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Abstract: We use eight different observational datasets to estimate California-average 
temperature trends over 1950-1999. Observed results are compared to trends from a suite of 
control simulations of natural internal climate variability. Observed increases in annual-mean 
surface temperature are distinguishable from climate noise in some but not all observational 
datasets. The most robust results are large positive trends in mean and maximum daily 
temperatures in late winter/early spring, as well as increases in minimum daily temperatures from 
January to September. These trends are inconsistent with model-based estimates of natural 
internal climate variability, and thus require one or more external forcing agents to be explained. 
Our results suggest that the warming of Californian winters over the second half of the twentieth 
century is associated with human-induced changes in large-scale atmospheric circulation. We also 
hypothesize that the lack of a detectable increase in summertime maximum temperature arises 
from a cooling associated with large-scale irrigation. This cooling may have, until now, 
counteracted the warming induced by increasing greenhouse gases and urbanization effects.

1. Introduction

Human-induced climate change is a reality. Human effects on climate have been 
identified in many different aspects of the climate system, at global, hemispheric (e.g., 
Santer et al., 1996; Mitchell et al., 2001; Hegerl et al., 1997; Tett et al., 1999; Stott et al., 
2000) and continental scales (Stott, 2003; Zwiers and Zhang, 2003; Karoly et al., 2003; 
Karoly and Braganza, 2005). Attempts to detect anthropogenic effects at regional or even 
grid-point scales are more recent (Spagnoli et al., 2002, Santer et al., 2006, Karoly and 
Wu, 2005). In California, there is great political and scientific interest in the question of 
how human-caused climate change will manifest itself. Will nighttime temperatures 
increase more than daytime temperatures? Will there be more warming in winter than in 
summer? How will precipitation and snow be affected? How uncertain are expected 
changes? Impacts on agriculture, water availability, human health, etc. depend on 
answers to these and related questions.

Identification of “fingerprints” of anthropogenic climate change at the scale of 
California would enhance confidence in model projections of the regional aspects of 
climate change and their possible societal impacts. Part of such fingerprinting work  
consists in documenting the background ‘noise’ of natural internal climate variability and 
determining whether or not observed trends are too rapid to be explained by this noise 
alone. It is impossible to determine noise characteristics from short instrumental records 
in which signals and noise convolved, but natural internal variability can be estimated 
from long climate model control simulations with no changes in external factors.

Attribution is the more difficult problem of identifying causal factors responsible 
for any detected change. Rigorous attribution of observed changes in Californian climate 
to specific forcings would require so-called “single forcing” experiments, simulating 
changes in only one forcing at a time. These were not available for a broad range of 
climate models. Hence, we instead consider “20CEN” experiments driven by historical 
changes in combined anthropogenic and natural external forcings, and then determine if 
these forced simulations yield results consistent with observed changes. Consistency 
between the observed and 20CEN climate changes (and inconsistency between the 
observed changes and control run results) would imply that we have detected significant 
changes in Californian climate, and can attribute these changes to external forcing(s). 
Inconsistencies would point towards errors in (or neglect of) important forcings, and/or 
errors in the model response to the imposed forcings.

In small domains, detection of externally-forced climate change poses special 
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challenges. Global models are less skillful on sub-continental scales (Stott and Tett, 
1998), and high-resolution observational datasets are not always available. Furthermore, 
the noise of internal climate variability generally increases with decreasing domain size, 
often leading to a degradation of signal-to-noise (S/N) ratios, and hampering 
identification of external factors. Finally, forcings that may be of considerable 
importance in understanding regional climate change (e.g., land-use change, aerosols) are 
spatially and temporally heterogeneous and uncertain.

We focus on indices of Californian climate based on daily surface air 
temperatures: monthly-mean temperature (Tave), monthly-mean night- and day-time 
temperatures (Tmin, Tmax) and their difference, the diurnal temperature range (DTR). All 
are well observed in California, and their changes can have important societal impacts. 
We consider both seasonal and annual mean trends in these indices.

2. Data and Methods

Observed California-mean trends in each quantity are estimated for 1950-1999 
from a minimum of four and a maximum of seven gridded datasets (Table 1), as well as 
from stations of the U.S. Historical Climatology Network (USHCN). Use of multiple 
datasets allows us to assess the robustness of our detection results to observational 
uncertainty. For example, version 1 of the University of Washington temperature dataset 
(UW1) is less suitable for long-term trend analysis than version UW2, which includes 
adjustments for non-climatic influences (e.g., changes in instrumentation and station 
location; Hamlet and Lettenmaier, 2005). USHCN observations, also adjusted for 
inhomogeneities (Karl et al., 1990), have been widely used for trend and long-term 
variability analyses in California. Although the datasets analyzed here rely on similar raw 
data and are not completely independent, the processing choices made by dataset 
developers can differ markedly from group to group, leading to uncertainty in the 
magnitude (and sometimes even the sign) of the observed trends (see Figures 1 and 2). 

In Section 3, we investigate if observed historical trends in California exceed 
climate ‘noise’ by comparing recent observed 50-year trends in Tave, Tmin, Tmax, and DTR 
to trends from 22 (for Tave) or 6 (for Tmin, Tmax, and DTR) long, control simulations 
(Karoly et al., 2003; Santer et al., 2006) performed in support of the IPCC Fourth 
Assessment Report (AR4, Table 2). For each run, we fitted least-squares linear trends to 
overlapping 50-year segments (separated by 10-year intervals) of the California-average 
temperature time series. Trends from the 22 (6) models were then combined, yielding a 
multi-model distribution of 808 (137) unforced 50-year trends for each climate variable. 
These distributions reflect noise uncertainties arising from differences in a wide range of 
model properties (physics, parameterizations, resolution, etc.), and provide the best 
available model estimates of natural internal variability. The significance of observed 
trends was assessed in two ways: 1) by comparing observed trends with the 95% 
confidence intervals of the trend distributions, computed by assuming a Gaussian 
distribution of trends and multiplying the standard error of the distribution (sE) by 1.96; 
2) by determining the empirical probability that the magnitude of the unforced trends 
exceeds that of observed trends. The two methods give very similar results, validating the 
assumption of the Gaussian distribution of trends (Figure 3). While none of the control 
runs has a statistically significant overall temperature trend for the Californian domain, 
some integrations do show residual drift at the beginning of the run (Santer et al., 2006). 
We opted to retain these control-run drifts, thus inflating sE and making it more difficult 
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to reject the null hypothesis that an observed trend is due to natural internal variability. 
The significance-testing procedure outlined above was applied to annual- and 

seasonal-mean [January-March (JFM), April-June (AMJ), July-September (JAS), and 
October-December (OND)] values of the four indices considered here. We used this 
somewhat unconventional seasonal definition because observed trends in December are 
very different from those in January (see below). We also compare observed trends to 
those from 69 (15) 20CEN realizations performed with 22 (8) different models (Table 2). 

The reliability of the significance-testing results depends crucially on the fidelity 
with which the models used here simulate the natural internal variability of the real-world 
climate system. This is difficult to assess, particularly on the 50-year timescales of 
interest here, without multi-century observational records uncontaminated by human 
influences. However, observational data are of adequate length to make meaningful 
comparisons of modeled and observed temperature variability on annual and decadal 
timescales (e.g. Stott, 2003; Braganza et al., 2004). Accurate simulation of natural 
variability on these shorter time scales would enhance our confidence in the detection 
results for 50-year trends. We compared the observed interannual and decadal variability 
of each temperature index with corresponding values from the 20CEN realizations. The 
(varying) length of the observational record dictated the period used for calculating 
model and observed temporal standard deviations. All standard deviations were 
computed after first removing the overall linear trend from the area-average data, which 
constitutes a zero-order estimate of the influence of external forcing. The interannual 
variability is simply the standard deviation of the residuals. The decadal standard 
deviation is computed after low-pass filtering the regression residuals with a Lynch and 
Huang (1992) digital filter with half-power at a period of 119 months (Santer et al., 
2006). The results of this variability comparison are discussed in Section 4.

3. Results of detection analysis 

All gridded observational datasets show a consistent pattern of increasing annual-
mean temperatures and decreasing annual-mean DTR over most of California. Over most 
California, trends have a high degree of purely statistical significance (Figures 1 and 2). 
Similar results are found for the USHCN station data. Such consistency across multiple 
datasets increases our confidence in the reality of these annual-mean Tave and DTR 
changes. Annual-mean Tave increased by 0.36 to 0.92°C over 1950-1999, depending on 
the observational dataset considered. Three of the eight observed trends (for USHCN, 
UW2, and CRU2.0) are significant different from internal climate variability at the 95% 
or greater confidence level (Figure 3). Tave changes are largest in wintertime and are 
significant in all eight observational datasets. This strongly suggests that external 
forcing(s) are required to explain the observed JFM trends in Tave. Two datasets (USHCN 
and UW2) have significant Tave trends in spring. No observational dataset yields 
significant Tave trends in summer or fall. 

This analysis of daily-mean temperatures masks interesting information in the 
diurnal cycle of temperature change. Substantial night-time warming occurs in every 
month except in December (not shown), and trends in Tmin are inconsistent with 
internally-generated climate noise in every season except OND (Figure 3b). In contrast, 
monthly trends in observed daily maximum temperatures exceed estimated internal 
variability only in late winter/early spring (Figure 3c), with largest warming in January 
and March (1.5°C over 50 years), slower rate of warming in February (0.5°C over 50 
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years) and cooling in December. Observed trends in DTR exceed the estimated noise 
during summer only (Figure 3d), reflecting the much greater increase in minimum 
temperature than in maximum temperature in those months.

We consider next whether observed changes in California temperature indices are 
consistent with results from 20CEN simulations with combined anthropogenic and 
natural forcings (Table 2). In general, the models fail to reproduce the observed 
seasonality of changes in Tave, Tmin, Tmax, and DTR (Figure 4, lower panels). While most 
simulations capture the observed JAS trends in Tave, Tmin, and Tmax (but not DTR), they  
tend to underestimate the observed JFM trends in Tave, Tmin, and Tmax. 

Such deficiencies in the simulation of regional trends are not surprising, and have 
a number of possible explanations. First, many of the 20CEN runs examined here do not 
incorporate changes in spatially- and temporally heterogeneous forcings like land use, 
carbonaceous aerosols, indirect aerosol effects, etc. (Santer et al., 2006). These forcings 
have probably made significant contributions to regional-scale climate change. Second, 
even models that include some representation of heterogeneous and highly uncertain 
forcings may lack the spatial resolution to reliably represent the climate response to the 
imposed forcings: the entire state of California is represented by a minimum of 5 and 
maximum of 35 grid-boxes in the AR4 models analyzed here. Finally, comparison of 
multiple 20CEN realizations performed with the same model reveal that individual 
realizations can have very different 50-year trends. Reliable estimation of the true 
response to the imposed forcing changes may require larger ensemble sizes than were 
available in the IPCC AR4 database (Table 2). 

4. Discussion

Karoly et al. (2003) performed a detection analysis similar to ours, focusing on 
land surface temperature changes over North America (between 30N° to 65°N). They 
found that the increase in annual-mean surface air temperature of roughly 0.65°C from 
1950 to 1999 (in HadCRUT2v) could not be explained by natural internal variability. Our 
results for California also show an annual mean Tave increase in three datasets that is 
significantly larger than control run noise, but not in HadCRUT2v (Figure 3). However, 
while Karoly et al. reported an observed DTR decrease that was indistinguishable from 
control-run noise, we obtained significant annual-mean DTR decreases in two of five 
observational datasets.

Our conclusion that external factors are perturbing the climate in California 
depends on the reliability of the model-based noise estimates. As discussed above, it is ot 
possible to evaluate the simulations of noise on the relevant (50-yr) time scale; 
nonetheless, our confidence in the finding that many of the observed trends cannot be 
explained by climate noise would be diminished if the models systematically 
underestimate noise on interannual and decadal timescales. There is no evidence that this 
is the case (Figure 4, top panels). For Tave, while Stott and Tett (1998) found that 1990s-
era models generally underestimated climate variability at spatial scales below 2000 km, 
none of the AR4 models has internanual variability below the lower end of the range of 
observational estimates, and only two models (GISS-ER and MRI-CGCM2.3.2) 
systematically underestimate the decadal variability (i.e., each 20CEN realization lies 
below the observational range). The fact that most AR4 models do not underestimate 
decadal variability increases confidence in our model-based estimates of longer-timescale 
climate noise, but does not rule out systematic errors in those estimates. For Tmin, Tmax, 
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and DTR indices, fewer observational datasets and simulations are available. None of the 
models examined here systematically underestimates the magnitude of decadal variability 
for either Tmin or Tmax. Interannual and decadal variability in DTR is however 
systematically underestimated by three models, suggesting that Tmin and Tmax
covariability is too high in these models, while these indices are more decoupled in other 
models and in the observations.

Finer-resolution simulations with relevant forcings should improve our ability to 
reproduce the seasonality of observed trends. With appropriate simulations unavailable, 
researchers have resorted to exploratory explanations of observed temperature trends in 
California. For example, Christy et al. (2006), using their own observational temperature 
dataset, reported rapid night-time warming in the Central Valley over 1910 to 2003, but 
not in surrounding mountains. They attribute this warming to the effects of large-scale 
irrigation (an interpretation questioned by Bonfils et al. (2006)), but do not identify the 
physical mechanism responsible for the change. Bereket et al. (2005) attribute night-time 
warming in the Valley to increased population, urbanization, and road construction. None 
of these mechanisms, however, explains the pronounced seasonal variations in 
temperature trends. 

In JFM, observed trends in Tmin, Tmax and Tave are unlikely to be explained by 
natural internal variability alone. A larger JFM warming trend is consistent with a 
stronger snow-albedo feedback in this season, but the spatial pattern of the observed 
warming does not clearly support this interpretation. A more plausible explanation is that 
a trend towards warmer California winters is associated with a long-term change in large-
scale atmospheric circulation over the North Pacific Ocean. This change is characterized 
by a southward shift of wind fields over the central North Pacific and a northward shift 
over the west coast of North America (Dettinger and Cayan, 1994, their Figure 10d). 
Analysis of trends in NCEP-50 observed JAS 700 mb height anomalies reveals that the 
circulation-change patterns identified by Dettinger and Cayan are very pronounced in 
January and March (months characterized by robust detection in trends of Tmin, Tmax and 
Tave), with a concurrent warming in coastal sea surface temperatures. This circulation 
change is less pronounced in February and is qualitatively different in December, 
consistent with observed temperature trends. The results of other studies suggest us that 
greenhouse-gas forcing is likely to be implicated in this seasonal circulation shift. First, 
Zwiers and Zhang (2003) found that the combined effects of greenhouse gas and sulfate 
aerosol forcing caused significant North American warming in wintertime only. Then, 
Shindell et al. (2001) linked increasing greenhouse gas concentrations with increased 
flow of warm air from the Pacific Ocean to western North America, consistent with 
Dettinger and Cayan’s analysis. Finally, Gillett et al. (2005) detected an anthropogenic 
signal in DJF sea-level pressure trends over 1948-1998, with a coherent decrease over the 
North Pacific and an increase over the west coast of North America, features that 
coincide with those noted by Dettinger and Cayan. Gillett et al. also found that models 
underestimate this circulation change, which may explain why the rise in JFM Tave in the 
AR4 simulations is weaker than in observations (Figure 4, lower panel).

In summer, the externally-forced trend towards warmer nights is captured by at 
least one realization of every model (except for the single realization of BCCR-BCM2.0). 
However, most models overestimate the daytime warming (which is weak in the 
observations, and not separated from the noise). Consequently, significant changes in 
DTR are not reproduced by the models. One interpretation of this result is that the 
20CEN simulations neglect an important regional forcing. An obvious candidate is 



7

irrigation, which is widely employed in California, and is generally not represented in 
20CEN simulations performed with global models. Although the effect of irrigation on 
night-time temperature remains uncertain, irrigation causes day-time evaporative cooling 
(Lobell et al., 2006; Kueppers et al., 2006). At the global scale, the much smaller annual-
mean increase in Tmin than in Tmax (Karl et al., 1993) is not captured by global models. 
This may be due to either an absence of a significant cloudiness trend that is present in 
observations (Braganza et al., 2004) or to the lack of prognostic photosynthesis in most 
global models (Bonfils et al., 2004). In the Central Valley, summertime cloudiness is 
probably too low to be implicated in explaining differential Tmin and Tmax trends. 
Irrigation is a more credible hypothesis, and appears consistent with the observed cooling 
of summer days and warming of summer nights in the Central Valley, and day- and 
night-time warming elsewhere. In summary, the JAS trends in Figure 3 can be interpreted 
in several ways. One explanation is that trends in Tmax over California are due to natural 
climate fluctuations alone. A more plausible interpretation (in view of the large temporal 
changes in irrigation in the Central Valley, the likely physical impacts of these changes, 
and their absence in 20CEN simulations) is that irrigation-induced cooling of Tmax has 
obscured a warming signal arising from the combined effects of greenhouse gases and 
urbanization.

5. Conclusions

We show that external forcing(s) are perturbing the climate of California in 
certain seasons. The domain size is smaller than that used in most previous regional-scale 
detection studies. However, by employing multiple observational and model datasets, we 
gained confidence in both the robustness of the observed signals and their detection 
relative to model noise estimates. We hypothesize that the rise in late winter/early spring 
temperatures (Tave, Tmin, Tmax) is associated with long-term changes in large-scale 
atmospheric circulation that are human-induced. It is also likely that the lack of a 
significant Tmax trend in summer reflects a partial offsetting of the positive radiative 
effects of greenhouse gases and urbanization by the negative radiative effects of 
irrigation. More work is needed to solidify these findings. 

One implication of our findings is that anthropogenic forcings may be more 
readily detectable in regional-scale ocean surface temperature changes (Santer et al., 
2006), than in regional-scale land-surface temperature changes with current simulations. 
The latter are more strongly influenced by local factors, such as land-use, topography, 
and urbanization. High-resolution, multi-decadal transient simulations of the effects of 
individual forcings would help to characterize the regional signatures of these forcings. 
Such simulations have not been performed to date, in part due to computational 
limitations, and in part because reliable information on the forcings themselves is not 
always available (e.g., detailed descriptions of historical land-use patterns). Finally, in the 
case of forcings like aerosols, there are still significant uncertainties in both our 
understanding of their climatic effects and our ability to correctly model these effects. 
Nevertheless, our study represents a credible first step towards the identification and 
physical interpretation of the effects of external forcings on Californian climate. 
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Figure and Table legends

Figure 1: Spatial patterns of annual-mean temperature trends (°C/decade) in different 
observational datasets. At each grid-cell, trends were estimated by a least-squares linear 
fit to times series of temperature anomalies over 1950-1999. Trends that are not 
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statistically different from zero at the 80% confidence level are in white. The 150 meter 
contour roughly delineates California’s Central Valley.

Figure 2: As for Figure 1, but for trends in diurnal temperature range.
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Figure 3: Observed temperature trends (solid dots) and model-derived estimates of the 
95% confidence interval natural internal variability. Model results are based on multi-
model trend distributions (see main text). The horizontal dotted lines are 1.96 × sE, the 
standard error of the sampling distribution of unforced trends. Results are for (a) daily-
mean temperature; (b) daily minimum temperature; (c) daily maximum temperature; (d) 
diurnal temperature range. Vertical bars represent the standard error for the trend 
accounting for the temporal autocorrelation of the regression residuals (Santer et al., 
1999) × 1.641 to assess the statistical significance of the trends (one-tailed t-test). Circles 
are closed when the empirical probability for the magnitude of the unforced trends to 
exceed that of observed trends is less than 5%. Data from different USHCN stations are 
equally weighted.
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Figure 4: Comparison of statistical properties of four simulated and observed 
temperature indices in California. Upper panels: standard deviations of filtered and 
unfiltered anomaly data for 1915-1999 (except for UW2, UW1 and UD, see text). Lower 
panels: 1950-1999 trends in summer (JAS) and winter (JFM). Observational data sets are 
in black and include a 1σ trend confidence interval adjusted for temporal autocorrelation 
effects. Individual realizations from 22 global climate models are in grey. Vertical and 
horizontal lines denote the minimum and maximum observed values, and facilitate 
comparison with model results.
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Table 1: Observational data sets, including their spatial and temporal resolution.

Acronym Affiliation Period* Region Res Tave Tmin Tmax DTR Reference
UW1 University Washington 1949-1999 U.S. 1/8º Y Y Y Y Maurer et al. (2002)

UW2 University Washington 1915-2003 West U.S. 1/8º Y Y Y Y Hamlet and Lettenmaier (2005)

UDv1.02 University Delaware 1950-1999 Global 1/2º Y - - - Willmott and Matsuura (1998)

NOAA NOAA NCDC 1851-2000 Global 5º Y - - - Eischeid et al. (1995)

HadCRUT2v Hadley Center 1856-2003 Global 5º Y - - - Jones and Moberg (2003)

CRU2.0 University East Anglia 1901-2000 Global 1/2º Y Y Y Y Mitchell et al. (2004)

CRU2.1 University East Anglia 1901-2002 Global 1/2º Y Y Y Y Mitchell and Jones (2005)
USHCN Oak Ridge Nat. Lab. variable U.S. N/A Y Y Y Y Karl et al. (1990)

* in complete years 

Table 2: Characteristics of 20th century climate simulations and their associated models 
and included external forcings that were used to estimate natural internal climate 
variability. See PCMDI web site (http://www-pcmdi.llnl.gov for more details).

Model Designation Resolution Originating group(s) Ra Rb Forcings Y1 YN L Na Nb

CCSM3 T85 NCAR, USA 6 2 ABCEFJK 280 509 230 19 –
GFDL-CM2.0 2.0 × 2.5° GFDL, USA 3 – ABCEFIJK 1 500 500 46 –
GFDL-CM2.1 2.0 × 2.5° GFDL, USA 3 – ABCEFIJK 1 500 500 46 –

GISS-EH 4.0 × 5.0° GISS, USA 5 – ABCDEFGHIJ 188 227 400 36 –
GISS-ER 4.0 × 5.0° GISS, USA 9 – ABCDEFGHIJ 190 240 500 46 –

MIROC3.2(medres) T42 CCSR/NIES/FRCGC, Japan 3 3 ABCEFGHIJK 230 279 500 46 46
MIROC3.2(hires) T106 CCSR/NIES/FRCGC, Japan 1 1 ABCEFGHIJK 1 100 100 6 6
MIUB/ECHO-G T30 MIUB/METRI/MD 5 – ACDJK 186 220 341 30 –

MRI-CGCM2.3.2 T42 MRI, Japan 5 – ACJK 185 220 350 31 –
PCM T42 NCAR, USA 4 2 ABCJK 451 107 629 58 –

UKMO-HadGEM1 1.25 ×1.87° UKMO, UK 2 – ABCDEFIJK 192 209 172 13 –
BCCR-BCM2.0 T63 BCCR, Norway 1 1 AC 185 209 250 21 21

CCCma-CGCM3.1(T47) T47 CCCma, Canada 5 – AC 185 285 100 96 –
CCCma-CGCM3.1(T63) T63 CCCma, Canada 1 – AC 185 219 350 31 –

CNRM-CM3 T63 CNRM, France 1 – ABCE 193 242 500 46 –
CSIRO-Mk3.0 T63 CSIRO, Australia 3 3 AC 187 225 380 34 34

ECHAM5/MPI-OM T63 MPI, Germany 3 – ABCD 215 265 506 46 –
FGOALS-g1.0 T42 LASG/IAP, China 3 – AC 185 219 350 31 –

GISS-AOM 3.0 × 4.0° GISS, USA 2 2 ACH 185 210 251 21 21
INM-CM3.0 4.0 × 5.0° INM, Russia 1 1 ACJ 187 220 330 29 9
IPSL-CM4 2.5 × 3.75° IPSL, France 1 – ACD 186 235 500 46 –

UKMO-HadCM3 2.5 × 3.75° UKMO, UK 2 – ABCD 185 220 342 30 –
TOTAL – 69 15 – – – – 80 13

Ra, Rb: number of 20th century climate realizations available for Tave and for Tmin, Tmax. 
Forcing used in the 20th century runs (Santer et al., 2006): A: Greenhouse gases, B: Ozone, C: sulfate aerosol direct effects, D: sulfate aerosol indirect 
effects, E: black carbon, F: organic carbon, G: mineral dust, H: sea salt, I: land-use change, J: Solar Irradiance, K: volcanic aerosols. 
Y1, YN, L: model-specific choices for the starting year, the ending year, and the length (in years) of the control runs. 
Na, Nb: number of overlapping 50-year linear trends obtained from each control run for Tave and for Tmin, Tmax, DTR (when data are supplied).




