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the mathematical developments required to meet
the future science and engineering needs of the
DOE. It is important to emphasize that the pan-
elists were not asked to speculate only on advances
that might be made in their own research special-
ties. Instead, the guidance this panel was given was
to consider the broad science and engineering chal-
lenges that the DOE faces and identify the corre-
sponding advances that must occur across the field
of mathematics for these challenges to be success-
fully addressed. As preparation for the meeting,
each panelist was asked to review strategic planning
and other informational documents available for
one or more of the DOE Program Offices, including
the Offices of Science, Nuclear Energy, Fossil
Energy, Environmental Management, Legacy
Management, Energy Efficiency & Renewable
Energy, Electricity Delivery & Energy Reliability
and Civilian Radioactive Waste Management as well
as the National Nuclear Security Administration.
The panelists reported on science and engineering
needs for each of these offices, and then discussed
and identified mathematical advances that will be
required if these challenges are to be met.

A review of DOE challenges in energy, the
environment and national security brings to light a
broad and varied array of questions that the DOE
must answer in the coming years. A representative
subset of such questions includes:

• Can we predict the operating characteristics of
a clean coal power plant?

• How stable is the plasma containment in a
tokamak?

• How quickly is climate change occurring and
what are the uncertainties in the predicted time
scales?

• How quickly can an introduced bio-weapon
contaminate the agricultural environment in
the US?

• How do we modify models of the atmosphere
and clouds to incorporate newly collected data
of possibly of new types?

• How quickly can the United States recover if
part of the power grid became inoperable?

Over the past half-century, the Applied
Mathematics program in the U.S. Department of
Energy’s Office of Advanced Scientific Computing
Research has made significant, enduring advances
in applied mathematics that have been essential
enablers of modern computational science.
Motivated by the scientific needs of the Department
of Energy and its predecessors, advances have been
made in mathematical modeling, numerical analysis
of differential equations, optimization theory, mesh
generation for complex geometries, adaptive algo-
rithms and other important mathematical areas.
High-performance mathematical software libraries
developed through this program have contributed as
much or more to the performance of modern scien-
tific computer codes as the high-performance com-
puters on which these codes run. Funding from this
program has assisted generations of graduate and
postdoctoral students who have continued on to
populate and contribute productively to research
organizations in industry, universities and federal
laboratories. The combination of these mathemati-
cal advances and the resulting software has enabled
high-performance computers to be used for scientif-
ic discovery in ways that could only be imagined at
the program’s inception.

Our nation, and indeed our world, face great
challenges that must be addressed in coming years,
and many of these will be addressed through the
development of scientific understanding and engi-
neering advances yet to be discovered. The U.S.
Department of Energy (DOE) will play an essential
role in providing science-based solutions to many
of these problems, particularly those that involve
the energy, environmental and national security
needs of the country. As the capability of high-
performance computers continues to increase, the
types of questions that can be answered by apply-
ing this huge computational power become more
varied and more complex. It will be essential that
we find new ways to develop and apply the mathe-
matics necessary to enable the new scientific and
engineering discoveries that are needed.

In August 2007, a panel of experts in applied,
computational and statistical mathematics met for a
day and a half in Berkeley, California to understand
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• What are optimal locations and communication
protocols for sensing devices in a remote-sens-
ing network?

• How can new materials be designed with a
specified desirable set of properties?

In comparing and contrasting these and other
questions of importance to DOE, the panel found
that while the scientific breadth of the require-
ments is enormous, a central theme emerges:
Scientists are being asked to identify or provide
technology, or to give expert analysis to inform
policy-makers that requires the scientific under-
standing of increasingly complex physical and
engineered systems. In addition, as the complexity
of the systems of interest increases, neither experi-
mental observation nor mathematical and computa-
tional modeling alone can access all components of
the system over the entire range of scales or condi-
tions needed to provide the required scientific
understanding.

These observations motivated the panel to artic-
ulate a new framework for describing the applied
mathematical developments that will be required to
address future scientific and engineering challenges
for DOE. Two significant reasons make this new
framework valuable. The first is that it aligns the
thinking about future mathematics research for
DOE around the most difficult scientific and engi-
neering problems that the DOE faces in coming
years. The second is that it identifies needed math-
ematical advances in a way that clearly articulates
how current strengths in the DOE Applied
Mathematics program can be leveraged and, per-
haps more importantly, where significant gaps exist
in the mathematics that must be developed to
understand these complex systems. Expressed in
terms of applied mathematics research topics, these
findings can be summarized as follows:

• DOE must leverage the current strengths of the
Applied Mathematics program in predictive
simulation and modeling, expanding these
capabilities to more fully address simulation
and modeling for complex systems. Areas that
are not adequately developed include the
development and analysis of methods to model
large stochastic systems, and techniques for
decomposing complex systems into systems of
canonical subsystems. The mathematical

underpinnings of sensitivity analysis, uncertain-
ty quantification, risk analysis, optimization
and inversion must also be significantly
expanded to address the challenges presented
by complex systems.

• It is essential that the program increasingly
focus its perspective on the end goal of devel-
oping mathematical approaches for understand-
ing the complex systems themselves. This
recognizes that breaking problems down into
simpler components cannot be the only mathe-
matical approach, but must be complemented
with the development of modeling, simulation
and analysis tools that deal with the full com-
plex systems.

• The mathematics for analyzing very large
amounts of data, whether produced by simula-
tions or through experimental observations,
requires serious development. A particular
challenge is to enhance the theory and tools for
data-model fusion for complex systems, where
observational or experimental data are incorpo-
rated in an essential way with simulation and
modeling.

The full panel report describes these challenges
in terms of three encompassing themes together
with high-level strategies for addressing the gaps in
our understanding. These are summarized below:

1. Predictive modeling and simulation of
complex systems

Advance the fidelity, predictability and sophistication
of modeling and simulation methodologies for complex
systems:

• Develop analytical and computational
approaches needed to understand and model
the behavior of complex multiphysics, and mul-
tiscale phenomena.

• Enhance the theory and tools for complex mul-
tiscale, multicomponent models when observa-
tional or experimental data are incorporated in
an essential way.

• Develop new approaches for efficient modeling
of large stochastic systems.

• Develop mathematical techniques for decom-
posing complex systems into systems of canoni-
cal subsystems and modeling their behavior.
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2. Mathematical analysis of the behavior
of complex systems

Address the challenges of analyzing and understanding
the behavior of mathematical models for complex
scientific and engineering systems:

• Develop sound, computationally feasible strate-
gies and methods for the collection, organiza-
tion, statistical analysis and use of data
associated with complex systems.

• Advance the theory and tools for sensitivity
analysis to address the challenges posed by
complex multiscale, multicomponent models.

• Significantly advance the theory and tools for
quantifying the effects of uncertainty and
numerical simulation error on predictions
using complex models and when fitting com-
plex models to observations.

3. Using models of complex systems to
inform policy makers

Develop the mathematics needed to inform policy mak-
ers based on the prediction, optimization and under-
standing of complex systems:

• Significantly advance the mathematics that sup-
ports risk analysis techniques for policy-mak-
ing involving complex systems that include
natural and engineered components, and eco-
nomic, security and policy consequences.

• Develop techniques for formulating, analyzing
and solving challenging optimization problems
arising in complex natural and engineered sys-
tems.

• Develop techniques for addressing the mathe-
matical and computational difficulties of
inverse problems associated with complex
systems.

In addition to developments in fundamental
mathematics in these areas, the program must
continue to develop the high-performance software
that translates mathematical advances for complex
systems into enabling computational tools that can
be used by computational scientists. This will also
depend on complementary investments focused on
understanding and exploiting the latest high-per-
formance hardware developments as they are antici-
pated and become available.

Finally, the panel paid special attention to the
opportunities that exist for innovative approaches in
program leadership that can promote innovation and
discovery in applied mathematics. The panel report
recommends that the program encourage risk-taking
and innovation in research by taking steps that
reduce the perceived risk to investigators while at
the same time ensuring accountability for their
research activities. Rewarding investigators who
consistently produce innovative and mission-relevant
research results with continued long-term support
encourages risk-taking and recognizes that “transfor-
mational” science is often the result of the concen-
trated long-term development of understanding.
Introducing new ideas into research efforts is also
an essential element of a successful program. This
can be enhanced by providing opportunities for
young researchers to participate in the program,
and for researchers to interact and collaborate in
intense environments such as workshops and sum-
mer schools. Finally, the effective application of
mathematics requires deep understanding of the
underlying scientific and engineering applications.
By encouraging and supporting early interaction and
collaboration of mathematicians with their colleagues
in science and engineering fields, the program will
accelerate the development of successful applications
of mathematics to the scientific and engineering chal-
lenges that the DOE must address for the future.

EXECUTIVE SUMMARY 3
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1. Applied Mathematics for the Department of Energy

nuclear waste storage and environmental cleanup
problems all require high-fidelity models for sub-
surface flow that integrate the inherent uncertain-
ties in subsurface characterization with an
integrated capability for risk management10.
Climate modeling involves a number of similar
considerations and introduces additional elements
of data assimilation to integrate observational data
directly into the simulation process.

Other mission-critical applications require sub-
stantial improvements in the ability to mathemati-
cally model behavior at microscopic or quantum
mechanical scales. The design of systems to har-
ness biochemical processes for the production of
biofuels requires new approaches for modeling
excited states of chemical systems11. The design of
new materials at the nanoscale, such as high tem-
perature superconductors, requires new, more fun-
damental approaches to computing the properties
of materials from first principles12. Understanding
the behavior of biological systems at microscopic
scales requires methodologies for capturing the
effect of fluctuations in nonequilibrium thermody-
namic systems.

A class of applications of emerging importance
to DOE focuses on the behavior of complex net-
works. Typical of this type of problem are issues of
reliability and security of the nation’s electrical
power grid. In this case, the system is a hierarchi-
cal network with independent entities controlling
local subnets. System-level models at scales ranging
from individual power plants to the international
energy distribution systems raise problems in poli-
cy-making and risk analysis. Another example
involves the logistical issues arising in the trans-
portation of nuclear waste, which are characterized
by discrete optimization problems13.

Data are no longer simple and researchers find
themselves grappling with ever-increasing amounts
of data14. Today, DOE applications such as climate
modeling can bring massive amounts of heteroge-
neous data together that must be understood both
alone and in the context of complex simulations.
High-energy physics experiments will soon produce
enormous amounts of data that must be managed,
transmitted and analyzed. Biology is becoming an

1.1 DOE mission drivers and mathematical
challenges

As the U.S. Department of Energy (DOE)
works to meet its energy, environmental and
national security missions, increasingly complex
scientific and technological challenges must be
addressed. New energy technologies will be
required both for tapping the potential of new
sources of energy and for effectively utilizing exist-
ing energy resources. Policy makers will need to
understand quantitatively the impact of energy
policies on the environment and be able to evaluate
the risks associated with different strategies for
waste storage and environmental cleanup. DOE
must also ensure the safety and reliability of the
nuclear stockpile while preventing the proliferation
of nuclear materials1.

Applied mathematics has an increasingly
important role to play in the support of these
expanding scientific and technological challenges.
Where simple models, simple approximations and
one-off solutions once sufficed, the need now exists
to develop, simulate, analyze and understand mod-
els for complex combinations of processes with
multiple scales in space and time2,3,4,5. Policy mak-
ers need science-based analyses of these complex
models, supported by clearly defined margins of
uncertainty and statistical characterizations. When
observational or experimental measurements are
available, these must be incorporated with mathe-
matical rigor into the scientific analyses that sup-
port the creation of critical national policy. The
purpose of this report is to provide a description of
the applied mathematics advances that will be
required to help answer the many mission-critical
questions that DOE faces in the coming years.

Although the issues associated with meeting
the DOE mission span an enormous range of appli-
cations, from a mathematical perspective a number
of specific themes emerge. Next-generation nuclear
power plants6, fusion reactors7,8, clean coal tech-
nologies and new engine designs all require an abil-
ity to model systems that incorporate a variety of
physical processes across a broad range of scales.9

Carbon sequestration, enhanced oil recovery,
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increasingly quantitative science with the advent
of unprecedented high-throughput experimental
measurement techniques, and correspondingly the
ability to digest and analyze huge amounts of het-
erogeneous data has become essential for scientific
discovery in the biological arena. It is therefore
crucial that sound strategies and methods be devel-
oped for the collection, organization, analysis, and
representation of the results for extremely hetero-
geneous and diverse sources of information. These
methodologies must integrate the diverse sources of
data and information and their associated uncer-
tainties to develop full distributions for perform-
ance metrics that can aid DOE policy-making in
the face of uncertainty.

Each of the problem areas discussed above is
complex and multifaceted and will require collabo-
rations that encompass a broad range of expertise.
Each solution is a multi-step process embodying a
number of elements. In many cases new and appro-
priate mathematical models need to be formulated.
These models must incorporate the appropriate
coupling between disparate length and time scales
and between fundamentally different types of
processes, and may also need to incorporate rele-
vant experimental or observational data. Some type
of solution or approximation procedure needs to be
developed to quantify the behavior of the model.

This quantification should include a characterization
of inherent uncertainties in the model. The behavior
of the model must be analyzed in the context of
available data that characterizes the observed
behavior of the system. This type of analysis can
range from statistical behavior of simulation data to
the solution of inverse problems to dynamic data
assimilation that integrates simulation with observa-
tion. Finally, the models that have been developed
can be used for design optimization, risk analysis
and policy-making.

Applied mathematics has a substantial role to
play in all aspects of the solution process. The DOE
Applied Mathematics Program has traditionally
played a strong role in the development of numeri-
cal methods for differential equations, numerical
linear algebra and optimization. Developing method-
ologies for solving the classes of problems discussed
above will certainly build on that expertise; how-
ever, applied mathematics must be involved more
broadly in the overall solution strategy. Applied
mathematicians must work collaboratively with
domain scientists and engineers in the entire
process from problem formulation through the
analysis and integration of data to the design/ poli-
cy-making process. New mathematical approaches
will be required at each step in the solution process
to adequately address DOE mission requirements.

FIGURE 1. Accelerating a thermonuclear flame
to a large fraction of the speed of sound (possi-
bly supersonic) is one of the main difficulties in
modeling Type Ia supernova explosions, which
likely begin as a nuclear runaway near the cen-
ter of a carbon-oxygen white dwarf. Algorithms
developed under the auspices of the DOE
Applied Mathematics program were used to
perform this simulation showing an unstable
outward propagating flame. Source: Center for
Computational Science and Engineering,
Lawrence Berkeley National Laboratory
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1.2 Historical successes of the DOE Applied
Mathematics program

The use of mathematical and computational
models to simulate physical events or the behavior
of engineered systems is arguably one of the most
important developments in science and technology
of the past century. Today, computational models
based on mathematical characterizations of theory
enable scientists and engineers to predict the behav-
ior of extremely complex natural and human-made
systems and provide a basis for creating policy criti-
cal to the competitiveness and well being of the
nation. The DOE Applied Mathematics program has
made substantial contributions to this development.

The growth over the past decades in the raw
processing speed of computer processing units has
been staggering. However, as impressive as this
growth in computing power has been, our modern
scientific computing capability would not have
developed without an equally important investment
in the underlying enabling mathematics. John von
Neumann recognized this essential factor, and in
the early 1950s, having become a Commissioner for
the U. S. Atomic Energy Commission, asked Los
Alamos computer scientist John R. Pasta to create a
contract research program for applied mathematics
and computer science. This AEC program, which
funded research mathematicians and computer
scientists at the AEC Laboratories and at U.S. uni-
versities, was the beginning of the present-day DOE

Applied Mathematics program. During its 50 years
of existence, the Applied Mathematics program has
been responsible for supporting fundamental math-
ematical developments that have substantially
advanced research in many scientific fields. The
strength of these mathematical results derives not
only from the development of algorithms that trans-
late scientific theory into discrete equations that a
computer can solve, but in the mathematical and
numerical analysis that provides the basic under-
standing of both the scientific theories and their
numerical counterparts.

The impact of the Applied Mathematics pro-
gram on the field of fluid dynamics is one signifi-
cant example of these contributions. In the early
1950s, researchers were interested in fluid behavior
in regimes that allowed the formation of shocks—
very rapid transitions in fluid velocity and pressure.
Motivated by the need to understand and simulate
these shock physics problems, Peter Lax and his col-
leagues at the Courant Institute of Mathematical
Sciences began to look in more detail at the theory
of hyperbolic systems of conservation laws, the
category of nonlinear partial differential equations
that describes the behavior of shocks and other
wave-like phenomena in physics. A substantial
body of work, much of it funded by the Applied
Mathematics program, was summarized by Lax in
his 1973 SIAM monograph entitled “Hyperbolic
Systems of Conservation Laws and the Mathematical
Theory of Shock Waves.15” Lax provided us with an
elegant description of the theory for generalized
solutions to the initial value problem for nonlinear
hyperbolic systems that answers many of the basic
structural questions about solutions to shock prob-
lems. This theory provided the foundation needed
for applied mathematicians in the 1970s and 1980s
to develop sophisticated new methods for solving
systems of conservation laws that form the core of
most modern compressible flow simulation codes
used at universities and at DOE and other govern-
ment research institutions. Additional mathematical
developments, also funded in part by the Applied
Mathematics program, established the framework to
extend these types of approaches to a broader range
of problems, including subsurface flow, combustion
and atmospheric modeling.

The DOE Applied Mathematics program has
also had significant impact on the field of mathe-
matical optimization. For more than 30 years, DOE

FIGURE 2. Moore’s original 1965 graph showing the cost per transistor as
a function of the number of transistors on a chip. Moore predicted that the
number of transistors at the curve minimum, which represents the most
efficient chip capacity, would double every two years.
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has supported research on a broad spectrum of top-
ics in optimization, including theory and software
development, with emphasis on their fruitful inter-
play. Researchers at Argonne National Laboratory,
in collaboration with university colleagues, devel-
oped a substantial body of theory that was immedi-
ately, and still is, regarded as the foundation of
nonlinear optimization. This theory in turn led to
the development of the unconstrained optimization
methods that form the mainstay of modern opti-
mization. An integral part of the Argonne group’s
accomplishments was software based on sound
mathematical theory. The MINPACK-1 package was
among the first to include reliable routines for
unconstrained optimization, nonlinear equations
and nonlinear least squares. Another group at
Stanford University developed both theory and
software for constrained optimization problems
with an emphasis on explaining the behavior in
practice of the implemented methods. All of this
software has been used to solve problems from a
variety of disparate applications, including the opti-
mal power flow problem, real-time optimization of
a hydroelectric plant, optimal control in networks,
calculation of beam emittances in a particle accel-
erator, and trajectory optimization.

1.3 Future success of the DOE Applied
Mathematics program

Fluid dynamics and optimization are just two
examples of areas on which this program has had
enormous impact. Similar stories can be told about
the advances in numerical linear algebra, dynami-
cal systems, bifurcation theory, and many other
areas. Future success of the program will be tied
to our ability to make substantial investments to
reach the vision of using high-performance-com-
puting-based predictive simulation and analysis of
complex natural and engineered systems as a basis
for policy-making involving critical energy, envi-
ronmental and national security issues. These
compelling opportunities for new mathematical
and statistical approaches to DOE’s research chal-
lenges are predicated upon continued strength in
fundamental areas of applied and computational
mathematics. Areas such as the solution of ordi-
nary differential equations, computational geome-
try, adaptive meshing, harmonic analysis, graph
algorithms, and linear algebraic systems have made
major progress in past decades in both theory and
high-quality software. Nonetheless, there is a clear
need for continued development of these and other
more mature mathematical areas at their frontiers
to meet the vision just articulated.

The next chapter examines DOE’s future
requirements in detail and identifies some of the
prototypical problem areas where new research in
applied mathematics can significantly advance our
ability to find scientific and engineering solutions
to pressing problems of national interest. From this
survey of problems we extract a number of funda-
mental mathematical areas where new mathemati-
cal research is needed and identify specific
research opportunities that would significantly
advance our capabilities in these areas. These
advancements can, in turn, help meet mission-criti-
cal needs throughout DOE. In the final chapter we
identify some of the guiding principles for ensuring
the effectiveness of a research program in applied
mathematics and maximizing its impact on DOE
mission problems.
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For centuries, mathematics has provided the
language for expressing scientific theories that
describe how nature behaves. Now, mathematically-
based computational models enable scientists to
move beyond using mathematics for its descriptive
capabilities alone. Modern applied mathematics
enables the prediction and understanding of the
behavior of extremely complex natural and human-
made systems and provides a basis for creating pol-
icy critical to the competitiveness and well being of
the nation.

For the discussion below, it will be useful to
have a common understanding of what we mean by
a “complex system.” A complex system is a collection
of multiple processes, entities or nested subsystems
where the overall system is difficult to understand
and analyze because of the following properties:

• The system components do not necessarily
have mathematically similar structures and
may involve different scales in time or space;

• The number of components may be large,
sometimes enormous;

• Components can be connected in a variety of
different ways, most often nonlinearly and/or
via a network. Furthermore, local and system-
wide phenomena may depend on each other in
complicated ways;

• The behavior of the overall system can be diffi-
cult to predict from the behavior of individual
components. Moreover, the overall system
behavior may evolve along qualitatively differ-
ent pathways that may display great sensitivity
to small perturbations at any stage.

Such systems are often described as “multicom-
ponent systems,” or when the components are
physics based, “multiphysics systems.” When the
components involve multiple spatial or temporal
scales, the adjective “multiscale” can be used as well.

We also mean to discuss complex systems in
the broadest possible sense. Examples of systems
that we view to be complex include:

• Problems that involve a single physical system,
which becomes complex when modeled using a
multiscale approach. An example occurs in the

composite design of materials when a hybrid
discrete-continuum model is used to describe
atomistic-macroscopic phenomena.

• Problems that involve the coupling of multiple
physical processes described with different models.
An example occurs in the modeling of carbon
sequestration, where a quantitative study may
require the simulation of multiple fluid phases,
geomechanics, and a complex set of biogeo-
chemical reactions over a wide range of scales.

• Problems that describe complex engineered sys-
tems. An example is the electric power grid,
where models may involve inequality and
other types of constraints, severe nonlinearities
and discontinuities, a mixture of continuous
and integer variables, a large number of vari-
ables, a huge range of scales, and non-unique
solutions that may make it difficult to charac-
terize the most physically reasonable result.

Careful observation has always been the main-
stay of scientific and engineering discovery. With

2. Advancing Mathematics for Modeling, Simulation,
Analysis and Understanding of Complex Systems

FIGURE 4. Understanding complex systems will require a combination of
experimental and computational techniques. Left: experimental images of
the diffraction pattern from a cylindrically converging shock that hits
seven obstacles. Right: images from an adaptive numerical simulation,
showing excellent agreement with the experiment. Source: Center for
Applied Scientific Computing, Lawrence Livermore National Laboratory

Experiment Computation
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the development of modern mathematical and com-
putational models for complex systems, computa-
tional prediction now complements detailed
experiment and observation as a tool for developing
scientific understanding. However, as the systems
we are interested in become ever more complex,
neither experimental observation nor mathematical
and computational modeling alone can access all
components of a complex system over the entire
range of relevant scales. Reductionist approaches
that seek to obtain understanding by breaking com-
plex systems into simpler components may miss
emergent, and often significant behavior that arises
due to the interaction of these components in non-
linear ways. Researchers are now recognizing that
through the fusion of observational data and predic-
tive model-based simulation, a much fuller picture
of the behavior of complex systems can be
obtained. The “glue” that can provide this “data-
model fusion” is based on applied, statistical and
computational mathematics.

The scientific and technical issues that DOE
must address over the coming decades pose signifi-
cant challenges. The remainder of this chapter dis-
cusses the advanced predictive tools needed to
support effective policy-making by our nation’s
leaders. These tools will require new, rigorously
justified mathematical developments in predictive
modeling, simulation, analysis and understanding
of complex systems.

2.1 Predictive modeling and simulation of
complex systems

Advance the fidelity, predictability and sophistica-
tion of modeling and simulation methodologies by
developing the mathematical tools needed for the
analysis and simulation of complex systems char-
acterized by combinations of multiple length and
time scales, multiple processes or components.

The basis for policy-making based on predict-
ing and understanding complex systems depends in
an essential way on the development of mathemati-
cally rigorous, scientifically based models for those
systems. This section discusses the mathematical
developments that will be required to build multi-
scale, multiphysics and complex hybrid models. It
also considers the role of data-model fusion and sto-
chastic effects in these models. Finally, it discusses
the decomposition of complex systems into systems

of canonical subsystems and the modeling of their
behavior.

Advances in modeling complex systems will
enable DOE to answer questions such as:

• Can we predict the operating characteristics of
a clean coal power plant?

• Can we modify chemical pathways in a plant
to produce biodiesel?

• How do impurities affect the performance of a
membrane in a hydrogen fuel cell?

• What are the performance characteristics of
possible nuclear fuel sources for the next-gen-
eration nuclear reactor?

• What is the predicted land contact and force of
an Atlantic hurricane?

While modeling and simulation of complex sys-
tems has provided enormous benefits throughout
science and engineering within DOE, there is grow-
ing evidence that new developments in this disci-
pline could have profound effects on scientific
discovery and on technologies in diverse fields of
applied science. Indeed, with mathematical
advances in the areas discussed below, new model-
ing and simulation methods could revolutionize the
way science and engineering is done, complement
traditional observational science, enrich or displace
traditional experiments, and expand the vistas of

FIGURE 5. In the wake of Hurricane Katrina, U.S. Army Corps of Engineers
used supercomputers at DOE’s National Energy Research Scientific
Computing Center to simulate storm surges as a step toward improving
protective levees. The Overview simulation shows elevated storm surges
along the Gulf Coast, while the simulation detail shows highest surge ele-
vation (in red) striking Biloxi, Miss. New Orleans is the dark blue crescent
to the lower left of Biloxi. Source: U.S. Army Corps of Engineers.
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scientific discovery beyond that otherwise achiev-
able. We shall describe several areas in which fun-
damental research in applied mathematics can be
leveraged to lift modeling and simulation to a new
level and to equip many ongoing DOE programs
with powerful tools critical to achieving their mis-
sion.

2.1.1 Multiscale, multiphysics, and complex
hybrid models

Develop analytical and computational approaches
needed to understand and model the behavior of
complex, multiphysics and multiscale phenomena.

In traditional science, our knowledge of the
physical universe is generally partitioned into spe-
cific scales, spatial and temporal, from parsecs and
millennia representing the cosmos to angstroms
and femtoseconds measuring events at atomic lev-
els. The science of today and the future, however,
must cope with events that transcend many scales.
In most cases, we are lacking the mathematical
foundations to make this transition. This “tyranny
of scales,” as some call it, is arguably the most
important and difficult area of research facing
advances in modeling and simulation. This relative-
ly new field of research is referred to as multiscale
modeling16,17,18. It attempts to develop broad theo-
ries of physical behavior that connect events at
many levels, and has become a key issue in many
important applications, including the design and
analysis of advanced materials, nano-manufactur-
ing, biological systems, drug design and delivery,
and environmental models.

A parallel area of research of increasing impor-
tance is multiphysics modeling and simulation.
Today’s problems, unlike traditional science and
engineering, do not involve physical processes cov-
ered by a single traditional discipline of physics or
the associated mathematics. Complex systems
encountered in virtually all applications of interest
to DOE involve many distinct physical processes.
For example, a complete computational model of a
large-scale fusion device is a complex system
involving issues of fluid dynamics, deformation of
solid materials, thermal effects, ablation, fracture,
corrosion and aging of materials, radiation and
many other phenomena. All of these multiscale
events must be properly modeled and interconnect-
ed for a viable predictive model of the behavior of
the entire system. This requires new mathematical

methods, new algorithms, and perhaps most impor-
tantly, significant new reformulations of appropri-
ate models.

The issue of coupling models of different
events at different scales and governed by different
physical laws is largely wide open and represents
an enormously challenging area for future
research. Many of these problems involve the
intermingling of discrete models with continuum
models. For example, discrete molecular and atom-
istic models may be developed to study phenomena
in nanodevices, material defects, or particulate
flows, but these must be coupled in some appropri-
ate sense with macroscale models that depict the
medium as a continuum. These hybrid discrete-
continuum models, the multiscale events governing
their behavior, and the different physical theories
underlying the coupled components represent
challenging but vital areas of research in applied
mathematics.

FIGURE 6. The Tramonto code was used to calculate the structure of a
fluid bilayer as well as the surrounding water in the vicinity of an assembly
of antimicrobial peptides based on a coarse-grained molecular model. The
figure, based on 3-dimensional fluids-density functional theory calcula-
tions, is remarkable because it captures four distinctly different types of
fluid structure simultaneously. These Fluids-DFTs can be characterized as
integral equations of finite range that are neither sparse nor dense matrix
problems. The theories are solved with a specialized segregated Schur
complement approach developed at Sandia National Laboratories (SNL) for
this class of problems. The particular solution shown in the figure was
obtained as a result of coupling the Fluids-DFT algorithms with LOCA (the
Library of Continuation Algorithms – also developed at SNL). The calcula-
tions were performed on 256 processors of the Red Squall platform.
Source: Sandia National Laboratories
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Another source of complexity arises not from
multiplicity of physical process or nonlinearities,
but from the dimensionality of the problem.
Prototypical of this source of complexity are prob-
lems requiring the accurate modeling of quantum
mechanical effects. Quantum mechanical systems
have three spatial dimensions for each atomic par-
ticle in the system. Traditionally, assumptions are
introduced at the level of the formulation to reduce
this dimensionality. Mathematical techniques are
needed to derive computational approximations
that are appropriate when traditional assumptions
are not applicable.

Specific strategies for meeting these challenges
are to:

• Develop analytical tools for decomposing com-
plex, multiphysics systems into their compo-
nent processes and for elucidating the coupling
between these component pieces;

• Develop methodologies for representing behav-
ior at fine scales in models for the system at
larger scales. Develop the corresponding ana-
lytical tools and computational approaches
needed to quantify the impact of the fidelity of
finer-scale models on large-scale dynamics;

• Develop algorithmic techniques appropriate for
emerging computer architectures for simulating

multiphysics and multiscale processes with
quantifiable fidelity;

• Develop and analyze numerical methods for
hybrid models that couple continuum and dis-
crete processes. How do changes in the discrete
variables affect the accuracy of the continuum
part of the model?

• Develop approaches for deriving computation-
ally tractable approximations to systems that
are formulated in very high dimensional
spaces, such as those arising in quantum
mechanics.

2.1.2 The role of data-model fusion in prediction
Enhance the theory and tools for complex multi-
scale, multicomponent predictive models when
observational or experimental data are incorpo-
rated in an essential way.

The fusion of observational and experimental
data with advanced simulation promises to provide
greater understanding of complex multicomponent
multiscale systems than either approach alone can
achieve. For example, experimental measurements
are limited both in terms of the kind and frequency
of observations that can be taken and may only
provide access to limited aspects of a complex
system. Predicting the long-term safety of storing

FIGURE 7. A multi-physics multi-domain
computation of thermal-hydraulics conju-
gate-heat-transfer involving fluid flow past
nine fuel rods in a simulated nuclear reactor.
The interior of each fuel rod is modeled as a
solid with heat transfer and is coupled to an
incompressible fluid that flows from bottom
to top in the region around the rods. Source:
Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory
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of the current and past states of a system are incor-
porated into the simulation regularly with the
objective of producing a data-informed analysis
that can predict states outside the observation
range. This approach has been used successfully to
improve weather forecasts, and has potential broad
applicability to many DOE applications.

The general state of the art in theory and com-
putational methodology for data-model fusion is
woefully underdeveloped, despite significant suc-
cesses in particular applications. Although there
are many approaches, as yet there is no standard
software. What is needed are rigorous mathemati-
cal frameworks and efficient, robust implementa-
tions for data assimilation, including the
development of suitable metrics for comparing
model output to system observation. New
approaches that move past the standard methodolo-
gy, e.g., based on Bayesian formulations using
Gaussian process models, are required. Given the
expense associated with model solution, approach-
es that minimize the number of simulation calcula-
tions must be developed. There are serious
implementation issues that must be addressed,
such as storage requirements for variational
approaches, advanced code generation based on
automatic differentiation, and optimal control of
computational errors in data-model fusion.

Specific strategies for meeting the challenges
presented by data-model fusion are to:

• Develop systematic mathematical approaches
for constructing nonlinear empirical models
informed by physics principles, possibly
including physically imposed constraints;

radioactive waste at the Yucca Mountain repository
provides an example of such a situation. We can
perform detailed experiments to test the safety of
waste containers, but can obtain only crude and
indirect information about other components, e.g.,
porosity of the earth substrata in the region and
frequency and duration of volcanic and seismic
activity. Moreover, we can make direct measure-
ments only over a relatively short time span in
comparison to the time span for desired prediction,
which is measured in tens of thousands of years.

There are three types of data-model fusion
based on the relative dependence on data versus
process model. First are applications where empir-
ical predictive models of system behavior are based
entirely on experimental data. These problems are
frequently high-dimensional, complex and span
both space and time, thus raising serious computa-
tional hurdles. Examples of these applications can
be found in waste management and environmental
remediation. The second are predictions based on
simulations of physics-based mathematical models.
While the predictions of system behavior are main-
ly based on knowledge of the physics, experimental
data plays a key role in determining constitutive
relations, in data and parameter values, and in the
validation of prediction results. An example is pro-
vided by the challenges associated with the design
of next-generation nuclear reactors, where both
engineering design of the reactor and performance
evaluation of potential nuclear fuels is required.
The third are applications that require a combina-
tion of experimental and model simulation known
as data assimilation. In this approach, observations

FIGURE 8. Increased computing
power and improved algorithms
enable scientists to see finer
details in climate simulations.
From the atmospheric compo-
nent of the Community Climate
Simulation Model, this visualiza-
tion shows precipitate water
from a high-resolution experi-
mental simulation (T170 resolu-
tion, about 70 km).
Source: SciDAC Earth System
Grid
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models of complex systems must correctly take into
account the uncertainty that results from experi-
mental errors and the random nature of the data
defining the system. For example, in biology, even
cells of the same type have differences—they may
be bigger or smaller, younger or older, etc., and
some system parameters can be very difficult to
measure and hence are subject to large uncertain-
ties. Uncertainties in data must be quantified and
propagated throughout the system to produce
results with quantifiable levels of uncertainty. The
uncertainties can take the form of errors and/or
variations in the data, or of stochastic perturbations
to the model due to external noise. We will say
more about this huge and complex problem later in
our discussion of the role of data and of the quan-
tification of uncertainty. The fundamental impor-
tance of accounting for the variability of data in
computer predictions is transforming how simula-
tion is done and presents many open issues in the
mathematics of stochastic systems.

Among these questions are those concerned
with adding spatial dependency to the simulation
of discrete stochastic and multiscale systems. The
additional compleixty is analogous to that involved
in the transition from solving ordinary differential
equations to solving partial differential equationsin
continuous deterministic simulation—the computa-
tional complexity increases by several orders of
magnitude, in addition to some very challenging
physical and algorithmic issues. Both new mathe-
matics and the efficient use of advanced computer
architectures will be required to tackle these prob-
lems. The field of mathematical modeling of large-
scale stochastic systems is, in many respects, in its
infancy. This area is, therefore, a very important
one for applied mathematics research and will
impact many problems of interest to DOE.

Specific strategies in this area are to:
• Develop fast methods for discrete stochastic

simulation that can effectively utilize next-gen-
eration computer architectures;

• Develop adaptive multiscale discrete stochastic
simulation methods that are justified by theory
and which can automatically partition the sys-
tem into components at different scales;

• Develop new algorithmic approaches for large
stochastic systems, particularly spatially
dependent systems;

• Develop systematic methodologies for the esti-
mation of system parameters, constitutive rela-
tions and uncertainties based on data;

• Develop mathematically rigorous frameworks
and efficient, robust numerical methods for
data assimilation into models of complex sys-
tems that are informed by numerical analysis-
based error estimates for simulations and
statistics-based error estimates for the assimilat-
ed data.

2.1.3 Modeling stochastic effects in complex
systems

Develop new approaches for efficient modeling of
large stochastic systems.

The random nature of events that occur in the
physical world and throughout our everyday experi-
ences have been well recognized for more than a
century and a rich mathematical foundation has
been developed for studying classical stochastic sys-
tems. Recent advances in engineering and science
enabling manipulations at the microscopic scale to
drive processes at the macroscale have raised a
number of problems in which modeling of discrete
stochastic and multiscale systems is a central issue.
For example, probabilistic or stochastic approaches
must be employed in physical situations where the
number of molecules involved is too small for the
continuum hypothesis to hold, yet full deterministic
information is also not available or is inappropriate
to describe individual molecular trajectories and
collisions. Examples of stochastic behavior arise in
the study of physics of rarified gases such as those
in fusion experiments where long mean free paths
imply that fluctuation effects become important,
biological reactions where there are only a few
molecules available to interact so that traditional
(e.g. Arrhenius) reaction kinetics cannot be
employed, and in general for models that describe
the coupling of molecular physics into meso-scale
or continuum scale equations.The increasing speed
and power of computers has enabled stochastic
simulation of some relatively simple models, for
example, in molecular biology. However, the simu-
lation of more complex and spatially dependent sto-
chastic and multiscale systems will require new
mathematics to justify the necessary approximations.

Another recent development has arisen with
the realization that the predictability of large-scale
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ª Develop efficient strategies for estimating the
probabilities of rare events; particularly Monte
Carlo approaches for sampling the tails of dis-
tributions;

• Develop the mathematical tools for sensitivity
analysis, model development and optimization
of large stochastic systems.

2.1.4 Networks, systems and systems of
systems

Develop mathematical techniques for decompos-
ing complex systems into systems of canonical
subsystems and modeling their behavior.

A large number of complex systems that oper-
ate within the purview of DOE involve networks
and heterogeneous assemblies of different system
types, which collectively operate as a single system.
Advances in simulation and modeling have enabled
the solution of complex system-wide models, as
well as models of different system components.
The development of systems of systems (SOS) mod-
els, which integrate these disparate models into a
single analytic framework, is a natural extension
of this capability that promises to provide more
detailed predictions of system-wide dynamics and
interdependencies.

Motivating examples of SOS applications
include modeling the national power grid, planning
for investments in energy infrastructures, charac-
terizing supply chain management in the nuclear
power industry, and planning for the impact of new
technologies on national security. These applica-
tions address large-scale inter-disciplinary problems
involving multiple heterogeneous, distributed sys-
tems that are embedded in networks at multiple
levels and in multiple domains. SOS models often
need to be developed by integrating a variety of
existing models, and these models may need to be
developed using expertise from different disci-
plines. Thus, SOS models often represent complex
dynamics that reflect a lack of centralized policy-
making and control.

The effective size and complexity of SOS mod-
els will require a new paradigm in modeling and
simulation. Simple integration of existing modeling
capabilities is not likely to enable the modeling of
large-scale systems. Integration of models with dif-
ferent temporal and geographic scales poses many
of the same challenges seen in multiscale physical
simulation models. Further, integrating different

modeling and simulation techniques remains an
outstanding challenge in many applications. For
example, discrete network models can effectively
model interactions amongst subsystems, but these
models need to be effectively integrated with
detailed models of subsystem dynamics. Finally,
the computational cost across SOS sub-models
needs to be managed to enable effective scalability
to national-scale applications.

Another key challenge for SOS models is char-
acterizing their dynamics and optimizing their
performance. Validation of SOS models is a critical
challenge for their use in practice, and this is
hampered by the fact that it is difficult to predict
the dynamics of complex SOS models containing
heterogeneous subsystems. In practice, the analy-
sis of so-called emergent behavior in these models
will be critical for model validation, and for the
assessment of the robustness of SOS dynamics.
Further, there remain many challenges when con-
sidering the optimization of SOS models to
improve performance, as well as the analysis of
SOS dynamics in extreme conditions. Such analy-
ses are particularly challenging due to the compu-
tational cost of SOS simulation models, and thus
parallelization of SOS frameworks is an important
technical goal.

Specific strategies in this area are to:

• Develop mathematical approaches for modeling
the behavior of hierarchical networks in which
subnets are controlled autonomously. For exam-
ple, develop mathematical approaches for
analysis of networks of intelligent agents;

• Develop techniques for decomposing complex
systems into canonical subsystems.
Characterize canonical system interfaces that
support scalable SOS models;

• Develop parallelization schemes for SOS mod-
els. What parallel architectures can effectively
simulate these models? How can SOS models
exploit emerging computer architectures?

• Developing modeling approaches for using
large-scale network system models with
detailed models of subsystems;

• Develop analysis methodologies for discover-
ing and characterizing emergent SOS behavior.
How can visualization and data analysis be
used to aid the modeler in the discovery of
unexpected dynamics?
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• Develop Monte Carlo methodologies for rapid-
ly exploring worst-case scenarios in complex
systems.

2.2 Analyzing the behavior of complex systems

Address the challenges of analyzing and under-
standing the behavior of mathematical models
for complex scientific and engineering systems.

The development of models for complex sys-
tems is just one step in the process of developing
scientific understanding. Techniques are also need-
ed for analyzing the behavior of these systems. The
analysis and understanding of complex systems
will enable questions important for the DOE mis-
sion to be addressed, such as

• How stable is the plasma containment in a
Tokomak?

• Can we safely sequester CO2 underground?

• How will changes in the demand for electric
power affect the stability of the power grid?

• How quickly is climate change in the terrestri-
al system occurring and what is the uncertain-
ty in the predicted time scales? What are the
greatest sources of climate change and how can
society most effectively reduce the rate of
change?

• What is the level of safety of storing radioac-
tive waste at Yucca Mountain? What are the
possible consequences of failures in any com-
ponent of the storage facility?

• How quickly can an introduced bio-weapon
contaminate the agricultural environment in
the United States?

Research in sensitivity analysis, uncertainty
quantification and in the role of data in the analysis
and understanding of complex systems is essential
for addressing these and a host of similarly com-
plex questions for DOE.

2.2.1 The role of data in the analysis and
understanding of complex systems

Develop sound, computationally feasible strate-
gies and methods for the collection, organization,
statistical analysis and use of data associated
with complex systems.

The ability to understand the behavior and pre-
dictive capability of models for a complex system
depends in an essential way on the data associated
with that system. Such data comes in many
forms—observational data of varying quality, multi-
ple types of experimental data and the results of
computational simulations. The researcher who
uses and analyzes this data also faces significant
challenges:

• The data may be voluminous, yet provide only
a sparse representation of a complex system,
e.g. in the common case of a high dimensional
problem;

• Data is frequently both spatially and temporal-
ly heterogeneous;

• Data from experimental measurement or sim-
ple observation is rarely presented in a form

FIGURE 9. Multiphysics simulations will be required to develop a complete understanding of future magnetic fusion devices.
This figure shows potential contours of microturbulence for a magnetically confined plasma. The finger-like perturbations
(streamers) stretch along the weak field side of the poloidal plane as they follow the magnetic field lines around the torus.
Source: Princeton Plasma Physics Laboratory.
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that is immediately practical for mathematical
modeling;

• The collection, storage and processing of data
often entails tremendous cost, Therefore, care-
ful consideration must be given to what data to
collect, particularly given the vast choices of
data collection to support the development and
use of complex systems.

Mathematics will play an essential role in
addressing these challenges, providing rigorously
justified techniques for data representation and
transformation, the combining of different types of
data, and in the development of effective data col-
lection approaches, particularly in the face of con-
strained resources.

Different statistical representations of data are
useful for different kinds of analyses and mathe-
matically well-founded techniques for transforming
data are crucial. For example, transforming infor-
mation between different spatial or temporal scales
may need to be accomplished when only sparse
data are available to support a high-resolution simu-
lation, such as in simulations of subsurface porous
media flow. Statistical and mathematical analysis of
large, heterogeneous data sets is a daunting chal-
lenge, raising the need to develop new mathemati-
cal approaches for dimensional reduction in order
to discover the essential features represented in the
data. Non-linear principal components analysis,
topological data analysis techniques, support vector
machine approaches and functional data analysis
are examples of dimensional reduction approaches
that might be developed further.

In many cases, researchers are faced with many
different data sets of incongruent size, quality and
type. For example, understanding the performance
of a nuclear weapon requires the melding of data
from historical full systems tests, small-scale experi-
ments and integrated experiments with complex
physics simulations. Similar challenges abound in
climate analysis, material design, accelerator design
and combustion modeling. Bayesian, network,
graphical and hierarchical models are beginning to
emerge to address the challenges in combining het-
erogeneous data types in space and time.

Faced with an explosion of observational and
simulation technology that offers many options for
data collection and generation, often in huge quan-
tities, researchers must answer the question of how

to design experiments, both physical and computa-
tional, to optimally collect data. The traditional
design of experiments is concerned with allocating
trials within a single, typically physical, experi-
ment. As computation has emerged as an experi-
mental tool, new methods have been developed to
optimize data collected from computational experi-
ments as well. To tackle the complex multiscale,
multicomponent systems that DOE needs to under-
stand in the future, mathematics must be devel-
oped that will enable researchers to move well
beyond the design of physical and computational
experiments to the design of hybrid methods that
can simultaneously optimize data collection from
across a wide range of information types, including
multiple types of physical experiments, computa-
tional experiments, historical records and expert
judgment.

Specific strategies for meeting these challenges
are to:

• Develop efficient methods for the statistical
analysis of large, heterogeneous data sets;

• Develop rigorous mathematical and computa-
tionally feasible approaches for combining data
of different types and of different quality that

FIGURE 10. The STAR Experiment at Brookhaven National Laboratory gen-
erates petabytes of data resulting from the collisions of millions of parti-
cles. Data management tools make it easier for scientists to transfer,
search and analyze the data from such large-scale experiments.
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can also quantify the various forms of uncer-
tainties in the data;

• Develop rigorous but computationally feasible
methods for dimensional reduction of data;

• Develop hybrid experimental design methods
to optimize the collection of observational,
experimental, computational and historical
data for complex systems.

2.2.2 Sensitivity analysis.
Advance the theory and tools for sensitivity
analysis to address the challenges posed by
complex multiscale, multicomponent models.

Sensitivity analysis is the organized study of
the way in which the output of a model responds
to variations in model inputs (parameters, initial
and boundary conditions) and in the model itself.
Inputs into a model are subject to many sources of
uncertainty, variability and measurement error.
The model itself may be subject to uncertainty aris-
ing from incomplete information or poor under-
standing of the physical processes and driving
forces. The coupling of different physical processes
in a model through a range of scales, where vari-
ability and uncertainty in one physical component
affects the other components, also affects the out-
put of the model. True predictive simulation
requires an understanding of how all of these
issues contribute to the uncertainty in observed
model outputs.

Sensitivity analysis provides a methodology for
quantifying the stability of model output with
respect to given changes in parameters and initial
and boundary conditions. This information can be
compared to how the physical system depends on
the conditions represented by physical data.
Sensitivity analysis is also a powerful tool for
investigating which components of a model con-
tribute the most to variability in model output and
hence must be better represented computationally.
Likewise, sensitivity analysis can be used to deter-
mine regions of the parameter space and initial and
boundary conditions for which the model output
variation is most significant and to find regions in
parameter space that lead to significant changes in
the physical behavior of the model, e.g., bifurca-
tion points.

Inverse sensitivity analysis reverses the point
of view, and is used to determine the allowable

uncertainty in inputs to a model given a desired
degree of uncertainty in the model output. This can
provide a powerful tool for linking model results to
experimental data. Coupled with experimental
design, this information can then be used to deter-
mine which parameter and data values need to be
measured most accurately in an experiment. When
predicting the behavior of a complex system, e.g., a
climate model that depends on hundreds of param-
eters that are difficult to determine and expensive
to evaluate, any information on the relative impor-
tance of parameters and the requirements for their
accurate determination can lead to effective priori-
tization of experiments and data collection.

When considering sensitivity analysis of com-
plex multiscale, multicomponent systems, addition-
al theoretical hurdles arise. There are no general
methodologies for treating the effects of variation
and uncertainty in high dimensional parameter
spaces that include strong interdependencies
between parameters and large-scale ranges in
parameter values. A large parameter set often leads
to a wide range of model behavior, particularly if
bifurcation point behavior occurs, making the inter-
pretation of sensitivity analysis results difficult.
There are few good methods for understanding the
covariance structures of observational data versus
that of model predictions. Sensitivity analysis of a
complex system typically benefits from a fusion of
mathematical and statistical techniques, yet mathe-
matical frameworks for combining such approaches
in a unified fashion do not yet exist.

These characteristics also mean that sensitivity
analysis of a complex system is very computation-
ally intensive. Well-established experimental design
and analysis techniques for studying the input-out-
put spaces for computational models typically fail
as models become more complex. Methods for sta-
tistical design of efficient and accurate sampling
procedures typically do not take full advantage of
the implicit mathematical structure of complex
models. The large computational overhead associat-
ed with existing methods of sensitivity analysis is a
significant impediment to their use. Approaches
that exploit mathematical structure or that effec-
tively take advantage of characteristics of high-end
computers can typically require invasive changes in
simulation codes, which can be undesirable when
dealing with large legacy codes in production envi-
ronments.
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There are a number of significant challenges
associated with uncertainty quantification and
mitigation for complex multiphysics systems.
Uncertainty comes from many sources, e.g., from
experiment and computation; it can be represented
in different ways mathematically, e.g., statistical,
probabilistic, and deterministic; and is even associ-
ated with situations where it is unclear how to
mathematically represent that uncertainty. In spite
of the many approaches for representing uncertain-
ty, it is important that mathematically consistent
approaches for relating various types of uncertainty
be developed.

Not only can uncertainty enter into a complex
model through a number of avenues, the subse-
quent propagation of uncertainty through the
model is also a complex process. New analytic and
computational methods must be developed for
quantifying the effects of uncertainty and numeri-
cal error on model predictions, model calibration,
and data assimilation analysis based on what is
known about the uncertainty in inputs and the
accuracy of numerical methods. Because multi-
scale, multiphysics simulations are often computa-
tionally resource-limited, uncertainty analysis
methods that are robust with respect to limited
numerical accuracy must be developed.

Uncertainty quantification is also costly in
computational terms and often requires intrusive
additions to existing software. There is a strong
need for both theoretical and computational
approaches for adaptive sampling and numerical
solution that lead to robust and efficient control of
uncertainty when possible.

Specific strategies to support uncertainty quan-
tification and mitigation are to:

• Develop mathematical, statistical and hybrid
approaches for describing and combining
uncertainty and error from multiple sources
presented with multiple representations;

• Develop mathematical, statistical and hybrid
approaches for analyzing and quantifying the
effects of uncertainty and error propagated
through a complex model on model predictions,
model calibration and data assimilation analysis;

• Develop memory-access-efficient algorithms
that match current and emerging computer
architectures, reducing or eliminating the need
for multiple runs in sampling-based approaches.

Not least of the difficulties associated with sensi-
tivity analysis of complex systems is a need for effi-
cient methods to organize, visualize and understand
sensitivity analysis results. Large-scale ranges, high-
dimensional parameter spaces, and high-dimensional
output from analysis all conspire to make the inter-
pretation of analysis results very difficult.

Specific strategies for meeting the challenges of
sensitivity analysis for complex systems are to:

• Develop accurate, efficient computational tools
for sensitivity analysis and inverse sensitivity
analysis of complex systems characterized by
high dimensional parameter and data spaces
and wide ranges of model behavior;

• Develop mathematical and computational
frameworks for fusing a variety of statistical
and deterministic analysis approaches for sensi-
tivity analysis, for inverse sensitivity analysis
and for model calibration;

• Develop efficient and effective methodologies
for presenting and interpreting the results of
sensitivity analysis of complex systems.

2.2.3 Uncertainty quantification and mitigation.
Significantly advance the theory and tools for
quantifying the effects of uncertainty and numeri-
cal simulation error on predictions using complex
multiscale, multicomponent models and when fit-
ting complex models to observations.

While sensitivity analysis seeks to relate the
outputs of a model to its inputs, uncertainty quan-
tification casts a much broader net in terms of
assessing confidence of predictions based on all
available information. Predictive uncertainty is
associated with the combined effects of limitations
in sensitivity and accuracy of physical measure-
ments, incomplete understanding of the underlying
physical processes, the complexity of coupling dif-
ferent physical processes across large-scale differ-
ences, and the numerical errors associated with
simulations of complex models.

The quantitative understanding of predictive
uncertainty is essential when predictions are to be
used to inform policy making or mitigation solutions
where significant resources are at stake. For example,
an understanding of predictive uncertainty played an
essential role in the acceptance of the need to design
policies to address global warming where the cost of
different choices varies by trillions of dollars.
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2.3 Using complex systems to inform
policy-making

Develop the mathematics needed to inform poli-
cy-makers based on the prediction, optimization
and understanding of complex natural and engi-
neered systems

Advances in mathematical modeling provide
ever-expanding capabilities for the prediction and
understanding of the behavior of complex systems,
both natural and engineered. The next step is
answering the myriad questions that arise in policy-
making involving these systems, such as:

• How can new materials be designed to display
a specified list of desirable properties, and
what are the tradeoffs among these properties?

• What is the optimal design of a MEMS-scale
electromechanical device?

• Which characterization of equilibrium con-
straints is most suitable for designing a com-
pact stellarator experiment?

• What are the optimal locations and communi-
cation protocols for sensing devices in a
remote-sensing network?

• What changes should be made in models of the
atmosphere and clouds to most effectively
incorporate newly collected data for improved
climate change predictions?

• Which statutory constraints on operating proce-
dures have the greatest influence on power
plant efficiency?

• What are the most harmful health-related out-
comes of exposure to nuclear waste in the
short term?

• How quickly could the United States recover if
part of the power grid became inoperable?

• What are the most likely effects if a future
energy technology fails to live up to its current
expectations and timeline?

Research in risk analysis, optimization and
inverse problems is crucial for addressing these and
a host of similarly complicated questions for DOE.

2.3.1 Risk analysis
Significantly advance the mathematics that sup-
ports risk analysis techniques for policy-making
about complex systems that include natural and

engineered components, and economic, security
and policy consequences.

Risk analysis—broadly defined as the provision
of rigorous procedures to evaluate sources of risk
and their consequences—is an integral part of poli-
cy-making in activities with potentially negative
outcomes. Risk analysis is ubiquitous in business
and finance, where the negative consequences tend
to be financial, and in gauging the health risks of
drug development and medical trials. DOE has
responsibilities that if not executed safely and cor-
rectly bear awesome potential for harm, potentially
resulting in nuclear accidents, toxic and radioactive
waste releases, power grid failures, oil spills and
groundwater contamination. In addition, DOE must
undertake high-stakes policy-making with unavoid-
ably incomplete information about related issues of
science, engineering, logistics and security.
Examples of this are the uncertainties associated
with safe transportation and storage of nuclear
waste at Yucca Mountain, or in the simultaneous
evaluation of the safety, surety and reliability of the
nuclear weapons stockpile.

Traditional risk analysis is based on mostly
well-defined static objectives and constraints, but
these are woefully inadequate for most DOE prob-
lems, especially those that depend on incorporating
scientific insights from complex nonlinear models.
Significant mathematical advances will be required
to more effectively address the challenges of policy
making supported by models of complex systems.

To address DOE’s needs, mathematics research
supporting risk analysis is required in several areas:

• Combining multiple sources of information,
including theoretical models, test and observa-
tional data, computer simulations, and expert
knowledge from scientists, field personnel and
policy makers;

• Developing formal methods to integrate dis-
parate information sources relative to the
contents of the evaluation (for example, simul-
taneous assessment of performance, reliability,
sustainability, dependability and safety);

• Addressing the varied needs of multiple stake-
holders in policy making involving, for example,
complex resource allocation (e.g., in mounting a
full system test or building a new experimental
facility) or continuous evaluation (e.g., support-
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ing decisions that need to be made at multiple
times and at unpredictable intervals);

• Incorporating explicit uncertainty and dynamic
changes in the evolution of knowledge about
the system being studied.

Research in support of analysis and assessment
of risk for highly complex systems, in the face of
uncertainty, requires a unified approach founded
on several disciplines, including statistics, probabili-
ty, computer science, decision theory, graph theory,
knowledge elicitation and representation, not to
mention modeling and simulation. Only through
the language and theory of mathematics will repre-
sentations and analyses for risk assessment be
developed that can bridge these disciplines.

Effective analysis of the complex risks that
DOE faces in the future demand a much broader
approach than is taken today for knowledge elicita-
tion, representation and transformation. Ontologies,
which are the models that represent concepts and
relationships from differing “cultures’’ such as sci-
ence, economics, security and public policy, must
be formalized to so that problems in overlapping
domains can be addressed using methods that are
both expressed in the various “native languages” of
the collaborating experts and are mathematically
tractable. This process involves iterative cycles of
representational refinement and quantification,
resulting in predictive statistical models that make
intuitive sense to all parties. The need for better

ways to represent knowledge and assess risk is
especially urgent because of DOE’s increasing
reliance on multidisciplinary teams in which math-
ematicians are expected to develop predictive mod-
els integrating multiple types of data, information
and knowledge.

The way in which information is organized also
has a major influence on how that information is
used. With the wide range of information (and
knowledge) needed for DOE’s continuous policy-
making responsibilities, it is critical that this infor-
mation is formally organized. This will require a
variety of tools to capture information, organize it
and make the results available to different commu-
nities, including policymakers and the public.

Incorporating the results of complex mathemati-
cal and computational models into risk analysis is
extremely challenging because of unresolved issues
about calibration and validation of models based on
limited experimental and simulation data. This is
especially true when the model outputs are high
dimensional. Additionally, the need to systematically
include uncertainty and risk when developing the
models initially takes mathematician/statisticians
outside the “comfort zone” of traditional probability
theory and into uncharted areas of fuzzy measure-
ment, belief functions and possibility theory.
Approaches that expand Bayesian inference,
Bayesian hierarchical models and techniques from
spatial statistics to risk assessment grounded in

FIGURE 11. Computation is an important
element in developing an understanding of
global climate change. This image shows a
snapshot of the simulated time evolution of
atmospheric carbon dioxide (the red plumes)
concentration originating from the land sur-
face at the beginning of the industrial carbon
cycle (around 1900). This CO2 is a product
of the net ecosystem exchange, the CO2 flux
due to respiration of vegetation and soil
microbes (green areas on land) minus that
taken up for ecosystem production (orange
areas on land). The underlying simulation is
one of a number of runs performed for
Phase 1 of the Coupled Climate/Carbon
Cycle Model Intercomparison Project.
Source: National Center for Atmospheric
Research; Oak Ridge National Laboratory
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complex models will be required to address these
challenges.

Strategies for meeting these challenges are to:

• Develop mathematically rigorous conceptual
graphs and statistical graphical models for trans-
lating from qualitative to quantitative represen-
tations;

• Develop mathematically based risk assessment
techniques whose reliability can be estimated
accurately—even when minimal data is avail-
able for the system being studied;

• Expand Bayesian inference, Bayesian hierarchi-
cal models and techniques from spatial statistics
to risk assessment grounded in complex and fre-
quently computational models;

• Develop reliable and mathematically sound
techniques for deducing information from data
and knowledge sources that are high dimension-
al and heterogeneous in nature and quality;

• Perform research in knowledge management to
support risk analysis with a focus on the devel-
opment of analysis tools that can be accessed
and used by a wide range of interested parties.

2.3.2 Optimization
Develop techniques for formulating, analyzing and
solving challenging optimization problems arising
in complex natural and engineered systems.

Optimization is a broad and pervasive paradigm
for determining and characterizing the “best”
results. The field has made great progress for more
than 40 years, and a wide variety of optimization
problems once viewed as unsolvable are regarded
today as routine. Nonetheless, further research in
optimization is essential because many of DOE’s
important policy-making decisions involve optimiza-
tion problems that are either beyond the capabilities
of today’s state of the art or else provably
intractable in their most general form.

DOE applications increasingly result in nonlin-
ear optimization problems with a mixture of vari-
able types. For example, the design of fossil energy
power generation systems involves both continuous
quantities such as length and width, and integer
variables such as the number of processing units.
Categorical variables (those that lack a natural
ordering, such as alternative energy technologies)
are also common in policy-based applications, and
occur, for example, in determining the optimal loca-

tions for placing sensors or designing nanomateri-
als. Since there are no guaranteed solution tech-
niques for general nonlinear mixed-variable
problems, progress depends on developing theory
and algorithmic strategies that exploit special struc-
ture. These might include fast algorithms that
approximate the solution within a guaranteed factor
of optimality, or techniques that use randomization
to produce an accurate solution with very high
probability.

The most-studied objective functions in opti-
mization problems are assumed to display some
degree of smoothness, yet non-smooth behavior is
common in the real world—for example, the col-
lapse of an aging material or the splitting of a single
flow path into two. Similarly, constraints are often
described as equalities or inequalities involving a
continuous function of the variables, but non-
smooth constraints, including equilibrium, comple-
mentarity and disjunctive constraints, also appear
prominently in DOE applications such as comput-
ing electric power market equilibria. Several sophis-
ticated techniques have been developed for
handling problems whose constraints are all of a
single type, but theory and algorithms are lacking
for problems with a mixture of constraint forms.

The basic formulation of an optimization prob-
lem can also significantly affect its mathematical
and computational tractability. Two problem classes
that remain challenging for today’s state of the art
are multilevel and multi-objective optimization. In
multilevel or hierarchical optimization, there is an
explicit stratification from highest to lowest in
which each level solves its own optimization prob-
lem, dependent on the solution of problems from
higher levels. This multilevel optimization occurs,
for example, in DOE energy models that include
federal and state governments, where federal regu-
lations impose fundamental constraints on the
locally determined objectives of each state. Multi-
objective optimization occurs when several objec-
tives, typically conflicting, are to be optimized
simultaneously—for example, in finding an energy
source that is both inexpensive and non-polluting.
Multilevel and multi-objective optimization prob-
lems are extremely difficult even for the simplest
linear models, becoming “impossible” as the dimen-
sion increases and nonlinearities become more
prominent. Research is therefore necessary to
formulate and solve specially structured versions of
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these problems in which the number of variables
and the degree of nonlinearity are realistic.

Some DOE problems, notably in biology and
physics, are posed as the global minimization of a
nonlinear function subject to constraints, and are
solved using computationally intensive techniques
based on physical intuition. Because of widely
acknowledged inefficiencies in these approaches,
even small advances in global optimization would
be extremely valuable, including new results that
mathematically characterize the efficiency and reli-
ability of popular heuristics.

Very large-scale optimization problems can
usually be solved efficiently only by taking advan-
tage of known special structure of the underlying
problem, e.g. by recognizing that the power grid is
a sparse network of heterogeneous elements. Such
problem characteristics often translate into identifi-
able matrix properties and can also be reflected in
the symbolic representations deduced by a model-
ing language. Research on the distinctive matrix
computation needs of optimization would greatly
enhance solution speed for DOE’s portfolio of
extremely large problems with few, mild, or separa-
ble nonlinearities.

In science- and engineering-based contexts,
especially in longstanding physics applications, sci-
entists typically use techniques that are highly
problem-specific, e.g., adjusting selected accelerator
design parameters based on expert knowledge.
Although often useful, this kind of approach can
lead to inefficiency when hardwired into algo-
rithms and software that are used later for other
problems. Research in modeling languages geared
to optimization would increase both flexibility and
adaptability by allowing a cleaner separation
between formulation and solution techniques.

The models appearing in constrained optimiza-
tion problems involve uncertainty from various
sources, and it is essential to characterize the quan-
titative and qualitative effects of such uncertainty
on an “optimal’’ solution. When the associated per-
turbations are small, strategies are known for ana-
lyzing worst- or average-case effects; when a
probability distribution representing the behavior
of the uncertainty is available, stochastic optimiza-
tion can be applied to specialized problem classes
such as linear programming. However, techniques
are needed for applications in which the uncertain-
ties are large, nonlinear, and possibly discontinu-

ous, such as in achieving mandated safety levels in
a nuclear power plant.

Strategies for meeting these challenges are to:

• Develop analysis and algorithms for optimiza-
tion problems with continuous, discrete and
categorical variables, and with non-smooth
and/or nonstandard objective and constraint
functions;

• Perform theoretical and computational investi-
gations of general-purpose and specialized algo-
rithms for important subclasses of optimization
problems, including problems that are
intractable in general but solvable in particular
cases of interest to DOE;

• Develop methods for finding approximate solu-
tions of global optimization problems and for
finding global solutions of problems with spe-
cial structure;

• Develop algorithms for solving specially struc-
tured versions of multilevel and multi-objective
optimization problems;

• Develop algorithms for fast solution of the high-
ly structured, not necessarily sparse, linear alge-
braic sub-problems that arise in optimization;

• Create sophisticated modeling languages that
allow large structured optimization problems to
be expressed in the natural language of the user;

• Invest in analysis and algorithms for stochastic
optimization, addressing the effects of nonlin-
earities, special structures and nonstandard
probability distributions.

• Develop new optimization methods and algo-
rithms that match the needs for increased con-
currency and tolerance of memory latency in
current and emerging computer architectures.

2.3.3 Inverse problems
Develop techniques for addressing the mathemati-
cal and computational difficulties of inverse prob-
lems associated with complex systems.

Inverse problems arise in applications where
essential elements of a mathematical model are
poorly known or understood. In a typical inverse
problem, these model parameters, which may
include inaccessible material properties or
unknown initial or boundary conditions, are
defined by minimizing the discrepancy between
experimental observations and the model’s predic-
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tions. Inverse problems occur in numerous DOE
applications, including studies of contaminant
transport, crude oil recovery, climate prediction,
astrophysics and diagnostic and detection proce-
dures such as non-destructive evaluation, where
waves are transmitted through an unknown media
in order to identify inhomogeneities.

Unfortunately, inverse problems are typically
ill-posed—that is, a small perturbation in the
observed data can lead to a large, even discontinu-
ous, change in the estimated parameters. As a
result, sophisticated techniques (often called “regu-
larization”) are used to prioritize otherwise indistin-
guishable solutions. Insights for regularizing
inverse problems are often derived from a detailed
physical understanding or theoretical analysis of
specific properties of the underlying mathematical
operators. Since inverse problems from different
domains vary significantly in mathematical struc-
ture, their successful solution is likely to require
close collaborations between mathematicians and
application experts. In addition, since high-quality
observed data is critical in solving inverse prob-
lems, mathematical research would benefit from
ties with the collection of experimental data.

Research is also needed on reliable and com-
putable metrics that complement regularization by
providing essential information such as sensitivities
and adjoints. A serious limitation of several stan-
dard regularization schemes is their assumption of
closeness to linearity, which is not valid for the
complex systems associated with the most chal-
lenging DOE applications. Numerical linear algebra
is a key ingredient because matrix decompositions
help to reveal the underlying structure of ill-condi-
tioning; however, the most powerful linear algebra-
ic tools available today, such as the full singular
value decomposition, become prohibitively expen-
sive computationally for complex problems of the
increasing sizes that are interesting to DOE.
Computationally tractable alternatives are needed
to address very large problems of this type.

The solutions of most inverse problems will
inevitably be uncertain to some degree. Depending
on mathematical structure, such uncertainties—
even when tiny—can cause inverse problems to be
so ill-posed that available mathematical techniques
cannot yield meaningful results. The causes of
these unfavorable conditions may not be obvious
in advance. They may reflect an inappropriate
model formulation, a less-than-optimal choice of
regularization, or (most ominously) an inherent
mathematical difficulty. Research is needed on
techniques for understanding the multiple roles
and implications of uncertainty in inverse prob-
lems.

Strategies for meeting these challenges are to:

• Develop and extend analysis tools for inverse
problems, especially approaches that do not
depend on near-linearity;

• Develop large-scale linear algebraic techniques
that reliably capture the structure of ill-posed-
ness, allow its analysis and guide subsequent
model reformulation;

• Enhance connections between mathematical
research in inverse problems and expertise/
experiments in important application domains;

• Develop techniques for understanding the con-
nections between uncertainty in mathematical
structure and in the chosen model formulation;

• Develop mathematical techniques for reducing
uncertainty and/or dimensionality by incorpo-
ration of prior conditions.

The Department of Energy’s Applied
Mathematics program supports research that pro-
duces the mathematical advances needed to address
our nation’s energy, environmental, and national
security challenges. This report has already dis-
cussed technical areas in which mathematics
research could make major contributions to these
problems, and we now turn to strategies for effective
program leadership.
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3.1.Encouraging and rewarding risk-taking in
research

A fundamental practical difficulty in building
and sustaining a strong research program is the uni-
versally acknowledged fact that basic research does
not lend itself to detailed or accurate predictions of
what its results will be, or when they will occur.
Even “transformational” discoveries seldom take
place in a vacuum, but rather depend on a long
sequence of individual advances, some of which are
small. Since “one cannot cultivate only the fruit of
the tree”, a balanced portfolio is necessary for a
healthy research enterprise.19 The optimal form of
balance cannot be specified precisely, but an essen-
tial ingredient is that researchers should be encour-
aged to take risks—which, to be genuine, include the
possibility of failure.

From a researcher’s perspective, the research
endeavor involves two forms of risk. Significant
advances of the kind desired by both the researcher
and the sponsoring program are more likely if the
researcher feels free to take risks in devising new
scientific approaches. However, if researchers
believe that their funding requires the production
of measurable results within a strict timetable, the
danger of losing funding acts as a strong disincen-
tive to risk-taking in research. The obvious conun-
drum that faces any research program supported by
public funds, therefore, is fostering risk-taking in
research while requiring accountability through
measured results. An example of the associated dif-
ficulties arises in designing a process for regular
reviews of research progress. A significant and
important challenge is to balance the review neces-
sary for quality control with the need to encourage
risk-taking.

For the past sixty years, national and interna-
tional discussions of research policy have empha-
sized that the timeframe for transformational
advances may involve ten to fifteen years of con-
centrated effort. Hence imposing a much shorter
time limit (for example, three years) on all project
support will inherently discourage risk-taking. One
strategy for improving the likelihood of break-

throughs while retaining accountability is to reward
investigators and programs with a proven track
record of achieving the program’s goals with con-
tinued long-term support. At the same time, it is
also important to invigorate the flow of ideas—for
example, through mechanisms to bring new
researchers, especially those early in their careers,
into the research program.

Finally, the program can support activities
where a diverse group of researchers meet infor-
mally to discuss, argue, and brainstorm, thus pro-
viding a stimulus for “out of the box” ideas in
settings conducive to “risky” thoughts. At work-
shops and summer schools, perhaps focused on a
single challenge area, participants can explore new
ideas without the pressure of producing immediate
results. Such events often serve as the catalyst for
new ideas and collaborations.

3.2.Building effective connections with
science and engineering.

A key metric for success of the Applied
Mathematics program is contributing mathematical
analyses and algorithms that advance DOE’s mis-
sion. Progress in this direction is accelerated when
mathematicians work closely with application sci-
entists and engineers who are connected to mission
needs, since new insights frequently arise from a
fortuitous combination of multiple perspectives.
The strategy of forming and funding teams of col-
laborators from different disciplines has been high-
ly successful in addressing several complex DOE
problems. However, depending on context, differ-
ent organizational modes are needed.

In some cases, the scientific issues are suffi-
ciently well understood so that the mathematical
research is limited to development of models that
are both physically accurate and computationally
tractable. The most appropriate operational strategy
is then likely to be the formation of partnerships
between mathematicians and scientists, jointly fund-
ed by their respective sponsors, to produce a mathe-
matical model tailored to that application area.

3. Driving Innovation and Discovery in Applied Mathematics
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In other situations, however, the research
issues are primarily mathematical, such as when
the science is less well-developed or the mathemati-
cal approaches are likely to be relevant to a broad
set of application areas. For such problems, mathe-
maticians should ideally participate in every step of
the problem solution process, including the initial
formulation of a model as well as design of algo-
rithms and software. When the creation of new
mathematics is the most essential element in
research involving mathematicians and application
scientists, it may be most effective for the mathe-
matics sponsor (in this case, the Office of Advanced
Scientific Computing Research) to provide all of the
research support.

3.3.Leveraging the expertise in National
Laboratories and universities

The Applied Mathematics program should take
maximum advantage of mathematics research tal-
ent, keeping in mind the differences between the
National Laboratories and academia. With full-time
professional research staff who often spend signifi-
cant fractions of their career at a single institution,
Laboratories are well positioned to pursue large-
scale research efforts, especially those involving
collaboration among a group of researchers over a
long period of time. The Laboratories are also ideal

environments to develop and maintain high-quality
mathematical software libraries, which require con-
sistent long-term attention.

The institutional mobility of researchers in aca-
demia, including PhD students and postdoctoral
researchers, tends to be much larger. While a facul-
ty research advisor can focus on a single research
area for many years, much of the research “prod-
uct” in universities consists of self-contained efforts
completed by a single student or postdoctoral
researcher. The research produced by these latter
junior researchers often includes significant new
ideas.

Because an increase in multidisciplinary
research will be essential for driving future
advancements in applied mathematics for the DOE,
mechanisms that encourage multidisciplinary activ-
ities, both at Laboratories and at universities, will
be important. To enhance the ties between
Laboratories and academia, mechanisms could be
devised to provide incentives for academic investi-
gators to join multidisciplinary collaborative teams
and Laboratory partnerships. Since the National
Laboratories are responsible for executing much of
DOE’s “big science”, the Laboratories could organ-
ize multi-institutional activities that bring mathe-
maticians together with scientists and engineers to
work together on scientific areas of particular
importance to DOE.

3.4.Connecting applied mathematics and
advanced computing.

Although the primary focus of the Applied
Mathematics program is foundational mathematics,
an element differentiating DOE’s program from
others is its longstanding commitment to the math-
ematical and computational underpinnings of large-
scale scientific discovery through high-performance
computing. A crucial link between mathematics
and applications is high-quality mathematical soft-
ware that embodies the latest models and algo-
rithms and is also designed to run efficiently on
leading-edge computing platforms. Effective mech-
anisms for producing, maintaining and enhancing
this software are an essential part of applied math-
ematics within DOE.

FIGURE 12. DOE’s Computational Science Graduate Fellowship Program
provides support to help train next generation of computational scientists

26 DRIVING INNOVATION AND DISCOVERY IN APPLIED MATHEMATICS THROUGH EFFECTIVE PROGRAM LEADERSHIP



DRIVING INNOVATION AND DISCOVERY IN APPLIED MATHEMATICS THROUGH EFFECTIVE PROGRAM LEADERSHIP 27

Epilogue

This report has provided an analysis of the
DOE’s needs for new applied, computational and
statistical mathematical developments in order to
support the science and engineering-based solu-
tions to the problems of critical national impor-
tance that DOE must address in the future.
Through effective management and thoughtful
direction, the DOE Applied Mathematics program
can continue its half-century legacy in making sig-
nificant, enduring advances in applied mathematics

that will enable future scientific discovery through
computational science. This program will make
significant advances in the predictive modeling,
simulation and analysis of complex natural and
engineered systems in support of the DOE’s energy,
environmental and national security missions.
Effective policy-making on issues of critical nation-
al importance will be supported by innovative,
often transformational mathematical advances
produced by this program.
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