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Automated front-end sample preparation technologies can significantly enhance the sensitivity and reliability of 
biodetection assays [1].  We are developing advanced sample preparation technologies for biowarfare detection and 
medical point-of-care diagnostics using microfluidic systems with continuous sample processing capabilities.  Here 
we report an electrophoretically assisted acoustic focusing technique to rapidly extract and enrich viral and bacterial 
loads from ‘complex samples,’ applied in this case to human nasopharyngeal samples as well as simplified 
surrogates.  The acoustic forces capture and remove large particles (> 2 µm) such as host cells, debris, dust, and 
pollen from the sample.  We simultaneously apply an electric field transverse to the flow direction to transport small 
(≤ 2µm), negatively-charged analytes into a separate purified recovery fluid using a modified H-filter configuration 
[Micronics US Patent 5,716,852]. 
 
Hunter and O’Brien combined transverse electrophoresis and acoustic focusing to measure the surface charge on 
large particles, [2] but to our knowledge, our work is the first demonstration combining these two techniques in a 
continuous flow device.  Marina et al. demonstrated superimposed dielectrophoresis (DEP) and acoustic focusing 
for enhanced separations [3], but these devices have limited throughput due to the rapid decay of DEP forces.  Both 
acoustic standing waves and electric fields exert significant forces over the entire fluid volume in microchannels, 
thus allowing channels with larger dimensions (> 100 µm) and high throughputs (10-100 µL/min) necessary to 
process real-world volumes (1 mL). 
 
Previous work demonstrated acoustic focusing of microbeads [4] and biological species [5] in various geometries.  
We experimentally characterized our device by determining the biological size-cutoff where acoustic radiation 
pressure forces no longer transport biological particles.  Figure 1 shows images of E.Coli (~1 µm) and yeast 
(~4-5 µm) flowing in a microchannel (200 µm deep, 500 µm wide) at a flow rate of 10 µL/min.  The E.Coli does 
not focus in the acoustic field while the yeast focuses at the channel centerline.  This result suggests the acoustic 
size-cutoff for biological particles in our device lies between 2 and 3 µm.   
 
Transverse electrophoresis has been explored extensively in electric field flow fractionation [6] and isoelectric 
focusing devices [7].  We demonstrated transverse electrophoretic transport of a wide variety of negatively-charged 
species, including fluorophores, beads, viruses, E.Coli, and yeast.  Figure 2 shows the electromigration of a 
fluorescently labeled RNA virus (MS2) from the lower half of the channel to the upper half region with continuous 
flow. 
 
We demonstrated the effectiveness of our electrophoretically assisted acoustic focusing device by separating virus-
like particles (40 nm fluorescent beads, selected to aid in visualization) from a high background concentration of 
yeast contaminants (see Figure 3).  Our device allows for the efficient recovery of virus into a pre-selected purified 
buffer while background contaminants are acoustically captured and removed.  We also tested the device using 
clinical nasopharyngeal samples, both washes and lavages, and demonstrated removal of unknown particulates 
(>2 µm size) from the sample.  Our future research direction includes spiking known amounts of bacteria and 
viruses into clinical samples and performing quantitative off-chip analysis (real-time PCR and flow cytometry). 
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Figure 1.  Acoustic focusing of yeast and E.Coli in our 
microfluidic device (top view) (a) Sample and buffer 
streams converge in the main channel where the acoustic 
forces are applied. Yeast (b) and E.Coli (d) flowing with 
the field off.   (c) Yeast (~4-5 µm) is focused to the channel 
centerline while the (e) E.Coli (~1 µm) is not affected by 
the acoustic field.  The bright spots in the lower half of the 
channel in images (b) and (c) are yeast cells adsorbed to 
the glass walls. 
 

 

Figure 2. Electrophoretic transport of fluorescently-
labeled MS2 virus. (a) The cross-flow electrophoresis 
device continuously processes sample with fluid flow from 
left-to-right and electrophoretic transport from bottom-to-
top.  Fluorescently-labeled MS2 virus before (b) and after 
(c) the electric field is applied at a downstream location.  
(b) Virus flowing in the sample stream when the applied 
voltage is off.  The clear liquid side of the channel is dark, 
indicating a lack of virus.  (c) Transport of virus from the 
lower half of the channel to the upper half when an 
appropriate voltage is turned on. All images are top view. 
 

 
Figure 3. Multi-field separation of yeast cells and 40 nm 
polystyrene microbeads (virus-like particles).  (a) Yeast 
cells and a mixture of yeast cells and virus-like particles 
are injected into the top and bottom streams, respectively.  
(b) Acoustic field is turned on (yellow arrows), and only 
yeast cells are focused at center of the microchannel.  The 
virus-like particles are ‘acoustically invisible’ and remain 
in the bottom-half of the channel.  (c) Electric field is also 
turned on across the microchannel (orange arrow), and 
the small virus-like particles electromigrate through the 
acoustic capture node to the top region. All images are 
top view. 
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