ 

qmin ~ 1

discharge are not enough to account for this misalignment [10].

This error would seem to be a simple systematic offset error in the calibration that

could be eliminated by empirical adjustments to the Phase factors of the channels in this

array. However a single set of adjustments that is universally applicable has not been

found. If we take the preceding EFIT examples and others that fit to the tangential and

counter MSE arrays as a set of benchmarked equilibriums, then we can calculate what

Phase adjustment is required for each radial array channel to make it agree with an

equilibrium. Figure 6 shows the resulting 

€ 

Δγ ’s versus their major radius position for nine

benchmarked equilibriums. These represent all three polarities, (

€ 

+Ip,−BT ), (

€ 

+Ip,+BT),
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and (

€ 

−Ip,−BT), and a case at low, medium, and high 

€ 

qmin  each. The source of the

systematic error is clearly strongly dependent on field and current direction. 

€ 

−Ip  also

means mostly counter-injected neutral beams. The systematic error is also apparently

weakly dependent on something in the plasma itself, as indicated by different corrections

required within a specific (

€ 

Ip,BT) polarity.

While the source of the systematic error afflicting the radial array is still unknown,

these observations guide some speculation. Many possible calibration errors may be

classified as geometric: perhaps the calibration polarized light source was not leveled

correctly; perhaps the neutral beam geometry is not known accurately; spatial average

effects; etc. All of these should produce a systematic error that is independent of the field

and current direction. Faraday rotation in optics would depend on the field direction, but

the radial array vacuum window is the same as, and in the same relative location as three

other MSE array windows on systems that do not have these problems. A source of

background polarized light might depend on plasma conditions. Reflections are one

possibility. Another possibility is that emission from fast ions that undergo charge

exchange recombination in the MSE viewing volume may, with the right viewing

geometry, introduce background light with a net nonzero polarization fraction into the

optics [11]. Such an effect has yet to be demonstrated on DIII-D, but it might explain the

apparent dependence of the required calibration adjustment for this array on 

€ 

qmin  and

whether the neutral beams are mostly co or counter to 

€ 

Ip because the fast ion density is

expected to depend on these factors [9].
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V.  CONCLUSION

We have shown that the use of two new MSE arrays with one of the older arrays as

constraints in equilibrium reconstruction produces equilibria that are in good agreement

with independent measurements and the expectations of MHD theory. These arrays are

calibrated in-situ, and no further empirical adjustments to the calibration are required.

This has made it possible to identify one of the older MSE arrays as being subject to

systematic error that we are currently trying to understand, while at the same time

improving our confidence in the equilibrium analysis in ongoing DIII-D experiments.
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List of Figure Captions

Fig. 1.  (a) 41 kHz 5/3 mode is located by CER rotation profile (b) at 

€ 

R = 2.04 m, which

agrees with (c) MSE 

€ 

q profile.

Fig. 2.  

€ 

qmin  evolution determined using ITB and RSAE observations by ECE and

interferometry agree with MSE 

€ 

qmin .

Fig. 3.  MSE-only EFIT and MSE plus kinetic EFIT current profiles are in good

agreement.

Fig. 4.  

€ 

ER   profile determined by MSE and CER are in good agreement.

Fig. 5.  Magnetic axis location predicted by tangential and counter MSE are in

agreement, but radial MSE is not. Error bars indicate standard deviation of 10 ms

averaging window (i.e. random uncertainty only).

Fig. 6.  Required calibration adjustments for the radial MSE channels based on nine

benchmarked EFITs.
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Fig. 1
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Fig. 2

Fig. 3
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Fig. 4

Fig. 5

Fig. 6


