
UCRL-PROC-235067

Identify Dynamic Network
Modules with Temporal and
Spatial Constraints

R. Jin, S. McCallen, C.-C. Liu, E. Almaas, X. J.
Zhou

September 28, 2007

RECOMB 2008
Singapore, Singapore
March 30, 2008 through April 2, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71316522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Identify Dynamic Network Modules with Temporal and Spatial Constraints

Ruoming Jin1, Scott McCallen1, Chun-Chi Liu2, Eivind Almaas3?, and Xianghong Jasmine Zhou2

1 Department of Computer Science, Kent State University, Kent, OH, USA
2 Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA

3 Bioscience and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA

Abstract. Despite the rapid accumulation of systems-level biological data, understanding the dynamic nature of
cellular activity remains a difficult task. The reason is that most biological data are static, or only correspond to
snapshots of cellular activity. In this study, we explicitly attempt to detangle the temporal complexity of biological
networks by using compilations of time-series gene expression profiling data. We define a dynamic network module
to be a set of proteins satisfying two conditions: (1) they form a connected component in the protein-protein interac-
tion (PPI) network; and (2) their expression profiles form certain structures in the temporal domain. We develop the
first efficient mining algorithm to discover dynamic modules in a temporal network, as well as frequently occuring
dynamic modules across many temporal networks. Using yeast as a model system, we demonstrate that the majority
of the identified dynamic modules are functionally homogeneous. Additionally, many of them provide insight into
the sequential ordering of molecular events in cellular systems. We further demonstrate that identifying frequent
dynamic network modules can significantly increase the signal to noise separation, despite the fact that most dy-
namic network modules are highly condition-specific. Finally, we note that the applicability of our algorithm is not
limited to the study of PPI systems, instead it is generally applicable to the combination of any type of network and
time-series data.

? EA’s work was performed under the auspices of DoE by University of California, LLNL under Contract W-7405-Eng-48, with
support from the LDRD office

1 Introduction
Cellular systems are highly dynamic and responsive to cues from the environment. Cellular function and
response patterns to external stimuli are regulated by a complex web of diverse molecular interactions, such
as protein-protein interactions, protein-DNA interactions, and metabolic processes. Despite the availability
of large-scale biological network data [25, 18, 6, 7], gaining a system-level understanding of the dynamic
nature of cellular activity remains a difficult and, until recently, a much overlooked task. Since there typically
is little direct information available on the temporal dynamics of these network interactions, the majority
of molecular-interaction network modeling and analysis has been solely focused on static properties. For
example, a protein-protein interaction (PPI) network obtained from yeast two-hybrid experiments can be
viewed as a comprehensive graph of the edges (interactions) that eventually may occur under the set of
tested conditions. However, it is not guaranteed that two adjecent edges would ever occur simultaneously,
and thus, that identified network modules and motifs will correspond to functionally relevant units. While a
series of studies have been aimed at identifying modules in PPI networks [21, 2, 23], the networks in their
analysis have all been regarded as static.

In this study, we attempt to detangle the temporal complexity of biological networks by identifying
dynamic modules, consisting of a set of proteins that coexist both spatially and temporally. We will use
the PPI network as the spatial constraints. We estimate temporal characteristics of a network component
by using compilations of time-series gene expression profiling data, since accurate temporal parameters
are not yet available for PPI systems. A similar approach has been employed to study the dynamic protein
complex formation during the cell cycle [3, 15]. In order to measure the similarity between two time-series
gene-expression profiles [1, 22], we have implemented time-warping dynamic programming. A significant
advantage of this method is that it identifies the best local alignment of segments in two time-series pro-
files. Consequently, it can identify time-shifted and local similarity patterns which are often overlooked by
computing the Pearson’s correlation of two entire profiles. We represent the local alignment of two profiles
as a range pair (or interval pair), denoted as [s1, e1]:[s2, e2], where s1 and s2 are the starting time points,
and e1 and e2 are the end time points of the alignment. Since two proteins may interact over different time
segments in a long time-series and they may show varying level of cooperativity in those time segments, we
may also consider suboptimal alignments of two profiles. In this case, the temporal expression similarity of
two interacted proteins can be represented as a list of range pairs. Given a PPI network, we add the local
alignment information from the time-series gene expression data, and refer to the network as a temporal
network.

On a temporal network, we can discover how two proteins’ activities correlate with each other over
time. More importantly, for multiple proteins we can identify when a dynamic module is activated in the
PPI network. We define a dynamic network module to be a set of proteins which satisfy two conditions: (1)
they form a connected component in the PPI network; and (2) their expression profiles form certain struc-
tures (see below) in the temporal domain. An example dynamic module satisfying these constraints could
consist of all proteins which time-series local alignments overlap over a common time period. That is, all
protein interactions in this example module are synchronized to perform their functions. Another interesting
example corresponds to the case of activity cascades. Here, a dynamic module is triggered by one or a small
number of proteins that activate their network neighbors. These in turn, may also propogate the signal fur-
ther through neighbor activation. We introduce an event model to describe the temporal relationship among
proteins that participate in such activation cascades. Simply stated, we use a directed edge to represent how
the activity of a protein may invoke that of another protein, and the direction is determined by the range-pair
of their time series alignment, i.e. the beginning aligned time point of the triggering protein is likely to be
earlier than that of the triggered protein.

Given the rapid increase in time-series microarray data available in the public domain, we have further
extended our dynamic network analysis to uncover network modules occuring frequently under different
time-series conditions. This approach provides two advantages: Since noise is a common problem in all
high-throughput data (false-positive or false-negative determination of interactions), we can enhance the

2

signal to noise separation by leveraging our identified, frequenly occurring signals). Also, by combining
information about the experimental conditions associated with each time series data, e.g. heat-shock, acid
shock or gene disruption, we can explore the condition-specificity of dynamic modules.

Although many graph algorithms are available to perform network analysis, to our knowledge, no al-
gorithm has been developed to identify network patterns while accounting for temporal constraints. In this
study, we take the first step in this direction by developing efficient mining algorithms to discover dynamic
modules in a temporal biological network, as well as frequent dynamic modules across multiple temporal
networks. We have performed detailed experimental testing while using yeast as a model system. Our results
show that a large portion of the identified dynamic motifs are functionally homogeneous. In addition, many
of those modules provide insight into the sequential order of molecular events in cellular systems. Further-
more, a majority of the discovered modules are not densely connected, yet they comprise functional units.
Such modules are very difficult to identify based on the PPI network alone. Finally, we have demonstrated
that identifying frequent dynamic network modules can significantly enhance the signal to noise separation,
despite the fact that most dynamic network modules are highly condition-specific. We are well aware of
the limitation of microarray data in measuring protein activities, and the incompleteness of protein-protein
interaction data. While using those data as an example, we want to emphasize that our algorithm is generally
applicable to combining any types of network and time-series data.

2 Problem Definition
We represent the PPI network as a graph G = (V,E), where proteins correspond to the vertex set V , and
the protein-protein interactions are recorded as the edge set E. Each vertex (protein) is associated with a
gene expression time-series, formally Ti = (xi

1, x
i
2, · · · , x

i
n). The temporal network is then the graph G

combined with the time series similarity information between interacting proteins.
Here, we use the time-warping dynamic programming algorithm [1, 22] to align two time-series expres-

sion profiles, and use a list of range pairs to represent the resulting alignments for each interacted protein
pair. The range pair list is denoted as {[i1, i′1] : [j1, j

′
1], [i2, i

′
2] : [j2, j

′
2] · · · [ik, i

′
k] : [jk, j

′
k], · · ·}, where il, jl

are the starting points of the l-th aligned interval pair of an interacted protein pair, and i ′l, j
′
l are the end

points. Consequently, the time series subsequence between il and i′l of one protein is very similar to the time
series subsequence between jl and j′l of the other protein. Given this, we use GR = (V,E,R) to denote the
temporal biological network, where R records the list of similar range pairs for each edge. In addition, we
drop the edges (the interacted protein pairs) from E if they do not have any local similar range pairs. We
will now focus on performing the dynamic module discovery on the temporal biological network.
2.1 Dynamic Module Discovery
As previously mentioned, the module discovery approach in this study is bound by both spatial and temporal
constraints. Here, the spatial constraints refer to the physical interactions between proteins. In terms of
temporal constraints, for each vertex in the module, we require that the time range pairs associated with all
adjacent edges to this vertex shall share a common time interval of minimal length d. Note that our definition
of temporal constraints is not unique. For instance, we may require all the edges in the modules to share a
common time interval, or we may require that all the time intervals appear within a specified time period.
Due to space limitation, we will only focus on the first variant. However, the techniques we have developed
can easily be modified and applied to a wide variety of alternative definitions of temporal constraints. Given
this, we formally define the dynamic module as follows.
Definition 1 Given a temporal network GR = (V,E,R), a dynamic module is an induced and connected
subgraph G[S] for a vertex set S ⊆ V with a range function r, which assigns each edge e = (vi, vj) ∈
E(G[S]) with a range pair r(e) = (r(e)[vi] = [yi, y

′
i] : r(e)[vj] = [yj, y

′
j]) ∈ R(e), and all the intervals

specified by r satisfy the following temporal constraints: ∀v ∈ S, |∩e∈E(G[S])∧v∈er(e)[v]| ≥ d. The dynamic
module is denoted as Gr[S].

Figure 1(a) lists an example of a dynamic module with the choice of temporal constraint parameter
d = 2. Note that the range pairs on the outside of the subgraphs represent the local similarity alignment,
while the ranges on the inside of the subgraphs represent the intersection of those alignments.

3

Fig. 1. A Dynamic Module and its Event Model

2.2 Event Model and Frequent Dynamic Module
The range pairs in the dynamic module provide the sequential ordering of activities between edge-connected
vertices. Specifically, if one interval in the range pair appears earlier than the other one, it could be possible
that the activity of the vertex (protein) associated with the first interval induces the activity of the other
vertex. That is, the sequential order obtained could facilitate causal inference, although causal inference
requires much more information and is beyond the scope of this work. In the following we will use a
directed edge to represent the sequential order between two vertices in the dynamic module. Specifically, let
[tA1, tA2] : [tB1, tB2] be the interval pair between protein A and B. If tA1 − tB1 ≥ k, we build a directed
edge from protein A to B; if |tA1− tB1| < k, we build an undirected edge between A and B, where k serves
as a smoothing parameter against noise. This new representation of the dynamic module is referred to as
the event model module. For a dynamic module Gr[S], we denote its corresponding event model module as
Ge[S]. Figure 1 (b) shows the event model for the 3-vertex dynamic module of Figure 1(a).

Next we introduce the concept of the frequent dynamic module in a biological network with multiple
(microarray) time course data. In other words, for a given PPI network G = (V,E), we can have several
different range functions, such as R1, R2, · · · , Rm, each extracted from different time course datasets. For
each temporal network GRi and a given set of vertices, we can then produce a set of dynamic modules,
Gr′

1 [S], · · · , Gr′
k [S]. We are interested in uncovering substructures appearing frequently in these dynamic

modules, that is, dynamic events frequently occurring in multiple, different time-course datasets.

Definition 2 Frequent Dynamic Motif: Given a support θ and a PPI network graph G = (V,E,R) with
m range-pair functions, R1, · · · , Rm from m time course datasets, and a set of vertices S ⊆ V . Let Gr′

1 [S],
· · · , Gr′

k [S] be the dynamic modules occurring in GR1 , · · · , GRm , and Ge′
1 [S], · · · , Ge′

k [S] be the corre-
sponding event motif modules. A frequent dynamic module is thus defined to be the subgraph which connects
all the vertices in S and appears in at least θ event-model modules out of the k possible.

In addition, in order to reduce the number of frequent dynamic modules, we introduce the maximally frequent
dynamic modules with respect to the vertex set S: a frequent dynamic modules GS of S is maximally frequent
if no other frequent dynamic modules of S contain GS as a subgraph.

3 Algorithms

3.1 Algorithm for Dynamic Module Discovery

Given a temporal network GR = (V,E,R), we aim to efficiently discover all the dynamic modules in
a temporal biological network. First, we note a couple of interesting properties of this problem: (1) The
underlying topology of the dynamic module is a connected induced subgraph G[S], where S is vertex set.
(2) Since each edge in the temporal network is associated with a list of range pairs, and each edge in
the dynamic module only has one range pair, it is straightforward that G[S] may serve as the underlying
topology of multiple dynamic modules. Hence, one may simply choose a different range pair over each
edge for the same induced subgraph in order to generate a different dynamic module. For instance, for the
case of a 3-clique where each edge contains a list of L range pairs, we may have a maximum of L3 dynamic
modules. Consequently, a major challenge of dynamic module discovery is to efficiently handle the potential
multitude of edge-range combinations, as well as the spatial and temporal constraints. We will refer to all
dynamic modules sharing the same underlying topology (G[S]) as the dynamic module group.

4

The central idea of our algorithm is as follows: We simultaneously discover all dynamic modules with
the same underlying topology (the dynamic module group) by starting from a single vertex. We recursively
enumerate the dynamic module groups in a depth-first fashion, and recursively append new vertices to the
identified dynamic module groups. In order to efficiently implement this approach, we have to specifically
consider these two challenges: 1) We need to devise an efficient scheme for handling the dynamic module
groups, as their size can be very large. For instance, in the 3-clique example, the size of the dynamic module
is L3, and explicitly keeping track of all the combinations can quickly become computationally expensive.
2) It is necessary to enumerate all dynamic module groups completely and without repetition in an efficient
manner. Note that this challenge is similar to that of enumerating all connected, induced subgraphs.

In the next section, we will introduce the two key techniques of our mining algorithm that are central
to managing the temporal and spatial constraints. We will first focus on resolving the temporal constraints
by introducing a compressed representation of the dynamic module group. Then we focus on enumeration
ordering, which not only will resolve the spatial constraints, but also avoid any redundancy.
Managing Temporal Constraints: The naive (and simple) approach to manage dynamic module groups
is to record each dynamic module individually, and each dynamic module records a range pair for each
edge. Unfortunately, this is likely rather computationally expensive, even when the lists of the range pairs
over each edge on the network is very small: Consider the example of a 10-clique, where each edge only
has 2 range pairs. For this case, the possible number of dynamic modules is 245, and each module records
(102) = 45 pairs.

Instead, we propose a novel representation for a dynamic module group, the vertex range list, which
significantly reduces memory and update costs for each dynamic module group. Intuitively, for each node,
we record all common intersection intervals from its adjacent range-pair list: If a node has degree k, the
common interval is the intersection of any k intervals, each selected from the range pair list over the k
adjacent edges. Formally, for the induced subgraph G[S], we define R(e)[v], v ∈ e to be all the intervals
associated with v and the edge e, where R(e) is the list of range pairs over e. Furthermore, we define the
join operator ⊗ over two interval list (X and Y) as follows:

X ⊗ Y = {z|z = x ∩ y, x ∈ X ∧ y ∈ Y, |z| ≥ d}

where x and y are intervals and their intersection is the interval z, and d is the temporal constraint parameter
(the common intersection is longer than d). Hence, for each node, we record R(v) = ⊗e∈E(G[S])∧v∈eR(e)[v].
Thus, the total memory cost for recording the dynamic module group of G[S] is O(

∑
v∈S |R(v)|). Using

this approach on our example of the 10-clique, we would only need to record a maximum of 10×29 intervals
for the dynamic module group.

An additional strength of this approach is that the vertex range list can be generated incrementally for
the dynamic module: Let S.R be the vertex range list representation for the existing dynamic module group
of S and let Qs be a set of new vertices. The simple procedure of Join(Qs, S) in Algorithm 1 can easily
produce the representation for the dynamic model group of Qs ∪ S.

The vertex range-list representation also facilitates a swift validation of the temporal constraints by the
following theorem.
Theorem 1 For a candidate dynamic module group of G[S], if one of its vertex v ∈ S has R(v) = ∅, then
no dynamic module in the group satisfies the temporal constraints.

Finally, we note that extracting individual dynamic modules from the group is straightforward. We start
by recursively selecting each intersection interval from every node and color the related edge using the range
pair containing the intersection interval. The dynamic module is then produced by edges in a subgraph that
are colored more than once. Unfortunately, we have to omit further details due to space constraints.
Maintaining Spatial Constraints and Enumeration Ordering: To maintain the spatial constraints, we
incrementally expand the underlying topology (the induced subgraph) through its neighbor vertices. Hence,
we have to be careful to avoid redundant enumeration. Note that this problem description can be transformed
to that of enumerating the connected, induced subgraphs.

5

Our strategy is as follows. First, we partition the vertex sets into different non-overlapped groups. As-
suming the vertex set of the network G is V (G) = {v1, v2, v3, · · · , }, the first group will include all con-
nected vertex sets containing v1; the second group includes all connected vertex sets containing v2 excluding
v1; and the third group includes all connected vertex set containing v3 while excluding v1 and v2. As a result,
two vertex sets in different groups will not be redundant. Note that each connected vertex set S corresponds
to a connected, induced subgraph G[S].

Second, we enumerate the connected vertex set within each group. We achieve this by transforming the
graph G into a tree rooted by the current working vertex vi. The h-level of the tree contains the vertex in
the graph G which has the shortest path reaching vi with length h. Clearly, to build this tree, we only need
to perform a Breadth-First Search (BFS) of the graph starting from vi. Once the tree has been constructed,
we enumerate all connected vertex sets containing vi in the following way: We start from the vertex set
containing only vi, which is in the first level of the tree ({vi} = T [1]). Second, any valid vertex set in the
next level of the tree must satisfy the condition of being the subset of the neighbors of the newly added
vertex (ensuring that connectivity of the subgraph is maintained) which appears in the next level of the tree.
Hence, we recursively append new vertices to the current vertex set. Note that the spatial constraints are
maintained for this append operation. It is straightforward to prove the completeness and non-redundancy
(that no connected vertex set is enumerated more than once) of this enumeration.

An outline of the complete discovery algorithm is given in Algorithm 1.
Optimization: We introduce two optimization techniques to reduce the mining cost. The first opti-

Algorithm 1 DynamicModuleMiner(Graph G)
1: for each v ∈ V (G) do
2: T ← GenerateBFSTree(G,v); {Generate the Breadth First Search Tree rooted by v;}
3: S ← {v}; {All the induced subgraph contains v as its first node}
4: RecursiveDMMine(S, {v}, T, 1); {Enumerate all the induced subgraph containing v}
5: G← G− v; {v is removed from G}
6: end for

Procedure RecursiveDMMine(S,N, T, h) {S: the vertex set of the induced subgraph;} {T: the BFS tree rooted by v;} {N: the vertex set
just added into S;} {h: the level of the tree currently being visited;}

7: Q← Neighbor(N) ∩ T [h + 1]; {The possible vertex set which can be added to the current subgraph}
8: for each Qs ⊆ Q do
9: S′ ← Join(Qs, S); {Adding vertex set Qs to S}

10: if S′ 6= ∅ then
11: Empty ← Output(S′); {Extract all dynamic modules from the dynamic module group recorded by the range list representation}

{Empty=TRUE: No dynamic modules}
12: if NOT Empty AND h + 1 < T.height then
13: RecursiveDMMine(S′ , Qs, T, h + 1);
14: end if
15: end if
16: end for
Procedure Join(Qs, S)
17: S′ ← Qs ∪ S;
18: ∀s ∈ S : S′.R(s)← S.R(s) {copy the range list from S to S′}
19: ∀v1 ∈ Qs : S′.R(v1)← ∅ {initialize the range to the empty set}
20: for each e = (v1 , v2) ∈ E(G) : v1 ∈ Qs ∧ v2 ∈ S do
21: S′.R(v1)← S′.R(v1) ⊗R(e)[v1]; {R(e)[v1]:all the intervals associating with v1 on the edge e}

{ Let ∅ ⊗ R(e)[v1] = R(e)[v1] for initialization of v1 range list}
22: S′.R(v2)← S′.R(v2) ⊗R(e)[v2]; {R(e)[v2]:all the intervals associating with v2 on the edge e}
23: if S′.R(v1) = ∅ OR S′.R(v2) = ∅ then
24: return ∅; {Theorem 1}
25: end if
26: end for
27: return S′;

mization step is to reduce the cost of building the BFS tree. Note that the cost of building the BFS tree is
essentially determined by the size of the connected components containing v. To reduce the total running
cost, we would like to remove the vertices which maximally reduce the size of largest connected compo-

6

nents. The following heuristic will achieve this goal: when choosing a vertex at each iteration, we always
first pick the vertex with the maximal degree. This heuristic has previously been used in a complex-network
study to break the large graph into pieces [17].

Another major cost of the algorithm is associated with choosing a valid vertex set to append to the
existing set of vertices (Line 7). This step in the algorithm requires a set intersection operation, which can
be very expensive when the sets are large. We optimize this operation by removing the explicit intersection
operation as follows: We first mark each vertex in the graph with its level of the BFS tree, i.e. the length of
its shorted path to the current root node. Second, we identify all the neighbors of vertex set N which are
marked by h+1 in the Neighbor(N) procedure. Taken together, these two steps implement the intersection
operation in Line 7: Neighbor(N) ∩ T [h + 1].

Fig. 2. Dynamic Module Discovery

Running Example: In Figure 2 we show an example of the dynamic module discovery process. For the
sake of simplicity, we only associate each edge with a single range pair. With the minimum intersection
length set to d = 2, we perform the discovery as follows. Initially the module {A,B} allows both vertices
to maintain their respective intervals. Adding D causes the local intersection of the intervals at B, changing
B’s interval to [2, 5]. Next we look at the {A,B,C} module in which all three local intervals change due to
the addition of C to {A,B}. Until this point, all local intervals satisfied the minimum intersection criterion
of d = 2. While adding D during the next iteration, we see that the intersection of D with edges (B,D) and
(C,D) drops below the minimum length requirement. Consequently, module {A,B,C,D} is not recorded
in the final result. However, when skipping to the last step, we see that module {A,C,D} is recorded in the
result as all of its local intersections meet the specified requirements. Note that our appending procedure
follows the breadth-first tree created from the root A, and T [1], T [2] and T [3] are the levels of the tree.
3.2 Algorithm for Frequent Motif Discovery

Algorithm 2 FrequentDynamicModules(D,h, k)
Parameter: D, a set of hash tables, each hash table holds all the dynamic modules for a dataset
Parameter: h, the working hash table
Parameter: k, the number of combined hash table
Parameter: θ, the minimum support level
{Invoked by FrequentDynamicModules(D, ∅, 0), D: all the input hash tables}

1: if k ≥ θ then
2: return; {only enumerate the maximal frequent modules}
3: end if
4: for each d ∈ D do
5: D ← D \ d

6: h′ ← intersect(d, h); {interesect the dynamic modules with a previously unseen hash and d = intersect(d, ∅) for initialization}
7: if h′ 6= ∅ AND k = θ then
8: result← result ∪ h′; {record the maximal frequent modules}
9: end if

10: if h′ 6= ∅ then
11: FrequentDynamicModules(D,h′, k + 1);
12: end if
13: end for

7

While several graph mining algorithms have been developed to identify frequent subgraphs [13, 28,
11, 29], the majority of existing approaches either perform level-wise or a depth-first-search enumeration
of pattern space. However, these approaches are incommensurate with the structure of our problem. First,
our inputs are different from these algorithms: we have already discovered all dynamic modules for each
time series dataset. Second, to reduce the number of frequent dynamic modules, we aim to discover all the
maximally frequent dynamic modules with respect to each vertex set. In addition, we note that the number
of time series datasets is generally not large.

Taking these factors into account, we develop an efficiently mining algorithm (shown in Algorithm 2)
to discover all maximally frequent dynamic modules. We store all dynamic modules resulting from each
individual time series dataset in a hash table. Note that each dynamic module is represented as a directed
graph, i.e. the event model dynamic module. The set of the hash table is recored as D in Algorithm 2. Since
we load each table during each iteration (Line 4), we do not have to simultaneously load the entire D into
the main memory. In the subsequent steps, we only need to maintain a working hash table h ′ to record the
common subgraphs for the vertex sets.

Initially, h′ will store all the dynamic modules for one dataset. Then, when selecting another hash table
d (which records all the dynamic modules for another dataset), we will intersect h ′ and d (Line 6). The
intersection operation is performed in three steps: 1) we locate the dynamic modules with common vertex
set; 2) we generate the common subgraph by intersecting the corresponding edges of the selected dynamic
modules, i.e. an edge is accepted in the common subgraph if both original dynamic modules contain the
edge; 3) we evaluate the connectedness of the common subgraph. If the resulting subgraph is disconnected,
it is discarded.

In essence, the recursive procedure in Algorithm 2 will select all the θ datasets from the total dataset
before intersecting the corresponding hash tables. Additionally, we test for containing relationships when
we combine the output of each interaction into the final result set result, i.e. if one dynamic module is
isomorphic to, or a subgraph of, another dynamic module in the result set, it is discarded. In this way, the
final result set result will have all the maximally frequent dynamic modules with respect to each vertex set.
4 Results
4.1 Data source and alignment of time-series expression data
We collected 36066 distinct protein-protein interactions of S. cerevisiae from The BioGrid databases [24],
the MIPS database [8], and other sources [27, 12]. As is customary, self interactions representing autoregu-
lation or protein homodimerization were not included in the analysis. We collected a total of 11 microarray
gene expression time-series for S. cerevisiae. These datasets include from 10 to 25 time points of vari-
ous temporal scales (e.g. minutes and hours) and measure gene-regulation under very different biological
conditions, such as the cell cycle, filamentous-form growth, fermentation, carbon source perturbation, and
thiolutin treatment.

To analyze these time-series, we implemented local similarity analysis [22], which is a variant of the
time-warping algorithm, to identify the local alignment between two time series. Since most of the collected
time-series expression datasets are short, here we only identify the best local alignment for each protein pair
and do not consider suboptimal alignments. For each gene pair with an identified protein-protein interaction,
we performed a normal score transformation [14] for their expression profiles before analyzing their local
alignment by dynamic programming. We define the local similarity score as the maximal sum of the product
of the corresponding entries of all the subsequences of the two time-series within a predefined time delay D.
Hence, the value of D indicates how far apart in time the gene-gene interactions are allowed to occur. We
choose D = 5 in our analysis. To determine the significance threshold (P < 0.025) of the computed local
similarity score, we carried out the local similarity analysis on 1,000,000 pairs of random expression profiles
with a normal distribution. We assigned an edge between all gene pairs with a known protein interaction if
we also uncovered a significant local expression similarity score between the two genes.

From protein interaction data and the 11 expression time series, we obtain 11 graphs, ranging from 1872
to 13298 edges. Interestingly, the terminal genes of 32% of those edges have Pearson’s correlations with

8

P-value higher than 0.05. Consequently, the local alignments are either shifted or are short for all of these
edges and, thus, can not be captured by standard correlation analysis.

4.2 Dynamic network modules are more biologically meaningful than static modules

We have obtained all dynamic network modules with different overlap parameter d = 3, 4, 5, 6, 7, 8. Using
the cell cycle dataset (GDS2347) as an example, at d = 8, we identified 4744 modules of node size 5 to
10. To assess whether the temporal information improves our ability to discover biologically meaningful
modules, we compared the functional homogeneity of the dynamic modules with that of the static modules
determined based only on the protein interaction data. That is, for each of the dynamic modules, we identify
the connected component of the PPI network with the same size, and compare the homogeneity of their
biological functions. We used the Gene Ontology (GO) biological process annotation and defined specific
functions to be those associated with GO nodes containing less than 200 genes. A module is considered
functionally homogeneous if its variation in functional classification, as modeled by the hypergeometric
distribution, has a P < 10−6 (P stands for P-value). Our results showed that 46% of dynamic modules
are functionally homogenous, while on average (from 100 randomizations), only 35% of static modules
are functionally homogenous. This highlights the usage of temporal information in uncovering biologically
meaningful gene constellations that are hidden by a static network representation. In general, the functional
homogeneity of modules increases with increasing d. Additionally, 31% of the dynamic modules are statis-
tically enriched in proteins from the same protein complexes (P < 10−3), while this is on average true only
for 25% of the static modules. The functional analysis results of all datasets (at d = 8) are listed in Table 1.

Interestingly, a majority of the dynamic module are very sparse. For example, 97% of the dynamic mod-
ules from the dataset GDS2347 have a connectivity γ less than 0.5, where γ is defined as γ = 2m/(n(n−1)),
with m being the number of edges and n the number of nodes in a module. Strikingly, if analyzed in con-
junction with the original protein-protein interaction network, nodes in 88% of the dynamic modules are
loosely connected with density γ < 0.5. We have illustrated two such examples in Figure 3. The non-dense
modules are very hard to extract from the static protein-protein interaction network solely based on their
topology. Here, we demonstrate that the temporal expression information can facilitate the identification of
likely important signals that are otherwise easily overlooked.

Table 1. GO functional homogeneity in dynamic network modules

Dataset # modules GOa Complexb

GDS124 17783 51.1% 38.2%
GDS1611-1 24217 42.0% 31.4%
GDS1611-2 33111 38.7% 29.4%
GDS1752-1 17684 40.5% 26.1%
GDS1752-2 16170 40.3% 29.2%
GDS18 23052 42.9% 34.9%
GDS2318 12181 48.9% 30.0%
GDS2347 8053 54.9% 30.1%
GDS2350 4744 42.2% 22.5%
GDS39 16385 43.7% 32.5%
GDS608 1954 61.1% 38.5%

a The percentage of modules with significant enrichment in proteins from a GO term
(P < 10−6 and required that at least 2 genes in the module fall in the same GO term)

b The percentage of modules with significant enrichment in proteins from a protein complex
(P < 10−3 and required that at least 2 genes in the module belong to the same protein complex).

4.3 Dynamic network motifs reveal temporal events in cellular systems
The dynamic network modules can aid in the characterization of signal propagation and the elucidation of
temporal organizational patterns in cellular activities. Note that, there is little information on the detailed
sequential ordering of molecular events due to the limited power and resolution of current experimental
techniques. This leaves an important opportunity for the community of computational scientists, as in silico
predictions can complement experimental approaches to provide novel insights. In the following, we will

9

discuss two cases from our analysis in detail, for which the identified dynamic events are supported by
current knowledge.

Fig. 3. Two examples of dynamic network modules.
Figure 3(a) illustrates a dynamic network module activated during the cell cycle progression (obtained

using dataset GDS2350). The module contains 5 genes, all of which are involved in the biological process
of “microtubule cytoskeleton organization and biogenesis”. Among those, SPC105 and SPC110 are compo-
nents of the spindle pole body; NUF2 is implicated in connecting the centromere to the spindle pole body
during chromosome segregation [16]; Cin8 clusters kinetochores into their characteristic bi-lobed metaphase
configuration [26]; while NUM1 is required for nuclear migration and localizes to the mother cell cortex as
well as the bud tip, forming cytoplasmic microtubule capture-sites during the late anaphase [4, 5]. Although
all of these genes participate in microtubule dynamics, their interactions do not occur at the same time. The
directed edges from SPC105/SPC110 to NUF2 indicates that the assembly of the spindle pole body takes
place ahead of its interaction with the centrosome, and the directed edge from NUF2 to NUM1 implies
that the connection from the centromere to the spindle pole occurs before nuclear migration. The identified
dynamic network module correctly captures the sequential order of protein-protein interactions along the
time axis. It is noteworthy that all of the 4 connected gene pairs have the very low Pearson’s expression
correlations of -0.34, -0.08, -0.12, and 0.35. Consequently, this module can only be identified by taking the
temporal characteristics into account.

Our second example, Figure 3(b), shows a dynamic module activated in the dataset GDS608 [19]. This
dataset resulted from studies of the temporal expression patterns in wild-type diploid cells shifted from the
typical yeast-form growth to that of a filamentous-form growth. Filamentous-form cells were collected and
profiled hourly for 10 hours. The identified dynamic module contains 10 genes, in which RPN1, RPN3,
RPN8, PRE1, PRE10, PRE5 are involved in ubiquitin-dependent protein catabolic process. In particular,
PRE10 and PRE5 belongs to the proteasome alpha-subunit complex, RPN3 and RPN8 are part of a protea-
some regulatory particle, the lid subcomplex, while SRS, SKP1, CDC28, and BNI1 are involved in the cell
cycle. Most edges in this module are undirected (that is, they contain at most a time shift of 1 unit), and only
two edges are directed, one pointing from PRE1 to SKP1, and the other pointing from SRS2 to CDC28.
This is in agreement with the hypothesis that the ubiquitin-dependent protein degradation by the 26S pro-
teasome is controlling the filamentous-form growth [19]. More specifically, the 26S proteasome regulates
the activity of the Cdc28 kinase, which in turn controls cell-cycle progression and morphogenesis during
filamentous-form growth [19].
4.4 Identify frequent dynamic network modules across different conditions
Based on the dynamic network modules derived from 11 conditions (module sizes range from 5 to 10 nodes
with d = 8), we identified modules recurring in at least 2 different conditions. The percentage of functionally
homogenous modules increases significantly with the module recurrence frequency (Table 2), demonstrating
the utility of using recurrence to filter out noise and rarely occuring modules. Interestingly, at a recurrence
level of ≥ 3, almost none of the frequent network modules contain directed edges. Note that undirected
edges represent approximate co-expression relationships, and that directed edges represent time-shifted ex-
pression similarity, highlighting the complexity of sequential events in the cellular systems. That is, most of
the sequential events are highly specific to a particular intrinsic condition or external perturbation. This is
further confirmed by the fact that the majority of recurrent modules with directed edges are activated under
similar conditions, such as cell cycle profiling of wild-type or mutant yeast, or carbon source perturbation
at different levels of severity. Furthermore, frequently occurring modules exhibit significant house-keeping
characteristics: at recurrence 6, 35% of the patterns are related to “ribosome biogenesis and assembly”.

10

Table 2. GO functional homogeneity in frequent dynamic network modules
Support a # Frequent modules Enrichment percentageb

2 5822 88.5%
3 2059 96.9%
4 745 98.4%
5 183 99.5%
6 22 100.0%

a The number of datasets that support the frequent occurrences.
b The percentage of modules having significant enrichment with a GO term

(P < 10−6 and required that at least 2 genes in the module fall in the same GO term).

In the following, we discuss two examples of recurrent network modules. In Figure 4(a), a four-gene
module is activated under two different types of experiments: (1) analysis of wild-type and the upf1-mutant
strains after treatment with 10 µg/ml thiolutin, a global transcription inhibitor; and (2) analysis of steady
state cultures growing on galactose following a pulse of 2 grams of glucose per liter. Three out of those four
genes, TRM11, TRM9, TRM112, are known to be involved in tRNA methylation. The fourth gene, Lys9p, is
a Rossmann-fold protein that may utilize NAD/NADP as a cofactor and could play a negative regulatory role
on several tRNA modification activities through its interaction with Trm112p [9, 20]. In Figure 4(b), a three-
gene module GAL3, GAL8, and GAL1 appear under condition (2) but with the addition of only 0.2 grams of
glucose. All three genes are involved in the positive regulation of transcription by galactose. The interaction
between GAL3p and GAL80p activates the efficient utilization of galactose, and GAL1p is a key enzyme in
galactose metabolism [10]. In the presence of glucose, these genes are rapidly and fully repressed [10], and,
being signaling molecules, GAL3 and GAL8 are expected to show a more rapid response than the metabolic
enzyme GAL1p. Note that dynamic modules derived here only reflect potential sequential events, and do not
imply causal effect. However, extracting sequential observations is often the first step in causal inference.

Fig. 4. Two examples of recurring dynamic network modules.
5 Conclusions
We have presented the first graph-based algorithm to identify dynamic network building-blocks by com-
bining information from multiple temporal networks. To this end, we have designed a set of efficient al-
gorithms to identify dynamic network modules. Our approach provides an alternative to traditional graph-
based module-finding algorithms that assume all links are simultaneously present (static). Consequently,
traditional algorithms are incapable of addressing questions such as the time-ordering of link-based events.

In contrast, our approach facilitates the use of temporal information to detangle the complex wiring
diagrams of cellular systems. As an example, we have applied our algorithm to a combination of microarray
time-series expression data and the yeast protein-interaction network. We have demonstrated that our method
uncovers functionally homogenous network modules, and more importantly, that it has the ability to identify
the sequential ordering of molecular events taking place in biocehmical systems. While the results from our
approach have no direct implication on the causality of events, the sequential activity information embedded
in the derived modules may serve as a starting point for causal-inference analyses.

Microarray gene-expression data and protein interaction data have their specific limitations, and as such,
may not provide a measurement of all functional activities in a cell. However, we want to emphasize that
as a general data integration framework, our algorithm can be applied to any type of time-series activity
measurement (not limited to gene-expression data) and any type of network data (not limited to protein-
interaction data). Thus, our approach provides an important new class of tools for the systems-level analysis
of biological data.

11

References

1. J Aach and G M Church. Aligning gene expression time series with time warping algorithms. Bioinformatics, 17(6):495–508,
Jun 2001. Comparative Study.

2. Dongbo Bu, Yi Zhao, Lun Cai, Hong Xue, Xiaopeng Zhu, Hongchao Lu, Jingfen Zhang, Shiwei Sun, Lunjiang Ling, Nan
Zhang, Guojie Li, and Runsheng Chen. Topological structure analysis of the protein-protein interaction network in budding
yeast. Nucleic Acids Res, 31(9):2443–2450, May 2003. Comparative Study.

3. Ulrik de Lichtenberg, Lars Juhl Jensen, Soren Brunak, and Peer Bork. Dynamic complex formation during the yeast cell cycle.
Science, 307(5710):724–727, Feb 2005.

4. M Farkasovsky and H Kuntzel. Yeast Num1p associates with the mother cell cortex during S/G2 phase and affects microtubular
functions. J Cell Biol, 131(4):1003–1014, Nov 1995.

5. M Farkasovsky and H Kuntzel. Cortical Num1p interacts with the dynein intermediate chain Pac11p and cytoplasmic micro-
tubules in budding yeast. J Cell Biol, 152(2):251–262, Jan 2001.

6. D A Fell and A Wagner. The small world of metabolism. Nat Biotechnol, 18(11):1121–1122, Nov 2000.
7. Nabil Guelzim, Samuele Bottani, Paul Bourgine, and Francois Kepes. Topological and causal structure of the yeast transcrip-

tional regulatory network. Nat Genet, 31(1):60–63, May 2002.
8. Ulrich Guldener, Martin Munsterkotter, Matthias Oesterheld, Philipp Pagel, Andreas Ruepp, Hans-Werner Mewes, and Volker

Stumpflen. MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res, 34(Database issue):436–441, Jan 2006.
9. R M Halpern, S Q Chaney, B C Halpern, and R A Smith. Nicotinamide: a natural inhibitor of tRNA methylase. Biochem

Biophys Res Commun, 42(4):602–607, Feb 1971.
10. Kristy M Hawkins and Christina D Smolke. The regulatory roles of the galactose permease and kinase in the induction response

of the GAL network in Saccharomyces cerevisiae. J Biol Chem, 281(19):13485–13492, May 2006.
11. Jun Huan, Wei Wang, Deepak Bandyopadhyay, Jack Snoeyink, Jan Prins, and Alexander Tropsha. Mining protein family-

specific residue packing patterns from protein structure graphs. In Eighth International Conference on Research in Computa-
tional Molecular Biology (RECOMB), pages 308–315, 2004.

12. T Ideker, V Thorsson, J A Ranish, R Christmas, J Buhler, J K Eng, R Bumgarner, D R Goodlett, R Aebersold, and L Hood.
Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 292(5518):929–934,
May 2001.

13. Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. In ICDM ’01: Proceedings of the 2001 IEEE
International Conference on Data Mining, pages 313–320, 2001.

14. Ker-Chau Li. Genome-wide coexpression dynamics: theory and application. Proc Natl Acad Sci U S A, 99(26):16875–16880,
Dec 2002.

15. Nicholas M Luscombe, M Madan Babu, Haiyuan Yu, Michael Snyder, Sarah A Teichmann, and Mark Gerstein. Genomic
analysis of regulatory network dynamics reveals large topological changes. Nature, 431(7006):308–312, Sep 2004.

16. A Nabetani, T Koujin, C Tsutsumi, T Haraguchi, and Y Hiraoka. A conserved protein, Nuf2, is implicated in connecting the
centromere to the spindle during chromosome segregation: a link between the kinetochore function and the spindle checkpoint.
Chromosoma, 110(5):322–334, Sep 2001.

17. M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45:167, 2003.
18. Christos A. Ouzounis and Peter D. Karp. Global Properties of the Metabolic Map of Escherichia coli. Genome Res., 10(4):568–

576, 2000.
19. Susanne Prinz, Iliana Avila-Campillo, Christine Aldridge, Ajitha Srinivasan, Krassen Dimitrov, Andrew F Siegel, and Timothy

Galitski. Control of yeast filamentous-form growth by modules in an integrated molecular network. Genome Res, 14(3):380–
390, Mar 2004. Comparative Study.

20. Suresh K Purushothaman, Janusz M Bujnicki, Henri Grosjean, and Bruno Lapeyre. Trm11p and Trm112p are both required
for the formation of 2-methylguanosine at position 10 in yeast tRNA. Mol Cell Biol, 25(11):4359–4370, Jun 2005.

21. Alexander W. Rives and Timothy Galitski. Modular organization of cellular networks. Proceedings of the National Academy
of Sciences, 100(3):1128–1133, 2003.

22. Quansong Ruan, Debojyoti Dutta, Michael S Schwalbach, Joshua A Steele, Jed A Fuhrman, and Fengzhu Sun. Local simi-
larity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics,
22(20):2532–2538, Oct 2006.

23. Victor Spirin and Leonid A. Mirny. Protein complexes and functional modules in molecular networks. Proceedings of the
National Academy of Sciences, 100(21):12123–12128, 2003.

24. Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Breitkreutz, and Mike Tyers. BioGRID: a general
repository for interaction datasets. Nucleic Acids Res, 34(Database issue):535–539, Jan 2006.

25. D. Thieffry, A. Huerta, E. Perez-Rueda, and J. Collado-Vides. From specific gene regulation to genomic networks: A global
analysis of transcriptional regulation in escherichia coli, 1998.

26. Jessica D Tytell and Peter K Sorger. Analysis of kinesin motor function at budding yeast kinetochores. J Cell Biol, 172(6):861–
874, Mar 2006.

27. Christian von Mering, Roland Krause, Berend Snel, Michael Cornell, Stephen G Oliver, Stanley Fields, and Peer Bork. Com-
parative assessment of large-scale data sets of protein-protein interactions. Nature, 417(6887):399–403, May 2002. Compara-
tive Study.

12

28. Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining. In ICDM ’02: Proceedings of the 2002 IEEE
International Conference on Data Mining (ICDM’02), page 721, 2002.

29. Xifeng Yan, X. Jasmine Zhou, and Jiawei Han. Mining closed relational graphs with connectivity constraints. In KDD ’05:
Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pages 324–333,
2005.

13

