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Abstract

The availability of whole-cell level metabolic networks of high quality has made it possible to

develop a predictive understanding of bacterial metabolism. Using the optimization framework of

flux balance analysis, I investigate metabolic response and activity patterns to variations in the

availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30, 000

random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria

H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investi-

gations have relied on implementations of the simplex method, it is necessary to use interior-point

optimization algorithms to adequately characterize the full range of activity patterns on metabolic

networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting

that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity

pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approx-

imately half of the simulated environments. Constructing the high-flux backbone of the network

for every environment, there is a clear trend that the more frequently a reaction is active, the more

likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the

central-carbon metabolic pathways for the sample of random environments.

UCRL-JRNL-227543.
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Metabolic networks consist of thousands of molecules that are processed and

inter-converted by enzymatic reactions. The availability of high-fidelity anno-

tated genomic data has made it possible to generate accurate models of whole-

cell metabolism. The combination of these models with an optimization frame-

work has brought us one step closer to a predictive understanding of metabolic

function. In recent years, multiple cellular-level metabolic models have become

available for bacteria, as well as one model for yeast, which is a eukaryote. Us-

ing a linear optimization method called “flux balance analysis,” a number of

computational studies have predicted cellular metabolic responses to perturba-

tions that range from gene knockouts and metabolic network engineering, to

the removal or addition of nutrients. Not only have these predictions compared

surprisingly well with experimental data, but they have opened up new avenues

of harnessing the abilities of single-celled organisms that have been fine-tuned

by evolution. In this paper, I will discuss how the flux-balance approach predicts

activity patterns of metabolic networks in response to variations in nutrients and

chemical factors in the environment surrounding the cell. As a biological exam-

ple, I will focus on the central carbon metabolism – the collection of metabolic

pathways responsible for generating the 12 precursor metabolites used as basic

building blocks by cells.

I. INTRODUCTION

The study of how components of a cell, such as mRNA molecules, proteins, and metabo-

lites, interact and integrate to generate organism-level behavior has received enormous

attention the last few years. The recent availability of large-scale empirical datasets for

gene expression1–3 and gene-regulation4–6, signal-transduction7, protein interactions8–13, and

metabolic networks14–17 have made it possible to develop predictive models on the whole-cell

level. The grand challenge posed by these datasets is twofold. First, it is necessary to develop

methods capable of extracting meaningful information, preferably giving us the ability to

answer central questions about how organisms function. Second, these datasets have mostly

been analyzed independently of each other, although the structure and dynamics of e.g. the

signal-transduction network strongly influences cellular metabolic activity.
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Complex network analysis18–20 offers a promising avenue not only for extracting non-

trivial information from organism-level genetic, protein, and metabolic systems, but also

seem well suited to integrate these varied datasets. The “systems” approach that is implicit

in network representations is often complementary to the reductionist approach, which has

experienced tremendous successes during the last few centuries. In particular, there ex-

ists considerable variation in the nature of both the elementary building blocks and the

interactions in these biological systems21,22.

Network approaches have been applied to a variety of biological systems, including

protein-interaction and metabolic networks18–20. The surprising discovery was that these

systems share many large-scale characteristics, although the nature of their nodes and the

interactions between the nodes are very different. The most compelling such similarities

are their small-world nature, large clustering, and heavy-tailed connectivity distribution19.

However, the majority of network analyses have focused on the topological properties of

these systems and not taken dynamics into account.

Flux balance analysis (FBA) is a computational method based on linear programming

that takes as input a metabolic network in the form of a list of chemical reactions, a set

of constraints on these reactions, and an objective function. Assuming that the linear

problem is feasible, FBA will return predicted metabolic reaction turn-over rates, or fluxes,

corresponding to an optimal utilization of the metabolic network with respect to the chosen

goal function. FBA thus provides a tool to extend complex network analysis of metabolic

networks from a purely topological approach to also consider dynamic effects. Note that,

while the majority of flux balance analyses have been conducted by implementations of

the simplex algorithm23, I will discuss metabolic activity patters resulting from an interior-

point (IP) algorithm24. For systems with a unique optimal solution, the two approaches will

naturally yield the same answer. However for systems where the optimal state is degenerate,

such as metabolic networks, the simplex algorithm typically returns an optimal solution with

a small number (although not the minimal number) of non-zero reaction fluxes. In contrast,

the IP algorithm will return an optimal solution with the largest possible number of non-

zero fluxes. This distinction is important for the systematic calculation of metabolic activity

patterns, which is the focus of this work.
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II. OPTIMIZATION AND METABOLIC FLUXES

A. The flux balance method

The flux-balance method is based on the three basic assumptions that can briefly be

stated as: (i) cellular metabolism is in a steady state, (ii) mass is conserved, and (iii)

metabolic reaction fluxes optimize a goal function on the network25. The first hypothesis is

motivated by the dire lack of information on kinetic parameters inside a cell. By assuming a

steady state, it is possible to formulate the problem without appealing to time-derivatives,

consequently avoiding kinetic parameters altogether. The trade-off is that the problem has

now become underdetermined. The third hypothesis breaks the stalemate by allowing the

question to be formulated as an optimization problem. The goal function to be maximized is

typically chosen to be cellular growth rate, as competition for resources and evolution selects

for fast growing organisms in many natural and laboratory situations. However, alternative

objective functions such as maximal ATP production, or minimization of flux through a

given pathway have also been investigated25,26.

To formulate the flux-calculation problem more succinctly, the mass conservation con-

straint is expressed as
d[Ai]

dt
=

n∑

j=1

Sijνj, (1)

where [Ai] is the concentration of metabolite i, νj is the unknown flux rate of reaction j, and

Sij is the stoichiometric coefficient of metabolite i in reaction j. For example, if the chemical

reaction j was A+2 B → C, the stoichiometric coefficients would be SA,j = −1, SB,j = −2,

and SC,j = 1, while the coefficients SX,j = 0 for all other metabolites X. Applying the

steady-state approximation to Eq. (1), the linear problem is typically underdetermined, as

there usually are more metabolic reactions that metabolites, m > n.

The FBA approach can be formulated as a standard form linear program

min{cT ν : Sν = b, ν ≥ 0}, (2)

where S is the m × n stoichiometric matrix, c, ν ε R
n, b ε R

m. The vector c corresponds to the

goal function, commonly chosen to correspond to biomass, and b represents flux constraints,

including the environmental availability of chemicals and nutrients. I will assume that a

strictly positive, feasible solution exists. Further details are available in e.g. Refs. 25–27.

4



There is ample experimental evidence that the FBA methodology is biologically relevant.

For instance, it is possible to simulate gene knockouts by computationally removing genes

with products (enzymes) that participate in metabolic processes. In the case of the model

of H. pylori metabolism, the predicted growth phenotypes (being characterized as “viable”

or “lethal”) agree with experimental results in 60% of the tested cases28. The results for the

E. coli15 and S. cerevisiae17 metabolic networks are even more compelling, with agreement

rates of 86% and 83% respectively. It is also possible to experimentally determine transport

fluxes (uptake or production of metabolites and chemicals from the environment) using

batch cultivation of the organism29 or a chemostat. For batch growth of E. coli, a direct

comparison of predicted and measured uptake flux values of acetate and oxygen as well as

cellular growth rates, had an average error of only 5.8%, while using succinate as nutrient

source instead of acetate resulted in an average error of 10.7%29.

Since the goal function of choice for the FBA method is maximal cellular growth rate, it is

important to be aware of underlying assumptions in making this choice. Arguably the three

most important assumption are that, (i) the organism is functioning optimally, that (ii) it is

in the exponential growth phase (the cellular population doubles at regular intervals), and

that (iii) the environment is not changing. Carefully conducted experiments on wild-type and

mutant E. coli cells kept in the exponential growth phase with a stable nutrient source have

demonstrated that both wild-type and mutant cellular populations were initially operating

in a sub-optimal metabolic state relative to the given nutrient conditions30,31. However, after

undergoing adaptive evolution over a few hundred generations while keeping the nutrient

environment stable, the end-point cellular populations were well characterized by FBA using

maximal growth as the goal function30,31.

B. Metabolic reaction activity

The majority of FBA investigations of metabolic networks have implemented optimization

algorithms based on the simplex method23 (Ref 32 is an exception). The simplex method

evaluates the objective function along the vertices of the feasible flux cone in such a way

that the objective function never decreases in value. However, the optimal solution is highly

degenerate for these metabolic models33,34. The optimal flux states generated by the simplex

method contain a low number of non-zero reaction fluxes (determining the minimal number
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of reactions needed for sustaining growth is a mixed-integer linear problem35). Consequently,

it is possible that metabolic reactions determined to have zero flux in one optimal solution

by the simplex method could in fact carry a non-zero flux in an alternative optimal state.

An interior-point linear programming algorithm24, however, will find optimal solutions with

the maximal number of reactions active since it traces through the interior of the flux cone,

rather than along the flux-cone vertices. To consistently determine all the instances when

the flux of a given reaction may be non-zero in the optimal state, it is hence necessary to

implement an IP optimization approach.

A metabolic reaction i is defined as being active if it carries a non-zero flux. By changing

the environmental conditions (i.e. the boundary constraint vector b), the whole-network

optimal flux patterns shift to accommodate the new constraints. This flow-change is ac-

complished on the individual reaction level according to two mechanisms36 . Reaction flux

νi either displays flux-plasticity by adjusting its flux magnitude, or it displays structural-

plasticity by going from an active (inactive) to an inactive (active) state. Sampling a large

number N of possible environments, it is thus possible to estimate the activity fraction of a

reaction i as qi = Ni/N , where Ni is the number of environments for which i carried a non-

zero flux. In the following, I will investigate the properties of the distribution of activities

P (q) and its possible biological implications.

Implementing the FBA approach for the metabolic models of the bacteria H. pylori28

and E. coli15, and the yeast S. cerevisiae17, the calculated metabolic activity in response

to N = 30, 000 different boundary conditions demonstrated that there exists a metabolic

core; a set of metabolic reactions that are active in all environments (qi = 1 for the core

reactions)36. The metabolic core is dominated by reactions that, on inhibition, renders the

cell incapable of growth. Additionally, analysis of mRNA expression levels of the metabolic

core enzymes show that they are highly synchronized and have significantly elevated half-life

times36. Consequently, the set of q = 1 reactions may serve as a starting point in the search

for new antimicrobial approaches36.

In the following, I will compare the activity patterns obtained from calculating optimal

fluxes for the H. pylori, E. coli, and S. cerevisiae metabolic models using both a simplex-

based routine37 and an interior-point predictor-corrector linear programming package38. For

both methods, N = 30, 000 randomly selected optimal conditions36 were sampled and used

as basis for the analysis. Briefly, each environmental condition is simulated by assigning
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a fixed flux value ν ε [0, νmax] to all the uptake-reaction fluxes, and we only analyze the

conditions for which the optimal goal function (maximal cellular growth rate) is non-zero,

using vmax = 20. Consequently, each condition potentially contains all carbon sources (albeit

at varying accessibility) the cellular models are capable of extracting from the environment.

The interior-point algorithm generates flux distributions that potentially are qualitatively

different from those of the simplex algorithm. Fig. 1 shows the calculated flux distribution

for H. pylori, E. coli, and S. cerevisiae using an IP method38. The optimal flux distributions

are in close agreement with observations from simplex-based calculations36,39. However, the

activity pattern is distinctly different for the two approaches: From the previous discussion

of the general properties of the simplex and the IP methods, it is expected that the IP flux

distributions contain a larger number of active reactions. Using the simplex algorithm, the

H. pylori average activity level 〈q〉 =
∑

qiP (qi) for the metabolic system is 〈q〉 = 0.61, while

the IP approach yields the significantly higher activation of 〈q〉 = 0.74. Similarly, there is a

marked difference between the reaction activation levels for the simplex and the IP results

in E. coli with 35% vs. 76%, and in yeast with 20% vs. 35% over the sample set.

The average activity level per condition 〈q〉 gives us insight into the overall network

activity and the comparison between the simplex and the IP results sheds light on potential

metabolic pathway redundancy. In Fig. 2, I show the distribution PS(q) of the activity

values q for the three metabolic networks using simplex optimization. The “U”-shape of

PS(q), with maxima at q ≈ 0 and q ≈ 1 and very low activity levels for intermediate values

suggests an approximate binary classification of the reactions, where the majority are either

members of the frequently activated or the rarely activated reaction sets. Note that the

right-hand most bins in each panel include qε(0.9, 1], whereas the metabolic core is strictly

q = 1 reactions.

Fig. 3 shows the distribution of reaction activities PIP (q) when using IP linear program-

ming. Not surprisingly, the distribution is shifted towards larger q-values. However, the

PIP (q) distribution is now trimodal for H. pylori, and arguably so for E. coli, with the third

peak appearing at activity values of q = 0.55 and q = 0.75 for the H. pylori and the E. coli

models respectively. Consequently, the activity patterns generated by the IP optimization

uncovers a set of metabolic reactions in the bacterial metabolism that are intermittently

activated. The activity pattern for the S. cerevisiae model has also shifted towards larger

activity values, while the shape of the distribution is still bimodal.
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C. Metabolic activity and the high-flux backbone

It was recently demonstrated that the metabolic fluxes not only are highly heterogeneous

on the organism level (Fig. 1), but also on the level of single metabolites39. This suggested

that for most metabolites, it is possible to identify two reactions that dominate the produc-

tion and consumption of the metabolite, respectively. A simple algorithm can be constructed

to automatically uncover the locally maximal flow-paths, consisting of the following steps:39

1. For each metabolite, remove all reactions but the one carrying the largest incoming

flux (production) νmax
in and the one carrying the largest outgoing flux (consumption)

νmax
out .

2. For metabolites A and B being educt and product, respectively, in reaction R. Metabo-

lites A and B, and reaction R are part of the HFB if νR = νmax
A,out and νR = νmax

B,in .

3. For metabolites A and B being product and educt, respectively, in reaction R. Metabo-

lites A and B, and reaction R are part of the HFB if νR = νmax
A,in and νR = νmax

B,out.

The resulting sub-network corresponds to the cellular high flux backbone (HFB) of the

metabolism, whose identity is specific to the given growth condition. As demonstrated in

Ref. 39, the HFB is dominated by a giant connected component with a star-like topology

which includes almost all metabolites produced under the given growth condition, and only

a few pathways are disconnected. Although these pathways are parts of the HFB, their end

product serves only as the second most important source (or less) for some other metabolite.

The HFB may serve as a novel network reduction algorithm that uncovers the parts

of a metabolic network most actively involved in mass transport. It is highly non-trivial

that groups of individual HFB reactions for the most part overlap with the traditional,

biochemistry-based partitioning of cellular metabolism: e.g. for a simple oxic environment

with glucose as the single carbon source, all metabolites of the citric acid cycle of E. coli

are uncovered. Additionally, a considerable fraction of other important pathways are also

uncovered, such as those involved in histidine-, murein- and purine biosynthesis. However,

while the detailed nature of the HFB depends on the particulars of the growth condition, the

HFB captures the subset of reactions that dominates metabolic activity for this condition.

As such, it offers a complementary approach to elementary flux mode and extreme pathway

analysis40.
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As the flux of the individual metabolic reactions sensitively depends on the growth con-

ditions, it is necessary to investigate the response of the HFB to changes in the environment

conditions. Analysis of the relationship between flux magnitude and HFB participation in

Ref. 39 suggests that most reactions in the high flux region undergo noticeable flux changes,

while reactions within the intermediate and low flux regions remain practically unaltered.

Fig. 4 shows distribution of HFB participation f of the individual reactions over the dataset:

For each organism, the HFB was separately generated for every condition, and the frequency

with which a reaction i participated in the HFB is calculated as fi = Mi/N . Here, Mi is the

number of times reaction i was a part of the HFB, and N is the number of environments

sampled. The average overall HFB participation is 〈f〉 = 0.46, 0.40, and 0.28 for H. pylori,

E. coli, and S. cerevisiae, respectively. Note that, the shape of the three distributions for

P (f) (Fig. 4) is similar to that of the activity PS(q): The metabolic reactions can be ap-

proximately divided into two groups; the first group consists of reactions carrying the locally

maximal fluxes almost all the time, while the other group rarely contributes to the HFB.

The results of Fig. 4 suggest that there is a correlation between HFB participation fi and

the reaction activity qi. Fig. 5 shows 〈f(q)〉 for each of the metabolic networks. The best

fit to the function y = ax is shown as dashed lines, with a = 0.59, 0.49, and 0.76, while the

Pearson correlation of the pairs (qi, fi) is r = 0.56, 0.50, and 0.72 for H. pylori, E. coli, and

yeast, respectively. The solid line with unit slope serves as a guide for the case of always

HFB membership when active. Consequently, the slopes for the different organisms indicate

the average propensity of reactions to be a part of the HFB for that organism.

III. ACTIVITY PATTERNS OF THE CENTRAL CARBON METABOLISM

Cellular metabolic functions and pathways are traditionally described in terms of either

being catabolic, which primarily are related to the degradation of compounds into 12 pre-

cursor metabolites, and anabolic, the construction of cellular building blocks from the 12

precursors41. The central carbon metabolism is the collective description of the enzymatic

reactions that synthesize these 12 precursors. Consequently, it may not be surprising that

most organisms possess nearly complete copies of this “metabolic engine.” The central car-

bon metabolism is further divided into the following four pathways: (i) Glycolysis (often

called the Embden-Meyerhof-Parnas (EMP) pathway), which converts glucose-6-phosphate
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(G6P) to pyruvate (PYR); (ii) the Tricarboxylic Acid (TCA) cycle (often also calle the citric

acid cycle), which, in the presence of oxygen, converts acetyl-coA (AcCoA) to two carbon

dioxid (CO2) molecules, and in combination with glycolysis can produce up to 38 molecules

of ATP (adenosine triphosphate) per glucose. Hence, the TCA cycle generates most of the

energy needed for cellular growth; (iii) the Pentose-Phosphate (PP) pathway, which oxidizes

G6P to CO2; (iv) many bacteria also contain the Entner-Doudoroff (ED) pathway, which

either may serve as a backup for the EMP pathway, or, as in a variety of Gram-negative

bacteria such as the Pseudomonads, replaces it altogether.

Fig. 6 shows a simplified schematic of the metabolic reactions in the central carbon

metabolism. The four major pathways have been highlighted. The activity fraction qi is

printed next to each of the enzymatic reactions, with the activity of H. pylori on top (blue),

E. coli in the middle (green) and S. cerevisiae on the bottom (red). Missing enzymatic

capability of an organism is indicated with “N/A”.

The majority of the reactions in the EMP pathway are utilized in all the environments

for the three organisms. However, for gluconeogenesis (the production of glucose from other

carbon compounds such as pyruvate (PYR) or amino acids), which simply put is glycolysis

backwards, the fructose bisphosphatase reaction (EC 3.1.3.11) FDP + H2O → F6P + PI is

used in only 1% of the sampled yeast conditions, 76% of the E. coli conditions and in the

vast majority (93%) of the H. pylori conditions.

As expected on grounds of its biochemical importance for the generation of a cell’s energy

currency, ATP, many of the reactions in the TCA cycle have activity levels close to unity.

However, the reactions of the glyoxylate shunt (depicted in the center of TCA cycle in

Fig. 6) show a varied activity pattern. One of the main purposes of the glyoxylate bypass

is to replenish intermediates, such as dicarboxylic and tricarboxylic acid, which are usually

provided by the TCA cycle. In Fig. 6, the glyoxylate bypass consists of the two reactions

(i) ICIT → GLX + SUCC, and (ii) AcCoa + GLX + H20 → Coa + H + MAL. Although

frequently used by H. pylori and E. coli, only reaction (i) is active in S. cerevisiae, with

the humble activity level of q = 0.01. This difference in use pattern is likely caused by the

much enhanced plasticity of the yeast metabolic network, which is related to its significantly

larger size36.

While the Pentose-Phosphate pathway has a highly uniform and almost identical use

pattern among the three organisms, the ED pathway use is different in E. coli and H. pylori.
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Unlike the EMP pathway, which has a theoretical net yield of two molecules of ATP per

glucose, the ED pathway only results in one ATP. In E. coli, the ED pathway is always

in use, while the H. pylori activity level is 61%. This result is particularly interesting, as

it highlights a dramatic difference between the predicted optimal flux solutions obtained

from simplex-based algorithms, and those obtained from interior-point methods: The ED

pathway is never utilized in simplex solutions for the unperturbed E. coli model. Recent

experimental flux measurements conducted on the E. coli central carbon metabolism using

GC-MS with 13C-labeled substrates42 found that a significant flux passed through the ED

pathway for wild-type cells. Although it is currently not known if or when flux distributions

resulting from simplex-based methods are biologically more relevant than those from IP-

based methods, this observation suggests that, using current technologies, it is possible to

devise experiments to address this question.

IV. CONCLUSION

Successful metabolic function is central to the survival and proliferation of all cellular

organisms. Microorganisms such as bacteria have developed an astonishing capability to

utilize the often scant availability of nutrients in their environment. In this paper, I have

presented results on metabolic activity patterns of three organism-level metabolic networks

using the flux-balance optimization framework. In contrast to the majority of previous

studies of cellular metabolic networks, the linear programming algorithm is based on an

interior-point point method and not the simplex algorithm. This has made it possible to

systematically investigate individual reaction activity patterns despite the large number of

degenerate optimal solutions.

The metabolic flux distribution on the three metabolic networks is heavy-tailed, con-

sistent with previous results based on simplex linear programming and the non-optimal

hit-and-run method39. The reaction activity pattern suggests that the majority of the reac-

tions are activated in an approximately binary fashion where they are either almost always

in use or very rarely carry flux. The activity qi of a reaction shows an interesting correlation

with the reaction’s participation fi in the metabolic high-flux backbone, with a Pearson cor-

relation between qi and fi for S. cerevisiae of r = 0.72. When analyzed in their biochemical

context, the calculated reaction-activity patterns offer further insight into the organization
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of metabolism.

However, the organism-level metabolic networks are numerically very challenging. Al-

though interior-point optimization methods should return strictly complementary solutions,

numerical instabilities result in degenerate solutions43 where some primal and dual vari-

able pairs are returned as zero or below the accuracy threshold. The effect of this inherent

numerical difficulty of the cellular metabolic network models is that the IP method may

underestimate the number of possible active reactions. Recent advances in optimization al-

gorithms, in particular the balanced solution approach44, offer promising avenues for further

studies.

Acknowledgments

The author is grateful to Allen Holder for introducing him to the interior point opti-

mization approach. This work was performed under the auspices of the U.S. Department of

Energy by University of California, Lawrence Livermore National Laboratory under Con-

tract W-7405-Eng-48, and supported by the LDRD program at Lawrence Livermore National

Laboratory.

∗ Electronic address: almaas@llnl.gov

1 A. Pandey and M. Mann, Nature 405, 837 (2000).

2 H. Caron, B. van Schaik, M. van der Mee, F. Baas, G. Riggins, P. van Sluis, M. Hermus, R. van

Asperen, K. Boon, P. Voute, et al., Science 291, 1289 (2001).

3 C. Burge, Nat. Genet. 27, 232 (2001).

4 S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, Nat. Genet. 31, 61 (2002).

5 N. Guelzim, S. Bottani, P. Bourgine, and F. Kepes, Nat. Genet. 31, 60 (2002).

6 N. M. Luscombe, M. M. Babu, H. Y. Yu, M. Snyder, S. A. Teichmann, and M. Gerstein, Nature

431, 308 (2004).

7 A. Ma’ayan, S. L. Jenkins, S. Neves, A. Hasseldine, E. Grace, B. Dubin-Thaler, N. J. Eung-

damrong, G. Weng, P. T. Ram, J. J. Rice, et al., Science 309, 1078 (2005).

12



8 C. Stark, B. J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers, Nucleic Acids

Res. 34, D535 (2006), URL http://www.thebiogrid.org.

9 S. McCraith, T. Holtzman, B. Moss, and S. Fields, Proc. Natl. Acad. Sci. USA 97, 4879 (2000).

10 P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lockshon,

V. Narayan, M. Srinivasan, P. Pochart, et al., Nature 403, 623 (2000).

11 T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, Proc Natl Acad Sci USA

98, 4569 (2001).

12 A. C. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J. M. Rick,

n. A. M. Micho, C. M. Cruciat, et al., Nature 415, 141 (2002).

13 Y. Ho, A. Gruhler, A. Heilbut, G. D. Bader, L. Moore, S. L. Adams, A. Millar, P. Taylor,

K. Bennett, K. Boutilier, et al., Nature 415, 180 (2002).

14 P. D. Karp, C. A. Ouzounis, C. Moore-Kochlacs, L. Goldovsky, P. Kaipa, D. Ahren, S. Tsoka,

N. Darzentas, V. Kunin, , et al., Nucleic Acids Res. 19, 6083 (2005), URL http://www.biocyc.

org.

15 J. S. Edwards and B. O. Palsson, Proc. Natl. Acad. Sci USA 97, 5528 (2000).

16 C. H. Schilling, M. W. Covert, I. Famili, G. M. Church, J. S. Edwards, and B. O. Palsson, J.

Bacteriol. 184, 4582 (2002).

17 N. C. Duarte, M. J. Herrgard, and B. O. Palsson, Genome. Res. 14, 1298 (2004).

18 S. H. Strogatz, Nature p. 268 (2001).

19 R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).

20 M. E. J. Newman, SIAM Review 45, 167 (2003).

21 P. W. Anderson, Science 177, 393 (1972).

22 H. Kitano, Nature 420, 206 (2002).

23 G. B. Dantzig, Linear Programming and Extensions. (Princeton University Press, Princeton,

New Jersey, 1963).

24 Y. Ye, Interior point algorithms : theory and analysis. (John Wiley & Sons, New York, NY,

1997).

25 K. J. Kauffman, P. Prakash, and J. S. Edwards, Curr. Opin. Biotechnol. 14, 491 (2003).

26 N. D. Price, J. L. Reed, and B. O. Palsson, Nat. Rev. Microbiol. 2, 886 (2004).

27 H. P. J. Bonarius, G. Schmid, and J. Tramper, Trends Biotechnol. 15, 308 (1997).

28 I. Thiele, T. D. Vo, N. D. Price, and B. O. Palsson, J. Bact. 187, 5818 (2005).

13



29 J. S. Edwards, R. U. Ibarra, and B. O. Palsson, 19, 125 (2001).

30 R. Ibarra, J. Edwards, and B. Palsson, Nature 420, 186 (2002).

31 S. Fong and B. Palsson, Nature Genet. 36, 1056 (2004).

32 S. Bell and B. Palsson, Comput. Chem. Eng. 29, 481 (2005).

33 S. Lee, C. Phalakornkule, M. M. Domach, and I. E. Grossmann, Comp. Chem. Eng. 24, 711

(2000).

34 J. L. Reed and B. O. Palsson, Genome Res. 14, 1797 (2004).

35 A. P. Burgard, S. Vaidyaraman, and C. D. Maranas, Biotechnol. Progr. 17, 791 (2001).

36 E. Almaas, Z. N. Oltvai, and A.-L. Barabási, PLoS Comput. Biol. 1, e68 (2005).

37 A. Makhorin, GLPK – GNU Linear Programming Kit. (2006), URL http://www.gnu.org/

software/glpk/glpk.html.

38 J. Czyzyk, S. Mehrotra, M. Wagner, and S. Wright, PCx User Guide (Version 1.1), Techical

Report OTC 96/01, Optimization Technology Center, Argonne National Laboratory (1997),

URL http://www-fp.mcs.anl.gov/otc/Tools/PCx/.
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FIG. 1: Distribution of metabolic fluxes in the bacteria H. pylori and E. coli, and the yeast S.

cerevisiae from optimization of growth using an interior-point linear programming method38. These

results are consistent with the simplex-based optimal flux distribution of Refs. 39. The dashed

line serves as a guide with power-law exponent α = 1.5.
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FIG. 2: Distribution of the reaction activity q for the simplex optimization approach. The activity

of reaction i is qi = Ni/N , the number of times reaction i carries a non-zero flux over the number

of sampled environments. The “U”-shape of the H. pylori, E. coli and S. cerevisiae activity dis-

tributions suggests that there exists two types of reactions, independent of the metabolic network,

in simplex-optimal flux states: a reaction is either almost always used or mostly inactive. The

number of reactions in the first interval in panel (c) is 866.
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FIG. 3: Distribution of the reaction activity q for the interior-point (IP) optimization approach.

Using an IP optimization method, reaction activity patterns are more complex compared to the

simplex results (Fig. 2). The number of reactions in the first interval in panel (c) is 677.
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FIG. 4: Distribution of the high-flux backbone participation f for the IP optimization approach.

The HFB participation of reaction i is fi = Mi/N , the number of times reaction i is member

of the HFB over the number of sampled environments. The approximate “U”-shape of the H.

pylori, E. coli and S. cerevisiae P (f) distributions suggests that there exists two types of reactions,

independent of metabolic network: a reaction either almost always or almost never carries a locally

maximal flux. The number of reactions in the first interval in panel (c) is 815.
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FIG. 5: Relation between average activity q and average high-flux backbone membership f . For

each of the N = 30, 000 sampled conditions we construct the HFB, and fi is the frequency with

which reaction i is an HFB member. The dashed lines indicate the best linear regression of form

y = ax with a = 0.59, 0.49, and 0.76 for H. pylori, E. coli, and S. cerevisiae respectively, and the

solid line (a = 1) serves as a guide.
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FIG. 6: A schematic of the central carbon metabolism, including Embden-Meyerhof-Parnas (EMP,

blue background), the Tricarboxylic Acid Cycle (TCA, red), the Pentose-Phosphate pathway (PP,

green), and the Entner-Doudoroff pathway (ED, yellow). The activity qi is written next to each

reaction, where the upper, middle, and lower numbers correspond to H. pylori (blue), E. coli

(green), and S. cerevisiae (red) respectively. “N/A” indicates that an organism lacks that enzymatic

capability.
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