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Abstract 

This study focused on how climate change-induced effects on weather will translate into 

changes in wildland fire severity and outcomes in California, particularly on the effectiveness of 

initial attack at limiting the number of fires that escape initial attack. The results indicate that 

subtle shifts in fire behavior of the sort that might be induced by the climate changes anticipated 

for the next century are of sufficient magnitude to generate an appreciable increase in the number 

of fires that escape initial attack. Such escapes are of considerable importance in wildland fire 

protection planning, given the high cost to society of a catastrophic escape like those experienced 

in recent decades in the Berkeley-Oakland, Santa Barbara, San Diego, or Los Angeles areas. 

However, at least for the three study areas considered, it would appear that relatively modest 

augmentations to existing firefighting resources might be sufficient to compensate for change-

induced changes in wildland fire outcomes.  
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1. Introduction  

Previous analyses of wildfire and climate change have suggested that the area burned and 

number of fires that escape initial attack suppression would increase, sometimes dramatically, in 

northern California under a double-CO2 scenario (Fried et al. 2004; Torn and Fried 1992). In one 

extrapolation of simulation modeling results to all nonfederal lands in this region, a double-CO2 

climate was predicted to lead to a doubling in the frequency of escaped fires (Fried et al. 2004). 

This prediction is sobering, because escaped fires have the potential to become very large, 

damaging fires. Many analysts have noted that given the importance of extreme fire weather in 

California, it is critical that we better understand how this weather is impacted by climate change 

(e.g., Davis and Michaelsen 1995). Prior studies of the impacts of climate change on wildfire 

have raised several important follow-on questions: Will climate change lead to changes in the 

number of fires (i.e., to fire occurrence), in fire rate-of-spread (ROS) distributions, or in the 

beginning and end dates of fire season for which fire agencies must be fully staffed? What 

additional firefighting resources would be needed to compensate for such changes? How much 

would reductions in greenhouse gas (GHG) emissions significantly moderate the projected 

impacts? Although much more work remains to be done to address these questions completely, 

this preliminary analysis indicates that several existing models can be extended to provide 

valuable insights into the impact of climatic change on wildfire severity and outcomes.  

Although the general approach employed in this study is similar to that used in Fried et al. 

(2004) and Torn and Fried (1992), the results reported here were derived using a more 

sophisticated stochastic model of initial attack on wildfires, and new methods of downscaling 

scenario data from global climate models (Cayan et al. 2006). The techniques employed are 
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outlined in greater detail in Fried et al. (2006b), but are here applied to three administrative units 

of  the California Department of Forestry and Fire Protection’s (CDF) – the Amador-El Dorado 

(AEU), San Bernadino (BDU) and Santa Clara (SCU).  Projections of the effects of climate 

change on wildfire for higher (business-as-usual) and reduced-anthropogenic-emission scenarios 

are presented below for each of these areas.  
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2. Methods  

This study relied on models and data drawn from California’s strategic fire planning 

system to estimate aspects of climate change relevant to wildland fire at three levels of analysis. 

First, 150 years of simulated daily weather variables were generated for the period from 1950 to 

2099 by downscaling from general circulation model simulations under two greenhouse gas 

(GHG) emissions scenarios. This data was divided into three periods: a baseline reference period 

from 1961 to 1999 denoted henceforth as BASE; a period in the middle of this century (2035 to 

2064) denoted as MIDCEN; and a period at the end of the century (2070 to 2099) denoted as 

ENDCEN. Second, these daily weather data were used to estimate 2 p.m. wildfire ROS and 

burning index (BI) values using the Fire Behavior Dispatch Modeling System (FBDMOD) (CDF 

1992), a program patterned after the National Fire Danger Rating System (Deeming et al. 1977). 

Estimates of these key wildfire behavior variables were made for a wide range of fuel and slope 

conditions in each of the three study areas. Finally, the impact of these predicted changes in 

wildfire behavior on initial attack containment efforts were assessed  using the California Fire 

Economics Simulator version 2 (CFES2) (Fried and Gilless 1999), a stochastic computer model 

developed for the California Department of Forestry and Fire’s (CDF) fire protection planning 

program. Detailed methods and assumptions for each level of this analysis are outlined below.  

 

2.1. The Study Areas  

The CDF’s Amador-El Dorado Unit encompasses the portions of Amador and El Dorado 

counties where the CDF has primary responsibility for wildfire suppression, with assistance from 

cooperating local and federal agencies. The San Bernadino Unit encompasses similarly defined 
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portions of San Bernadino, Inyo, and Mono counties; the Santa Clara Unit portions of Santa 

Clara, Stanislaus, Alameda, Contra Costa, and San Joaquin counties. These three areas were 

selected because they span a wide environmental and social gradient, from the foothills of the 

Sierra Nevada, to the coastal San Francisco Bay area, to interior areas of Southern California.  

The CDF (and the CFES2 model) stratifies administrative units into fire management 

analysis zones (FMAZs) defined by fuel type (e.g., grass, brush—an indicator of the fire regime) 

and population density (low, medium, or high – an indicator of the extent to which issues of 

wildland urban interface are germane). The fuel models used in the FMAZ stratification of AEU 

(A, B, C, F, H, and U), BDU (A, B, F, T), and SCU (A, B, F, G) (Table 1) are taken from the 

National Fire Danger Rating System (Deeming et al., 1977). 

CFES2 simulates initial attack on wildland fires at a number of representative fire 

locations (RFLs) within each FMAZ. RFLs are chosen on the basis of historical fire locations, 

and are characterized by a fuel model, slope class, herbaceous vegetation type, climate class, and 

representative fire weather station – a set of attributes collectively referred to as a “fuel 

combination.”  

The fire weather stations utilized in this study for AEU were located at Bald Mountain 

(lat 38 54 3, long 120 41 8) and Georgetown (lat 38 55 10, long 120 54 0); for BDU at Saugus 

(lat 34 25 30, long 118 31 30), West Riverside (lat 34  0 35, long 117 27 0), Devore (34  0 35, 

long 117 27  0), and Apple Valley (lat 34 36  0, logn 117 10  0); and for SCU at Sunol (lat: 37 33 

11, long 121 50 39), Del Puerto (lat 37  0 48, long 121  7 30) and Morgan Hill (lat 37  6 39, long 

121 38 12). 
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2.2. Climate Forcing  

Simulated localized daily fire weather variables were derived for the BASE, MIDCEN 

and ENDCEN periods from simulations made using two atmosphere-ocean general circulation 

models (AOGCMs): the NOAA-GFDL CM2.1 (Delworth et al. 2005), denoted henceforth as 

GFDL; and the DOE-NCAR Parallel Climate Model (Washington et al. 2000), denoted as PCM. 

Simulations are forced by the IPCC Special Report on Emission Scenarios mid-high (A2) and 

lower (B1) emissions scenarios (SRES, Nakićenović et al. 2000) described in greater detail in 

Cayan et al. (2006). 

The GFDL and PCM monthly temperature and precipitation fields for the A2 and B1 

scenarios were statistically downscaled to daily values for areas with a resolution of 1/8°, or 

about 12 kilometers (km) (7 miles) (Wood et al. 2002), for each fire weather station using a 

technique that maps the probability density functions for modeled monthly and daily 

precipitation and temperature for the BASE period onto those of gridded historical observed 

data, so the mean and variability of both monthly and daily observations are reproduced. Daily 

average relative humidity values that correspond to the daily temperature and precipitation for 

each grid cell were generated using the Variable Infiltration Capacity (VIC) distributed land 

surface hydrology model. The bias correction and spatial disaggregation technique employed 

was originally developed for adjusting AOGCM output for long-range streamflow forecasting 

(Wood et al. 2002), and later adapted for use in studies examining the hydrologic impacts of 

climate change (VanRheenen et al. 2004). 

In addition to daily maximum temperature, minimum temperature, precipitation, and 

humidity, historical weather data for each weather station identified above was used in 
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conjunction with the modeled variables to project several key inputs for the FBDMOD fire 

behavior prediction software – daily 2 p.m. temperature and relative humidity, precipitation 

duration, maximum and minimum relative humidity, 10-hour fuel moisture, wind direction and 

speed, and state of the weather for all periods. A more detailed explanation of the methods used 

to make these projections can be found in Fried et al. (2006b). 

 

2.3. Fire Behavior  

Daily 2 p.m. fire rate of spread and burning index (a proxy for intensity) was predicted 

using FBDMOD for the three periods (BASE, MIDCEN, and ENDCEN) for each fuel 

combination in AEU, BDU, and SCU under the higher (A2) and lower (B1) emissions scenarios 

as simulated by the GFDL and PCM models. Weather station descriptive information required by 

FBDMOD (elevation, latitude, date of vegetation green-up, date of first killing frost) was 

obtained from the fire weather archives of the National Fire and Aviation Management Web 

(http://famweb.nwcg.gov/weatherfirecd/index.htm). These predictions describe how fires would 

spread at near daily worst-case rates, without crowning or spotting, through continuous fuels on a 

uniform slope (NWCG 2002). Downward adjustments are made to these rates in the CFES2 

model to reflect the diurnal patterns of fire behavior (Gilless and Fried 1999). 

Daily-resolved fire behavior predictions were divided into five inter-annual seasons for 

CFES2 analysis: low 1 (January 1 to May 15), transition 1 (May 15 to June 15), high (June 15 to 

October 15), transition 2 (October 15 to November 15) and low 2 (November 15 to December 

31). These same seasons are used in CFES2 to characterize the availability of fire suppression 

resources (Fried and Gilless 1999). We were forced to hold these dates constant for this study 
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given the time constraints of this study, although clearly the effects of climate change on the 

seasonal timing and effect of the high fire season and institutional response to such changes is 

obviously an important area for further research. 

Distributions of ROS (and BI) for a particular season are consistently bimodal with a 

narrow distribution characterized by a local (and sometimes global) peak at a low rate of spread 

coupled with a distinctly separate, unimodal distribution covering a wider (and faster) range of 

spread rates. Each compound seasonal distribution for these variables was therefore split into two 

parts, with a simple constant rate used to characterize the values for slow-moving fires, and a 

beta distribution used to characterize more rapidly-moving fires (Gilless and Fried 1999). 

Determining both where to split the data and the best fitting beta curve for faster moving fires 

was done by iterative use of a chi-square test and the moments method of curve fitting.  

 

2.4. Initial Attack Simulation  

CFES2’s event-based simulation framework is based on stochastic modules describing 

fire occurrence, fire behavior, and the effectiveness of firefighting resources in constructing 

fireline (Gilless and Fried 1999a, 1999b; Fried and Gilless 1988), and local information on the 

availability of suppression resources and their response times to different RFLs. CFES2 

simulates fire events with specific locations and start dates and times, and estimates the behavior 

(rate of spread or burning index) of these fires by drawing from distributions of potential fire 

behavior (ROS and BI) for the appropriate fuel combination and season. 

CFES2 was used to generate estimates of the frequency of escaped fires and the area 

burned by contained fires for the BASE, MIDCEN, and ENDCEN periods, for the A2 and B1 
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scenarios, based on estimated distributions for fire ROS and BI, for both the GFDL and PCM 

AOGCMs. For each combination of period, GHG emission scenario, and AOGCM, 200 years of 

simulated results were obtained to allow for statistical characterization of the stochastic 

outcomes. 

When using CFES2 to conduct comparative analysis, any of a number of kinds of results 

can prove interesting, including changes in the frequency of escapes, area burned in contained 

fires by season, size class, and geographical unit; percentage of fires that are successfully 

contained within predetermined size limits; and even utilization frequency and dispatching costs 

of any particular firefighting resource or group of resources. And, because CFES2 is a stochastic 

simulator that produces as many potential realizations as desired, we can look beyond a single, 

deterministic result for any attribute of interest, and report information on variability (e.g., 

standard errors) along with expected values, or even selected percentiles of the distribution of 

realizations (Fried et al. 2006a). This analysis focused on estimates of the expected value (and 

standard errors) of escaped fires per year by FMAZ. 

Important assumptions were made in our CFES2 simulations to make the analysis 

tractable, and these assumptions obviously temper the definitiveness of the results presented 

below – many parameters that may well change over the next century were held constant, 

including fire occurrence, fuel models, the amount, positioning, and productivity of firefighting 

resources, and population density.  
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3. Results  

 

3.1. Climate  

The impact of global climate change on daily weather characteristics at the location of the 

different fire weather stations appeared to differ markedly by variable. In some cases the 

projected changes are larger under a higher emissions scenario (A2 versus B1), illustrating the 

sensitivity of fire weather to emissions pathways and the degree of global change; in others, the 

GFDL model shows changes that are distinctly different from the PCM model, highlighting 

inter-model uncertainty; and in some cases, changes are not consistent either between models or 

scenarios, displaying a more random component that may be indicative of the sensitivity of that 

variable to multiple and interactive changes in and feedbacks between climate characteristics.   

Projected changes in 2 p.m. temperature appeared relatively robust, consistent across both 

models and scenarios. Projections of relative humidity (RH) displayed a strong dependence on 

both the model and the emissions scenario, with GFDL-based projections being consistently 

drier than PCM-based projections, and the magnitude of the projected changes over time being  

greater for the A2 scenario. The inter-model differences were more pronounced when 

considering only low-humidity days (defined as 2 p.m. RH less than 15%).  

Precipitation is similar to RH in that the sign of the change is determined by the model, 

but the magnitude is a function of the emissions scenario (larger changes for A2 relative to B1 

for each model).  

Consistent with being parameterized as proportional to relative humidity and 
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precipitation and inversely proportional to temperature, we did not see consistent changes in 

projected 10-hr FM values. Changes in wind speed were extremely inconsistent, displaying no 

uniform dependence on either model or scenario. The observed changes between periods were 

particularly significant, likely reflecting the fact that wind speed is parameterized as such a 

complex function of daily weather characteristics and wind direction for each location that the 

multiple changes in temperature, humidity, wind direction, and other factors already observed 

are interacting here to simultaneously increase and decrease wind speed, producing little net 

change. It is also likely a result of the fact that this approach does not take into account model-

simulated changes in the wind-related characteristics of the daily weather systems. A comparison 

of these wind direction and speed projections with high-resolution regional model-generated 

values is planned for the future, to evaluate the ability of this approach to capture projected shifts 

in wind owing to climate change.  

 

3.2. Fire Behavior  

Changes in fire behavior predictions between periods were analyzed using Tukey’s 

Honestly Significant Difference (HSD) test for multiple comparisons, a method based on the 

range of the sample means that does not mandate assumptions of normality or equal variances, 

and which is conservative when comparing samples of unequal size. Neither students-t test nor 

analysis of variance (ANOVA) would have been suitable for this data, because the values of 

ROS and BI for a given period are not distributed normally, and simple comparisons using t-tests 

would inflate the probability of declaring a significant difference between periods. Comparisons 
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were made both for mean ROS for the portions of the ROS distributions modeled as beta 

distribution (Gilless and Fried 1999 and for the highest 5% of the values in the entire ROS 

distribution (i.e., for the portion corresponding to the most “extreme” fire behavior).   

Table 2 shows mean rates of spread (ROS) for the high fire season (June 15 to October 

15) under GFDL scenario A2 for the 28 fuel-weather station-slope class-period combinations 

utilized in this study. Table 3 shows similar results for GFDL scenario B1. Although the number 

of significant differences in mean ROS is similar for the two scenarios between the BASE period 

and the MIDCEN period, the regional pattern of these increases is not consistent. The number of 

significant differences differs dramatically, however, when the BASE period is compared to the 

ENDCEN period (21 significant differences for A2 vs. only 8 for B1), indicating the divergence 

between the two scenarios is greater over time. Similar tables for the PCM scenarios show far 

fewer significant differences, although they are consistent with the GDFL scenarios in showing a 

greater rightward shift in the ROS and BI distributions for the A2 scenario than for the B1 

scenario. Similarly, comparisons based only on the 95th-plus percentile values showed a greater 

evidence of rightward shifts in these distributions for the A2 scenario than for the B1 scenario for 

both the GDFL- an PCM-based simulations, although the number of significant differences was 

much smaller, and largely limited to shrub fuel models. 

 

3.3. Initial Attack Simulation  

The two key outcomes of initial attack on wildfire that are predicted by the CFES2 model 

are the expected number of ESL fires (those that would exceed simulation limits on time to 
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containment or size upon containment) and the expected area burned for all fires contained 

within those same limits. The ESL fires can be interpreted loosely as fires that would “escape” 

initial attack, because the time and size limits used to define them are primarily a reflection of 

what policymakers regard as an escape. In some cases, although probably not for the three 

administrative units for which these results were generated, these time and size limits might also 

be used to express bounds on what is considered a range within which the simulation process is 

valid (i.e., one within which topography or firefighter fatigue does not fundamentally change the 

nature of what is being simulated, or imply that a fire would have moved into an “extended 

attack” phase in which additional resources would be dispatched or firefighting tactics would 

need to be adjusted). Past analyses using the CFES2 model have indicated that the model is most 

useful when the focus is placed on comparing changes in the number of ESLs between scenarios, 

i.e., when it is used for marginal analysis, rather than on making comparisons to historical 

averages of “escapes” (Fried et al. 2006a). The reasons for this include sensitivity of the 

historical number of ESLs to changes in the availability of firefighting resources, their stationing, 

and the dispatch policies governing their use, as well as changes in the policy goals that are used 

to define escapes in terms of time to fire containment or size at time of containment.  

Tables 4 and 5 show the mean annual differences in the number of ESLs among periods, 

by administrative unit, under the GDFL A2 and B1 scenarios, respectively. The predicted 

distribution of the ESL fires by fuel model was quite close to the historical record, leading us to 

conclude that BASE simulation results provided a good basis for both relative and absolute 

comparisons with the predicted wildfire outcomes for MIDCEN and ENDCEN. A clear signal 

emerges from this data, with ~2-5 additional ESLs being predicted per year for each 
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administrative unit the A2 scenario, compared to ~1-3 for the B1 scenario. There are a few 

significant decreases in the mean number of ESLs per year moving from the MIDCEN to 

ENCEN periods, but all other significant changes show the expected sign. Results are not 

presented for the future fire weather predicted using the PCM model, but given the smaller shifts 

in the distribution of ROS predicted using that model, the results would predictably be more 

modest that those derived using the GDFL model. 

In an effort to assess what additional resources would be to offset the predicted changes in 

fire outcomes, several what-if simulations were run for the AEU administrative unit in which a 

few “new” fire engines were added to the preexisting configuration of firefighting resources for 

the ENDCEN period, to be nominally dispatched from the fire stations generally providing the 

first-responding engines to simulated wildland fires. This augmentation of resources was 

generally sufficient to reduce the frequency of ESLs to that projected for the BASE period. 
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4. Conclusions  

As climate change and population growth unfold over the coming century, we can expect 

changes in the wildland fire system to manifest themselves through several pathways. Climate-

induced changes in weather will directly affect the behavior of vegetation fires by altering their 

rate of spread or intensity in ways that ultimately affect their outcomes: burned area, damage to 

natural resources or infrastructure, fire agency budgets and suppression expenditures, and 

number of fires that escape initial attack and therefore have the potential to become larger or 

very costly.  

Just as importantly, but much more difficult to forecast, we can expect climate change to 

alter vegetation composition, conceivably to an extent that leads to substantial changes in the 

fuels available to burn, thereby affecting fire behavior. For example, if timber species die out and 

are replaced by shrubs, there might be less total burnable fuels and fewer commercial natural 

resources at risk, but fire rates of spread would likely increase. If additional moisture results in 

conversion from shrub or grassland vegetation to forests, on the other hand, the converse might 

occur. 

Apart from climate change, we know that population growth will almost certainly result 

in additional area covered in wildland vegetation becoming incorporated into California’s 

extensive wildland-urban interface. As the wildland-urban interface spreads, the values at risk in 

this type of development will inexorably result in public demands for greater expenditures on 

firefighting resources, and for more aggressive initial attack to protect the increased values at 

risk. To the extent that these demands are met simply by increased use of existing resources (e.g., 
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dispatch five engines to a fire instead of two), then this would act as a countervailing force 

tending to reduce any climate change-induced increase in the frequency of escaped fires without 

fundamentally changing the fixed costs of fire control. The effects of infrastructure development 

in the wildland-urban interface on the marginal costs of fire control are difficult to generalize, 

given their site and situation specificity, and the likelihood that wildland-urban interface 

communities will actively pursue options to reduce their hazard exposure in ways that 

complement the activities of state and federal fire agencies. 

 Growth in the wildland-urban interface (WUI) in recent years has placed more people in 

contact with wildlands, thereby increasing the likelihood of human-caused ignitions. In 

California, the area in this condition has grown by 9% in a decade (Hammer et al. in press). 

While there are as yet no signs of this trend abating in California, remarkable reductions in the 

rate of conversions from wildland to residential have been demonstrated in Oregon as a result of 

land use controls imposed in 1980 (Lettman et al. 2004). 

This white paper focuses primarily on the first pathway noted above—how climate 

change-induced effects on weather will translate into changes in wildland fire severity and 

outcomes, particularly on the effectiveness of initial attack at limiting the number of fires that 

escape initial attack. The other pathways are not less important, but could not be addressed 

within the severe time, personnel, and resource limitations under which this work was 

undertaken.  

Prior research on this issue indicated that there is a potential for significant increases in 

the number of fires escaping initial attack, particularly in areas in which the fuel matrix is 
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dominated by grass and brush. These results were driven primarily by predicted increases in 

wind speeds which were used to directly adjust wind speeds associated with modeled, 

representative fires. Those findings, however, were derived for a single climate change scenario, 

very coarse-scale AOGCMs, and a rather simplistic deterministic simulation model of initial 

attack on wildland fire (CFES-IAM).  

In contrast, the analysis reported here used two state-of-the-art AOGCMs (GFDL and 

PCM), new downscaling techniques to link the outputs of those AOGCMs to historical data from 

local weather stations, and a much more sophisticated stochastic simulation model of initial 

attack on wildland fire (CFES2) that was developed specifically to address the deficiencies noted 

in the model used in the prior research on this topic. Using this more rigorous approach with data 

from three CDF administrative units, this study’s primary findings can be briefly summarized as 

follows.  

First, the subtle shifts in fire behavior of the sort that might be induced by the climate 

changes anticipated for the next century are of sufficient magnitude to generate an appreciable 

increase in the number of fires that escape initial attack. It is important to remember that even a 

few additional ESLs per decade [would] could have significant public policy implications, given 

the high cost to society of a catastrophic escape like those experienced in recent decades in the 

Berkeley-Oakland, Santa Barbara, San Diego, or Los Angeles areas.  

Second, comparison of the higher A2 and lower B1 emissions scenarios shows that the 

lower emissions scenario seems to be sufficient to produce modest reductions in the anticipated 

negative impacts on wildland fire severity and outcomes relative to the higher A2 scenario.  

Third, this analysis is sensitive to the choice of AOGCM. Projections of certain climate 
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variables that display strong relationships to fire conditions and spread (e.g., wind speed, 10-hr 

fuel moisture) were more sensitive to the model than the emissions scenario. Carrying these 

projections through to simulations of wildland fire severity, we found the PCM-generated 

climate scenarios (which were in general wetter than and not as warm as GFDL) to result in 

more modest predicted changes in wildland fire severity and outcomes than GFDL-generated 

climate-change scenarios.  

Fourth, the magnitude of the climate change-induced changes in wildland fire severity 

and outcomes was less than reported in prior work, and we suspect that this is primarily owing to 

different assumptions with respect to how wind speed is treated in the process of downscaling 

AOGCM climate simulations. The method used in this study was more conservative, sampling 

from historical distributions, but, lacking input from larger-scale dynamics as represented by a 

regional climate model, it may underestimate the effect of climate change on wind fields. Further 

work on how to combine the historical range of wind speeds observed at weather stations with 

dynamic simulations of changes in regional to local-scale wind fields under climate change 

scenarios and evaluation of their overall impact on wildfire severity and spread will be a high 

priority for the research team who collaborated to produce this report.  

Fifth, we conclude that the effect of climate change on wildland fire outcomes might be 

compensated for with a modest augmentation to existing resources. A modest augmentation of 

firefighting resources in all CDF administrative units and counties which provide wildland fire 

protection services for the State under contract, however, might translate at the statewide level 

into a significant budget augmentation.  
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Sixth, although the existing “fire season” during which the CDF maintains a fully staffed 

organization is more a reflection of annual fire occurrence patterns than anticipated fire behavior, 

the results of climate change on fire behavior predicted by using the methods employed in this 

study suggest that fire behavior might play a more significant role in determining the length of 

the fire season in the future. Further exploration of this possibility will, of course, need to be 

coordinated with work on how fire occurrence patterns might change as a result of both climate 

and demographic changes over the next century.  

Seventh, it might be useful for future work to attempt to factor in vegetation change 

resulting from climate change, possibly by using the newer 40-fuel model system in BEHAVE 2, 

or perhaps the 256-fuel model matrix of the fuel characteristics classification system.  

Eighth, although this study has focused on a consideration of the impact of climate 

change on rate of spread, it may be just as important to consider the impacts of climate change 

and vegetation management activities on the potential for crown fires. Some of the models 

currently in use for assessing crown fire potential would have benefit for extension of this 

research of being linkable to the Forest Inventory Analysis (FIA) data on forest condition 

collected by the USDA Forest Service (USFS).  

Finally, in contrast to prior work, the use in this study of a stochastic model of initial 

attack demonstrates the value of being able to generate standard errors on the mean values of 

predicted outcomes for hypothesis testing, as well as for characterizing the impact of climate 

change on the extreme values of fire ROS distributions.  

Extending our analysis to cover the public forests managed by the USFS on the north 
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coast or in the upper elevations of the Sierra Nevada would be difficult owing to differences 

between the USFS Fire Program Analysis (FPA) model and the California Department of 

Forestry and Fire Protection’s CFES2 model for analysis of initial attack on wildland fires. The 

two models are similar in many ways, but the FPA model does not incorporate a stochastic 

treatment of key simulation elements (e.g., fire occurrence or rate of spread), and therefore its 

simulation outputs cannot be analyzed by using the same significance-testing methods. The same 

methods could, however, be used to downscale GCM climate projections for a similar analysis of 

the impact of climate change on fire rates of spread, and a deterministic analysis could be 

performed by using the FPA model of the effects of those changes. It is also likely that a more 

sophisticated analysis of the impact of climate change on wildfire on public and private lands in 

California would entail the development of separate prediction models of the effects on fire 

occurrence, as most fires on CDF-protected lands are of anthropogenic origin; whereas lightning-

caused fires constitute a higher proportion of fire ignitions on much of the land protected by the 

USFS.  

We believe that the research summarized in this paper will prove to be at least as valuable as 

any attempt would have been to estimate statewide impacts, if not more so, because of the 

problems and opportunities it has identified in our capacity to address the questions that 

motivated the study. In particular, it is now clear to the fire research community at the University 

of California, Berkeley, and to their network of collaborators at other institutions, that much 

more work is needed to validate some of our modeling approaches, or develop entirely new ones, 

to many of the elements of the system we are modeling.  
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