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ABSTRACT

Diseases and conditions affecting the lower urinary tract are a leading cause of dysfunctional sexual

health, incontinence, infection and kidney failure.  The growth, differentiation, and repair of the

bladder’s epithelial lining is regulated by fibroblast growth factor (FGF)-7 and -10 via a paracrine

cascade originating in the mesenchyme (lamina propria) and targeting the receptor for FGF-7 and -

10 within the transitional epithelium (urothelium).  Recombinant FGF- 7 and -10 induce

proliferation of human urothelial cells in vitro and transitional epithelium of wild-type and FGF7-

null mice in vivo. To determine the extent that induction of urothelial cell proliferation during the

bladder response to injury is dependent on FGF-7, an animal model of partial bladder outlet

obstruction was developed. Unbiased stereology was used to measure the percentage of

proliferating urothelial cells between obstructed groups of wild-type and FGF7-null mice. The

stereological analysis indicated that a statistical significant difference did not exist between the two

groups, suggesting that FGF-7 is not essential for urothelial cell proliferation in response partial

outlet obstruction. In contrast, a significant increase in FGF-10 expression was observed in the

obstructed FGF-7 null group, indicating that the compensatory pathway that functions in this model

result in urothelial repair.
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INTRODUCTION

Bladder outlet obstruction is a medical condition that can affect men, women and children.

Lower urinary tract obstruction can lead to voiding dysfunction as well as kidney failure.  Many

men suffer from obstruction due to benign prostatic hypertrophy, leading to both medical and

psychosocial dysfunction (2).  Associated with these dysfunctions are severe losses of smooth

muscle function and bladder contractility, or progression of the bladder towards conditions of severe

hypertrophy and hypercontraction (3).  Incomplete bladder emptying in patients is also a risk for

urinary tract infection.  In addition, children born with congenital forms of bladder outlet

obstruction such as posterior urethral valves or children born with functional bladder obstruction,

such as in spina bifida patients, can lead to significant urinary incontinence and renal dysfunction.

Transitional epithelium that lines the urinary tract exhibits one of the slowest turnover rates

among mammalian epithelia, estimated at once every 365 days (4-7). Although the urothelial cells

that comprise this epithelia rest in G0 during normal conditions, they remain active in metabolic

processes that accompany shape change during bladder emptying and filling.  In response to injury,

transitional epithelium exhibits a remarkable ability to turnover within 24-48 hours after the initial

insult. The identity of the mitogenic signal that gives rise to basal urothelial cell proliferation has

been attributable to growth factors. Such factors are classified as either paracrine, autocrine, or

juxtacrine, depending on the originating and target cell type. Mitogens known to act on human

urothelial cells include epidermal growth factor (8), heparin-binding epidermal growth factor-like

growth factor (9), activators of the estrogen receptor (10, 11), transforming growth factor-α (12),

fibroblast growth factor-1 (12), and fibroblast growth factor-10 (13).

The model most frequently used to study the urothelial response to injury is partial outlet

obstruction of the bladder via urethral ligation (14).  The wound healing response appears to be

constant from animal model to animal model and mimics the clinical response seen in humans (15-
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17). Such events include urothelial cell proliferation within 24-48 hr, subsequent hypertrophy of the

bladder wall, and alterations in detrusor muscle and the extracellular matrix.  Experimental animal

models have been exploited to study bladder dysfunctions that are similar to those observed in men

with benign prostatic hyperplasia (18, 19). Furthermore, this experimental model has direct

implications for other clinical disease states such as congenital (i.e. posterior urethral valves) or

acquired (urethral stricture or bladder neck contraction) urinary tract obstruction.

Fibroblast growth factor-7 (FGF-7) is a 194 aa polypeptide implicated in both the induction of

basal urothelial cell proliferation and the expansion of transitional epithelium (14, 20). Also known

as keratinocyte growth factor (21, 22), FGF-7 is one of 24 members of the FGF family of

polypeptide growth factors. The crystal structure of FGF-7 has been solved (1, 23). The protein

folds into a beta-trifoil motif similar to other members of the FGF family whose structures have

been solved. Although FGFs 11-14 exhibit striking structural similarities to FGF-10, FGFs 11-14

have diverged to direct related surfaces towards interaction with protein targets distinct from

canonical FGF receptors (FGFR) (24).

FGF-7 and FGF-10 are considered to be paracrine factors, originating in mesenchyme but active

only upon epithelium (13, 21, 22, 25). The formation of a specific FGF7-containing FGFR signal

transduction complex requires 3 components: the FGF-7 polypeptide, proteoglycans that contain

either heparan- (26, 27), dermatin- (28), or chondroitin- (29) sulfate, and an alternatively-spliced

tyrosine kinase protein product of the FGFR2 gene (7, 30), and (27). This receptor, known as the

keratinocyte growth factor receptor (KGFR), the FGFR2IIIb splice variant, or the FGFR2 isoform 2

splice variant, is a cell-surface transmembrane protein that undergoes dimerization upon ligand

binding and subsequent autophosphorylation of intracellular tyrosine residues (31). Allelic

mutations in the FGFR2 exons that encode the isoform 2 splice variant are known to give rise to a
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number birth defects that include craniosynostosis syndromes (32).  It is believed that the FGFR2

isoform 2 splice variant serves as a receptor for both FGF-7 and FGF-10.

Mice that contain a targeted disruption of the FGF-7 gene exhibit defects in (i) cells that give

rise to the hair shaft (33), (ii) ureteric bud outgrowth (34), and (iii) stratification of bladder

urothelium (35). The collective evidence demonstrates an essential role for FGF-7 in development,

growth, differentiation, and homeostasis of the mucosal lining of the urinary tract. In contrast to the

FGF-7 null mouse, the FGF-10 null mouse lacks limb bud initiation and lung development (36).  In

addition, the FGF-10 null mouse exhibits gross anatomical defects in the urinary tract with

includinga urothelium that fails to stratify (37). Consequently, FGF-10 null mice die at birth,

precluding their use in experimental models of partial bladder obstruction.

 This study demonstrated the mitogenic potential of FGF-7 on human and murine urothelial

cells. The growth factor was found to stimulate resting cells to exit from G0 and traverse the cell

cycle. To determine if the mitogen was responsible for the induction of urothelial cell proliferation

during the initial response of the bladder to injury, we examined whether there was a difference in

the urothelial response to injury between wild-type and FGF7-null mice in a model of partial outlet

obstruction. Stereological analysis of obstructed bladders revealed that a statistically significant

difference did not exist indicating that FGF-7 is not essential for urothelial cell proliferation during

the response to partial outlet obstruction of the urinary bladder.  Further stereological analysis

revealed a significant fold increase of FGF-10 synthesis in obstructed FGF7-null mice via a

compensatory paracrine mechanism.
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RESULTS

Isolation and Sequence Analysis of FGF-7 cDNA from Human Urinary Bladder

A 0.492 kbp partial cDNA fragment encoding FGF-7 from a human urinary bladder cDNA library

by reverse transcription and PCR was cloned, sequenced, and found to be 100% identical with the

corresponding region present in the NCBI reference sequence encoding human lung FGF-7 mRNA

(Accession NM_002009.2). Analysis of the 0.492 kbp bladder FGF-7 sequence predicted an open

reading frame for a polypeptide exhibiting a length of 164 residues, a Mr of 18,594.70, a pI of 9.82,

and a molar extinction coefficient of 21,770 mol g-1 cm-1. These data are consistent with the

deduced primary structure being the mature, secreted form of bladder FGF-7.

Distribution and Characterization of FGF-7 Sequences in the Human Genome

The distribution of the bladder FGF-7 cDNA sequence in the human genome is shown in Table

1. Regions of identity or near-identity were localized to chromosomes 9, 15, 18, and 21. Because

our bladder FGF-7 cDNA sequence does not contain 5’- and 3’- mRNA sequences, we performed

an analogous search with the reference sequence assigned to the FGF-7 mRNA by the National

Center for Biotechnology Information. In Table 1, the bracketed row of data represents additional

genomic regions detected with the full-length 3,853 base mRNA reference sequence. Five, four, two

and two regions of identity or near-identity were localized to chromosomes 9, 15, 18, and 21,

respectively.

Of the 4 chromosomes identified to contain FGF-7 sequences, we were able to localize the gene

that encodes FGF-7 to chromosome 15. The structure of the gene was deduced from the 18,451.822

kbp chromosome 15 reference genomic contig (NCBI Accession NT_010194.13). The fibroblast

growth factor 7 gene is characterized by a length of at least 64.065 kbp, a presence on both

chromatids of chromosome 15, a cytogenetic localization of 15q15-q21.1 at 41.2 +/- 13.3 MB, and
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4 exons that generate a 3,852 kb mRNA. The arrangement of introns and exons is displayed in

Table 2. Exons 2 and 3 are separated by an unusually large intron (58.567 kbp) that also splits the

codon for Asn67  (underlined and bold type in Table 2). Fifty-seven single nucleotide

polymorphisms (SNP) for this gene are present in NCBI’s public SNP database (Human Genome

Build 31, February 28, 2003).

The extent to which introns 2 and 3, and exons 3 and 4, of the chromosome 15 FGF-7 were

distributed among chromosomes 9, 18, and 21 was also investigated (Table 3). The size of exons 3

and 4 were each almost perfectly conserved among chromosomes 18, 21, one region located in the

middle of the p arm (Chr 9pm), and two regions proximal to the centromere (Chr 9qc) and telomere

(Chr 9qt) of the q arm of chromosome 9. The length of the chromosome 18 FGF-7 sequence is

nearly identical to the length of the chromosome 15 FGF-7 gene sequence. Scattered over these 3

chromosomes are 7 regions that exhibit near-identical sequences. We considered these regions to be

duplications of the FGF-7 gene sequences present on chromosome 15. These duplicated copies

contain only portions of the FGF-7 gene sequence (Figure 1). Such duplications for the FGF-7 gene

have been previously detected by Southern blotting (38) and by fluorescence in situ hybridization

(39). In this latter study, the duplications were visualized on chromosomes 2, 9 (two spots), 15, 18

(two spots), and 21 (two spots). Our sequence analysis differs from these results in that no

sequences were identified to account for the chromosome 2 spot.

Five copies of the duplicated sequences were localized to chromosome 9 (Table 3 and Figure 1).

Among the conserved copies, two gap-containing sequences were identified proximal to the

centromere on the 9p arm (9pc) and proximal to the telomere on the 9q arm (9pt).
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Analysis of Human Urinary Bladder FGF-7 Amino Acid Sequence

Figure 2 displays the deduced amino acid sequence for the 173 aa recombinant rFGF7-His

protein. The N-terminus was engineered to contain a Met residue to provide a codon for initiation of

translation in E. coli. The C-terminus was engineered to contain a His-hexamer to provide for

detection during biological assays and for isolation of the recombinant protein by metal-chelate

affinity chromatography. The calculated Mr and isoelectric point of rFGF7-His is 20,151 and 9.58,

respectively.

Motifs and sites for post-translational modification that are predicted to occur in the wild-type

FGF-7 sequence are also shown in Figure 2. Naturally occurring FGF-7 proteins are predicted to

contain sites for N-linked glycosylation (Asn16), casein kinase II phosphorylation site (Ser18 and

Thr150), phosphorylation site by protein kinase C (Ser124) and amidation (Gly147). A 24 aa region

(Gly96-Tyr119) is the consensus sequence for the FGF family of heparin-binding polypeptides (40)

and a potential transmembrane segment (41). The “glycine box” sequence (NQKGIPVRG, residues

139 – 147) (42) is the major determinant for the specificity of the binding of FGF-7 to heparan

sulfate-FGFR complexes (40). Residues that have been implicated in binding to heparin (23) (1)

were identified as Arg43, Asn117, Asn139, Gln140, Val145,Lys148, Asn154, Lys155, and Thr156

(Figure 2). These residues form a positively charged motif that is present on the surface of the

macromolecule (Supplemental Figure 2). The heparin-binding motif of rFGF7-His is therefore

exposed to the solvent, and, more importantly, available to bind to and interact with heparan-,

chondroitin-, or dermatin- sulfate proteoglycans.
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Expression, Isolation, and Characterization of Recombinant FGF-7 in Escherichia coli

The expression of recombinant FGF-7 was realized as a fusion protein with a hexamer of His

residues at the C-terminus (Figure 2 and Supplemental Figure 2). This recombinant fusion protein,

designated rFGF7-His, was found to comprise 1-2% of the total cellular protein and to partition

equally between the soluble and insoluble fractions of lysed BL21trxB(DE3) E. coli (data not

shown). We pursued the characterization of the soluble form of rFGF7-His with respect to 1)

intactness, 2) ability to interact with heparin, 3) folding, and 4) biological activity in vitro.

rFGF7-His was determined to be full-length because a) amino acid sequencing of the N-

terminus (ACNDMTPEQMATNV) of the isolated protein was found to be consistent with the N-

terminus of the mature form of the NCBI reference sequence NM_002009.2 and b) the C-terminal

His hexamer conferred the ability of rFGF7-His to bind avidly to nickel-chelate affinity resins

(Figure 3, lane 1).

rFGF7-His was judged to be folded properly because a) it partitioned into the soluble phase of

the bacterial extract, b) the isolated, non-reduced form exhibited a greater mobility on SDS-PAGE

than the isolated, reduced form (data not shown) and c) it bound to heparin (Figure 3, lane 2).

Soluble rFGF7-His was isolated as a monomeric polypeptide of ~24 kDa by nickel-chelate (Figure

3, lane 1) and heparin affinity chromatographies (Figure 3, lane 2). The ability of soluble rFGF7-

His to interact with nickel-chelate resins through its C-terminal His-hexamer (Figure 3, lane 1)

demonstrates that this His- hexamer is localized to the periphery of the folded protein, in agreement

with the crystal structure of the human (23) and rat (1) FGF-7 proteins. Concerns that manipulation

of the C-terminal region of rFGF7-His would influence its folding and biological activity (43)

prompted us to ask if our preparations of rFGF7-His would bind to heparin-affinity resins in the

same manner as reported in the literature. Figure 3 (lane 2) demonstrates that rFGF7-His elutes

from heparin-affinity chromatography columns at 1.0 M LiCl, an ionic strength in agreement with
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that reported for native (21) or rFGF-7 (44). Sequential chromatography on heparin-affinity

followed by nickel-chelate affinity chromatographies (Figure 3, lane 3), or the converse (nickel-

chelate followed by heparin, Figure 3, lane 4) clearly demonstrate that the presence of the C-

terminal His-hexamer does not impact the ability of the recombinant protein to interact with heparin

or fold into a conformationally stable state. Stabilization of rFGF7-His was found to be enhanced by

inclusion of heparin in the storage buffer solution (not shown).

Biological Activities of Recombinant FGF-7

rFGF7-His was found to exhibit mitogenic activity on human urothelial cells in vitro (Figure 4).

Cultures of urothelial cells that attained confluence by incubation in growth media reduced the rate

of [3H]-thymidine incorporation from 37,600 ± 900 cpm to 6,000 ± 360 cpm after switching to

starvation medium (Figure 4B). Addition of increasing concentrations of rFGF7-His to cells in

starvation medium resulted in a dose-dependent increase of incorporation of [3H]-thymidine into

urothelial cell DNA. A 5.6-fold increase in incorporation was observed at a concentration of 0.1 ng

ml-1, relative to no input growth factor. The mitogenic activity of rFGF7-His was dependent on the

absence of input heparin. This activity was observed only with confluent cultures, whereas non-

confluent cultures resulted in non-significant levels of incorporation (data not shown). The culture in

Figure 4A was confluent and displayed the typical cobblestone appearance of urothelial cells in vitro, as

compared to published photographs (8). Atop Figure 4A is a “giant” cell with two prominent nuclei – this

urothelial cell-subtype corresponds to the large, polygonal suprabasal cell that comprise the lumenal layer

of transitional epithelium. Suprabasal urothelial cells are the largest epithelial cells in mammals.

Secretory granules, lipid inclusions, and lysosomes are prominent in these suprabasal cells, which are

also positive for uroplakin (data not shown).
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rFGF-7 (Palifermin) was also found to exhibit mitogenic activity on the urothelial cells of

murine transitional epithelium (Figure 5). For these experiments, 100 µg of rFGF-7 (Palifermin) in

vehicle was injected each day for 14 days into the neck folds of C57BL/6J mice. Subsequent

histological staining with Mason’s trichrome (data not shown) revealed that animals treated with

rFGF-7 (Palifermin) underwent a dramatic expansion of the number of urothelial cell layers of

urinary bladder transitional epithelium (data not shown). A layer of stratified urothelium 15-25 cells

thick characterized this expansion. In contrast, control mice that received vehicle only did not

exhibit detectable urothelial expansion, but instead displayed a normal layer of 2-5 cells thick (data

not shown).

Immunostaining with antibodies specific for the nuclear protein Ki-67, an established marker of

epithelial cell proliferation (45, 46), demonstrated that basal urothelial cells were traversing the cell

cycle (Figure 5). The Ki-67 signal persisted throughout the period of rFGF-7 (Palifermin)

administration and was prevalent in all animals tested (n = 3). A Ki-67 signal was observed to

decrease in intensity as cells detached from the urothelial basement membrane and migrated

towards the bladder lumen. Animals receiving vehicle did not exhibit Ki-67 immunoreactivity. The

positive correlation between rFGF-7 (Palifermin) administration, expansion of the layers of

transitional epithelium, and Ki-67 immunoreactivity confirms that FGF-7 is a positive regulator of

urothelial cell proliferation.

FGF-7 is a Non-Essential Mitogen During Partial Bladder Outlet Obstruction

An experimental mouse model of partial bladder outlet obstruction was developed wherein a

partial surgical ligature was placed around the urinary bladder outlet. In this model, animals that

underwent partial ligation exhibited bladders that were abnormally distended. The hallmark feature

of transitional epithelium over the 8 days of obstruction was the marked increase of stratification of
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transitional epithelium and of urothelial cells traversing the cell cycle. The mitogenic signal that

stimulated the exit of these cells from the GO phase and the progression through the cell cycle was

hypothesized to originate in the mesenchyme, and that this principal mesenchymal factor was FGF-

7.

To test our hypothesis, a comparison of the urothelial response to obstruction between wild-type

and FGF-7 null mice was performed. It was assumed that this response would involve individual

urothelial cells undergoing proliferation. Accordingly, urothelial cells traversing the cell cycle were

detected by immunostaining with polyclonal antibodies specific to the Ki-67 nuclear antigen, an

accepted marker of proliferating epithelial cells.

Quantification of total and proliferating urothelial cells was achieved by analysis using the

principles of unbiased stereology. If mesenchymal FGF-7, produced and secreted by fibroblasts of

the lamina propria, was the principal mitogen that stimulated the proliferation of urothelial cells,

then lack of this major paracrine factor in FGF7-null mice should influence the urothelial response

to injury by exhibiting a measurable decrease in the percentage of proliferating urothelial cells, as

compared to wild-type mice.

The following transitional epithelia exhibited 2-5 layers of urothelial cells that typify the normal

phenotype and were non-reactive with antibodies specific for the Ki-67 antigen: wild-type normal,

FGF7-null normal, wild-type sham, and FGF7-null sham (data not shown). These results indicate

that urothelial cells were not removed from the G0 resting phase of the cell cycle by surgical

procedures that did not include urethral ligation.

Mice that underwent ligation for 1-2 days exhibited minimally detectable urothelial expansion

(data not shown). Ligation for 4 days elicited subtle, but detectable, urothelial expansion (data not

shown). The most consistent and reproducible efforts required 8 days of partial obstruction.

Partially obstructed bladders after 8-days post-ligation were prominently larger and distended than
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control animals (data not shown), a result that indicated that partial outlet obstruction of the bladder

was successfully accomplished by ligation of the urethra.

In contrast to control and sham-operated animals, transitional epithelia from animals that

underwent partial urethral ligation at the bladder neck exhibited marked immunoreactivity with

antibodies specific for the Ki-67 nuclear antigen. The total number of Ki-67 positive cells, as well

as the total number of urothelial cells, was determined by stereology (Figure 6). Calculation of

mean values is presented in Table 4. The percentage of Ki-67 positive cells for obstructed wild-type

and FGF7-null mice was calculated to be 1.78 ± 0.46 cells and 1.60 ± 0.94, respectively. A

statistical comparison between these two groups with the student’s t-test indicated that this

difference was not significant.

FGF-10 is a Compensatory Mitogen During Partial Bladder Outlet Obstruction

Bladder specimens from mice subjected to partial outlet obstruction as described above were

tested for FGF-10 expression.  FGF7- null and WT mice were compared for differential FGF-10

expression among fibroblasts within the lamina propria using the same stereologic analysis as

described above.  The mean number of FGF-10 positively stained fibroblasts for the WT and the

FGF7-null mice per bladder were 195 and 1086, respectively (Table 4).  This difference was

statistically significant (p = 0.004) proving that FGF-10 expression was up-regulated in response to

obstruction.  The collective data support the hypothesis that FGF-10 is an essential and

compensatory mitogen for murine urothelium turnover.

DISCUSSION

In animal models, partial outlet obstruction of the urinary bladder induced by urethral ligation elicits

a 3-phase programmed response: (i) an initial hypertrophy phase, (ii) a compensatory phase, and
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(iii) a decompensatory phase (18, 47). The early molecular response of the lamina propria and

urothelium in response to outlet obstruction has been studied in the context of mesenchymal-

epithelial interactions, specifically the role of mesenchymal growth factors in the induction of

urothelial cell proliferation (13, 15, 48-50). In these models, FGF-7 mRNA has consistently been

observed to be markedly upregulated in response to obstruction (14, 15, 47). Our analysis of the

FGF-7 gene indicated that while exons 3 and 4 were duplicated within the human genome, we

found no evidence that full-length FGF-7 mRNAs could arise from any other locus than 15q15-

q21.1.

Mesenchymal mediators of epithelial cell behavior, proliferation, and differentiation represent

an important means of regulating development, homoeostasis, and the response to injury. In the

urinary bladder, the paracrine mediator that has been most studied is FGF-7, a polypeptide

synthesized and secreted by fibroblasts of the lamina propria (15, 20, 47-50). Our study

demonstrates that this growth factor is a mitogen for human and murine urothelial cells of

transitional epithelium, a result in agreement with prior reports that studied the effect of the purified

factor on transitional epithelia from monkey (51), rat (51, 52), and murine (20, 35)  sources.

Equivalent biological activities were observed for rFGF7-His (our preparations) and rFGF-7

(provided by Amgen as the pharmaceutical Palifermin) in assays that monitored the incorporation of

[3H]-thymidine into the DNA of human urothelial cells in vitro. The mitogenic activity of rFGF7-

His on human urothelial cells was observed only with confluent cultures, a phenomenon previously

reported for normal human keratinocytes (53). Our data is also in agreement with prior reports (44,

54) that demonstrated that heparin was inhibitory to the stimulatory activity of rFGF-7 on Balb/MK

keratinocytes.

Since the initial response of the bladder to outlet obstruction is to turnover its urothelium via

reciprocal mesenchymal-epithelial interactions (14, 15, 47), we asked to what extent
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mesenchymally-derived FGF-7 regulates urothelial cell proliferation in response to obstruction. To

answer this question, we quantified the proliferative response to obstruction by stereological

analysis of Ki-67 staining of the urothelium. Not only were the total number of Ki-67 positive cells

nearly equivalent between the wild-type and FGF7-null sets of mice, but the percentage of

urothelial cells traversing the cell cycle between these two sets was statistically insignificant. We

noted that the urothelial response to obstruction was variable from animal to animal, an observation

shared by other laboratories (15, 16, 55-57) and noted clinically as well.

The collective data prove our hypothesis that redundant mechanisms compensate for the lack of

FGF-7 in FGF7-null mice that continue to exhibit proliferating urothelial cells in response to

obstruction. The principal mitogenic candidate to compensate for the absence of FGF-7 was shown

to be FGF-10, a known mitogen for urothelial cells in vitro and in vivo (13, 25). Since both FGF-7

and FGF-10 can bind to, interact with, and stimulate a mitogenic signaling pathway through the

same FGFR2 isoform 2 receptor (58), we conclude that FGFR2 isoform 2 remains functional in

FGF7-null mice.
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Our prior report that the FGFR2 isoform 2 receptor is expressed by the superficial layer of transitional

epithelia (25) is clinically significant because intravesical instillation of recombinant FGF-7 and -10 into the

bladder lumen is predicted to trigger urothelial repair in response to injury due to obstruction.  In addition,

clinical conditions involving the urinary tract which cause epithelial damage such as infections and trauma

leading to stricture disease, erosive disorders such as interstitial cystitis, and urinary tract disruption from

transurethral resection surgery could be treated with mitogenic stimulation.  Ongoing work is expected to

lead to a better understanding of the steady-state interrelationships that involve urothelial cells, growth

factors, matricellular proteins, the extracellular matrix, and the urothelial basement membrane.  Advancing

the study of FGF-7 and -10 is relevant because of the polypeptides’ potential use as a clinical tool to treat,

and ultimately cure, a variety of lower urinary tract conditions and diseases.

MATERIALS AND METHODS

Materials

Human urinary bladder cDNA was obtained from Invitrogen (Carlsbad, CA). Oligonucleotide

primers were synthesized by Keystone Laboratories (Foster City, CA). Escherichia coli strains

NovaBlue and BL21trxB(DE3), Perfectly Blunt Cloning Kit, plasmid pET21d, Bug Buster lysis

reagent, and carbenicillin were purchased from Novagen (Madison, WI). Restriction enzymes NcoI

and XhoI, T4 DNA ligase, Taq polymerase, and Complete Protease Inhibitors were from Roche

Molecular Biochemicals (Indianapolis, IN). Ni-NTA metal-chelate affinity resin was from Qiagen

(Chatsworth, CA). HiTrap heparin-sepharose affinity resins were from Amersham Biochemicals

(Piscataway, NJ). SDS-PAGE gels and the Amplified Alkaline Phosphatase ImmunoBlot Assay

detection system were obtained from BioRad (Hercules, CA). Tetracycline and kanamycin were

from Calbiochem (La Jolla, CA). Recombinant FGF-7 (rFGF-7, Palifermin, rHuKGF)) was

provided by Amgen (Thousand Oaks, CA). Rabbit anti-bovine uroplakin immunoglobulins were



Page 17 of 48
6/9/2008

obtained from Dr. H. Sun (New York University, New York, NY).  Rabbit anti-Ki67

immunoglobulins were obtained from Novocastra (Newcastle, UK).  Mouse anti-FGF10

immunoglobulins were purchased from R&D Systems (Minneapolis, MN).  Goat anti-mouse

horseradish-peroxidase conjugated immunoglobulins were obtained from Jackson ImmunoResearch

Laboratories (West Grove, PA).

Isolation of rFGF7-His

Two types of recombinant (r) FGF-7 were used in this study. rFGF7-His, prepared in our laboratory

as described in the Supplemental Materials Section and Palifermin (rFGF-7 lacking a C-terminal

His-tag), prepared and provided to us by Amgen (59).

N-terminal Amino Acid Sequencing of rFGF7-His

A 1 ml fraction eluted from a nickel-chelate affinity chromatography column that contained 25

µg ml-1 of rFGF7-His was precipitated with trichloroacetic acid, washed, dried and dissolved in

0.125 M Tris-HCl (pH 6.8), 2% (w/v) SDS, 10% glycerol, 0.05% bromphenol blue, 0.05 M

dithiothreitol. After heating to 37 °C for 20 minutes, the fraction was electrophoresed through a

15% polyacrylamide gel that contained 0.1% SDS. Thioglycolate (0.1 mM) was present in the upper

buffer chamber to scavenge unpolymerized acrylamide that could potentially result in blockage of

the N-terminus. Following electrophoresis, fractionated proteins were electrotransferred to a

polyvinylidene difluoride membrane in 0.01 M MOPS (pH 11.0) that contained 20% methanol,

visualized by staining with Coommasie Brilliant Blue R-250 and destained. The rFGF7-His band

was excised from the membrane, and sequenced by Edman degradation with an Applied Biosystems

477A protein sequencer.
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[3H]-Thymidine Incorporation Assays of Urothelial Cell Proliferation

Because of the use of human transitional epithelial tissue for this study, these experiments were

reviewed by the Institutional Review Board of Children’s Hospital and Regional Medical Center. 

Primary cultures of bladder urothelial cells derived from surgical explants were grown as

previously described (13). Assays of DNA synthesis of bladder urothelial cells were performed as

previously described (13). Incorporation of [3H]-thymidine into urothelial cell DNA as a function of

rFGF7-His was inhibited by 10 µg ml-1 heparin, in agreement with a prior report (43, 54),

presumably because of the influence of extracellular matrix components present in the cultures.

Our preparations of rFGF7-His from soluble extracts were biologically active and the

engineering of a C-terminal hexamer of histidine residues did not affect solubility, folding, or

ability to bind to heparin. However, we found that the yields of bacterial rFGF7-His were

disappointing, a result in agreement with a prior report that established that the growth factor

exhibited limited stability in aqueous media, as it undergoes denaturation followed by aggregation

at 37 °C (60). Therefore, we used Amgen’s preparations of active recombinant FGF-7 for use in

assays where milligram quantities of the growth factor were needed, e.g. injection into mice.

Induction of Murine Urothelial Cell Proliferation

rFGF-7, lacking a C-terminal histidine tag and ending at Thr165 (Figure 4), was obtained from

Amgen as the pharmaceutical Palifermin, and dissolved in vehicle (120 mM NaCl, 2.7 mM KCl, 4

mM NaH2PO4 (pH 7.4), 5 µg ml-1 heparin) at a final growth factor concentration of 100 µg ml-1.

One ml was administered daily by intraperitoneal injection into the neck folds of wild-type

C57BL/6J mice. On day 15, mice were euthanized and their bladders were harvested en bloc by

anatomical positioning on a paraffin block. Specimens were fixed with methyl Carnoy’s solution for
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16-24 hr, transferred to 120 mM NaCl, 2.7 mM KCl, 4mM NaH2PO4 (pH 7.4), embedded in

paraffin, cut into 5-10 µm thick sections, and processed by Ki-67 immunohistochemistry (20) or

visualized with Masson’s trichrome stain.

Mouse Model of Bladder Outlet Obstruction

The Institutional Animal Care and Use Committee of Children’s Hospital and Regional Medical

Center approved these experiments. Wild-type C57BL/6J mice were obtained from B and K (Kent,

WA). FGF7-null mice (33) of the same parental inbred strain were provided by Dr. E. Fuchs (The

Rockefeller University). All mice were 8-week old females.

Two sets of mice were used:  wild-type and FGF7-null. Each set consisted of 3 groups:  (1) a

control group (n=2) that did not undergo any type of surgery; (2) a second control group (n=2) that

underwent a sham operation, i.e. abdominal cavity was opened, a 24 gauge angiocatheter was

inserted into the bladder via the urethra and then removed, and the cavity was closed; and (3) a

group (n=8) that underwent ligation at the bladder neck area. The partial ligation was performed

with mice under anesthesia. Once adequate anesthesia was obtained, the abdominal cavity was

opened, exposing the bladder and urethra.  A 26-gauge angiocatheter was inserted into the bladder

via the urethra and a 7-0-monofilament polyglyconate suture was tied around the urethra at the

bladder neck. The angiocatheter was then removed and reinserted to ensure partial outlet

obstruction was obtained. Partial outlet obstruction was confirmed by observing urine flow with

gentle extrinsic bladder compression. The abdomen was then closed, mice were allowed to recover,

and housed for 8 additional days. Mice were sacrificed; the bladder was excised, pinned to a

paraffin block, fixed in Methyl Carnoy’s solution, and sectioned according the principles of

stereology (below).



Page 20 of 48
6/9/2008

Immunostaining with antibodies specific for Ki-67 and FGF-10

Specimens were fixed with methyl Carnoy’s solution for 16-24 hr, transferred to 120 mM NaCl, 2.7

mM KCl, 4mM NaH2PO4 (pH 7.4), embedded in paraffin, cut into 5-10 µm thick sections, and

processed by Ki-67 immunohistochemistry (20) or visualized with Masson’s trichrome stain.

Diaminobenzidine colorimetric staining with primary monoclonal mouse anti-human FGF-10 IgG

at a concentration of 15 µg ml-1 and goat anti-mouse horseradish-peroxidase conjugated IgG at

1:500 dilution was performed with 5% goat serum block.  Slides were counter-stained with a 1:10

dilution of Gill’s formula for 1 minute and fixed.

Stereology Procedures

Estimates of the number of total and proliferating (Ki-67 positive) urothelial cells, and FGF-10

positive fibroblast cells, of obstructed murine bladders were determined by use of the Optical

Fractionator (61). The Optical Fractionator method combines a 3-dimensional unbiased counting

frame (the optical disector) and an unbiased sampling method  (the fractionator) to generate

estimates of the total number of particles of interest, in this case Ki-67 positive urothelial cells and

FGF-10 positive fibroblasts. The ensuing estimate is unbiased and free of volume artifacts

commonly present with other counting methods (62). Implementation of the Optical Fractionator

was performed using a BH-2 Olympus microscope equipped with an Optronics DEI 750 digital

video camera and Ludl high precision motorized stage. Data collection and microscope operation

was controlled by Stereo Investigator software (version 3.19, MicroBrightField, Williston,

Vermont).

The application of the fractionator in the present sampling design consisted of initially

systematically collecting every 40th section across the entire bladder starting with a random start

(e.g. a random start might be 12, therefore collect the 12, 52, 92… sections). Hence this set of
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sections (and the structure of interest contained within, i.e., the obstructed bladder) represented

1/40th of the entire structure. Following staining of this set of sections, Ki-67 positive urothelial

cells were counted in a known aerial fraction of the transitional epithelial layer. The aerial fraction

was determined by placing a random stepping grid, generated by the Stereo Investigator software

program, over the section. An appropriate stepping grid (500 x 500 µm, or an area of 250,000 µm2)

was used to place sequential disectors across the surface of the sections. A disector frame (10 x 10 =

100 µm2) was placed in each stepping grid and used to count Ki-67 positive cells according to

optical disector counting rules. Immunopositive cells were readily identified by the dark brown

coloration of the nuclei characteristic of the staining procedures (see Figure 5 in manuscript). The

overlay of this stepping grid was placed randomly (independently) over the transitional epithelium,

thus ensuring that each step was systematic and random. In our experiments, the optical disectors

sampled 1/2500th of the transitional epithelium. Combined with the 1/40th of the structure

represented by the section, the optical disectors sampled 1/100,000th of the entire structure. Cell

counts were summed from all disectors across all sections collected, and the total number was

determined by multiplying the number counted by the inverse of the fraction sampled. Systematic

random sampling has been determined to be fair because every part of the original structure had an

equal probability of being selected due to the random position set within the first interval, and

systematic random sampling offers additional advantages of efficiency (63).

FGF-10 positive cells were counted that were clearly labeled, possessed the characteristic shape

of a fibroblast cell, and did not intercept the top of the tissue section in what was judged to be the

widest cell profile.  Statistical differences between FGF-7 knock-out mice and wild type mice were

determined using Student’s t-test, SPSS base 10 (Mountain View, CA) statistical software.  Tests

for homogeneity of group variance and normal distributions indicated that the non-parametric
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Mann-Whitney test for two-group means comparison was the appropriate statistical test for FGF-10

expression analysis.
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Table 1. Distribution of the Sequence for FGF-7 in the Human Genomea

Chromosome Begin – End of

Genomic Contigb
Accession #

of Contig

Begin – End of

cDNA

% Identity

(Length)

9 310522 - 313542

309333 - 309436

NT_033211.3 834 - 3853

732 -   835

97 (3032)

97 (  105)

9 205822 – 202808c

112194 – 110283c

207019 – 206916c

NT_033210.2 834 -   3853

1941 – 3853

732 - 835

96 (3033)

96 (1921)

97 (  104)

15 4748306 – 4751324

4688024 – 4688581

4687260 – 4687438

4747149 – 4747252

NT_010194.13 834 - 3853

174 -   731

1 -   179

732 -   835

99 (3021)

99 (  558)

100 ( 179)

100 ( 104)

18 60149 – 57146c

61341 – 61238c
NT_024983.8 834 - 3853

732 -   835

95 (3030)

96 (  194)

21 363464 – 366469

362274 - 362377

NT_011512.7 834 - 3824

732 -   835

96 (3029)

97 (  104)

aHuman genome database was queried with the cDNA sequence for bladder FGF-7 and with the NCBI
 reference sequence for the full-length FGF-7 mRNA (RefSeq Accession NM_002009.2). Dotted lines
bracket genomic sequences found with the reference sequence, but not with the bladder sequence           

bunits in kbp; csequence found on minus strand (italicized type).
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      Table 2. Intron / Exon Structure of Human FGF-7 Gene on Chromosome 15

5’ Exon 1 Intron 1 Exon 2 Intron 2 Exon 3 Intron 3 Exon 4

End
Begin

Size
(kbp)

   ? 4687.438
4687.260

   0.179

4688.029
4687.439

   0.591

4688.581
4888.030

   0.552

4747.148
4688.582

  58.567

4747.252
4747.149

   0.104

4748.307
4747.253

   1.055

4751.324
4748.308

   3.017

Seq.
of
Border

acacACGCGC
    ------

AAACAAgtaa
------

acagAAGTCA
    ------

AATTACAgtaa
AsnTyrA
    66

gcagATATC
    snIle

GCAAAGgtat
AlaLys
   101

acagAAAGAA
    LysGlu
       153

        Size = +1 bp to yield inclusive size
        unTn = untranscribed   lower case is intron   upper case is exon
        ---  = untranslated exon
        translated exon has 3-letter amino acid and residue numbering (Figure 4) is underneath



Page 30 of 48
6/9/2008

Table 3.  Distribution of Chromosome 15 FGF-7 Sequences on Other Chromosomesa

Chr 15
(length in
bp)

Chr 18
(length in
bp)

Chr 21
(length in
bp)

Chr 9pt
(length in bp)

Chr 9pm
(length in bp)

Chr 9pc
(length in bp)

Chr 9qc
(length in
bp)

Chr 9qt
(length in bp)

CNSb of Intron
2

47,343,436-
47,354,485
(11,050)

14878089-
14889070
(10.982)

13636398-
13643456
(7,059)

Gap 41146340-
41152725
(6,372)

41867144-
41870812
(3,669) plus
Gap

61209613-
61214951
(5,339)

62207569-
62213939
(6,371)

Exon 3 –
translated

47,354,486-
47,354,589
(104)

14877985-
14878088
(104)

13643457-
13643560
(104)

Gap 41146236-
41146339
(104)

Gap 61214952-
61215055
(104)

62213940-
62214043
(104)

CNS of Intron 3 47,354,590-
47,355,644
(1,055)

14876895-
14877984
(1,090)

13643561-
13644648
(1,088)

Gap 41145149-
41146235
(1,087)

Gap 61215056-
61216150
(1,095)

62214044-
62215130
(1,087)

Exon 4 –
translated

47,355,645-
47,355,839
(195)

14876701-
14876894
(194)

13644649-
13644840
(192)

Gap 41144954-
41145148
(195)

Gap 61216151-
61216346
(196)

62215131-
62215325
(195)

Exon 4 – UTR 47,355,840-
47,358,659
(2,820)

14873895-
14876700
(2,806)

13644841-
13647650
(2,810)

41106274-
41107090
(817) plus
Gap

41142132-
41144953
(2,820)

Gap 61216347-
61219161
(2,815)

62215326-
62218147
(2,822)

CNS of 3’
region

47,358,660-
47,361,636
(2,977)

14870961-
14873894
(2,934)

13647651-
13650563
(2,913)

41107091-
41110060
(2,970)

41139214-
41142131
(2,918)

Gap 61219162-
61220136
(975)

62218148-
62218307
(160) plus
Gap

aSequence Data of the UCSC Genome Browser on April 2003 Freeze
bConserved Non-coding Sequences
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Table 4. Quantification of Urothelial Cell Number by Stereology

Total # urothelial

cells x 106

(mean ± S.E.M.)

Total # Ki67

positive

urothelial cells

x 104

(mean ± S.E.M.)

% Ki-67

positive cells

(mean ± S.E.M.)

Total # fibroblasts

positive for FGF-10

x 103

(mean ± S.E.M.)

WT (n = 8) 0.81 ± 0.13 1.90 ± 1.22 1.78 ± 0.46 0.20 ± 0.06

KO (n = 6) 1.31 ±  0.26 2.02 ± 0.36 1.60 ± 0.94 1.09 ± 0.38
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Figure 1. Duplication of FGF-7 sequences among human chromosomes. The April

2003 version of the Human Genome Database was analyzed for the presence of

chromosome 15 FGF-7 gene elements. Black boxes, coding exons (E3 and E4).

Stippled boxes, 3’ untranslated regions;  White boxes, introns and 3’ flanking

sequences. Chr9pc, FGF-7 copy located proximal to the centromere on the p arm.

Chr9pm, middle copy on the p arm. Chr9pt, copy located proximal to the telomere on

the p arm. Chr9qt, copy located proximal to the telomere on the q arm. Chr9qc, copy

located proximal to the centromere on the q arm.
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Figure 2. Sequence analysis of human urinary bladder FGF-7 and primary

structure of rFGF7-His. The amino acid sequence for rFGF7-His was deduced from

data obtained by the dideoxy sequencing of the PCR-DNA product displayed in Figure

1, lane 2. Residues of rFGF7-His that are not part of the 164 aa wild-type sequence

(uppercase) are represented in lowercase and include the formyl-methionine (residue 1)

and Leu, Glu, and six His residues (residues 166-173). Diamond indicates site of

putative amidation (Gly147). Asterisk indicates site of N-linked glycosylation (Asn16).

Filled circles indicate sites of casein kinase II phosphorylation (Ser18 and Thr150).

Arrow indicates sites of phosphorylation by protein kinase C (Ser124). Underlined

residues represent the FGF family signature (Gly96-Tyr119) (Prosite Database). Bolded

residues represent the glycine box (Asn139-Gly147). Black boxes with white letters

designate residues implicated in the heparin-binding motif (Arg43, Asn117, Asn139,

Gln140, Val145, Lys148, Asn154, Lys155, and Thr156).

1                                                      
mACNDMTPEQ MATNVNCSSP ERHTRSYDYM EGGDIRVRRL FCRTQWYLRI  

51                                                         
DKRGKVKGTQ EMKNNYNIME IRTVAVGIVA IKGVESEFYL AMNKEGKLYA

101                                                 ♦
KKECNEDCNF KELILENHYN TYASAKWTHN GGEMFVALNQ KGIPVRGKKT 

151                       173                            
KKEQKTAHFL PMAITlehhh hhh 

*1                                                      
mACNDMTPEQ MATNVNCSSP ERHTRSYDYM EGGDIRVRRL FCRTQWYLRI  

51                                                         
DKRGKVKGTQ EMKNNYNIME IRTVAVGIVA IKGVESEFYL AMNKEGKLYA

101                                                 ♦
KKECNEDCNF KELILENHYN TYASAKWTHN GGEMFVALNQ KGIPVRGKKT 

151                       173                            
KKEQKTAHFL PMAITlehhh hhh 

*
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Figure 3. Interaction of rFGF7-His with metal-chelate and heparin affinity

chromatographies. Shown are composite SDS-containing electrophoretic gels stained

with GelCode Blue. Lane 1, elution from Ni-NTA resin with pH 5.3 buffer. Lane 2, elution

from heparin-affinity column with 1.0 M LiCl. Lane 3, 1.0 M elution product from heparin-

affinity resin was applied to a Ni-NTA resin. Shown is the elution of rFGF7-His from the

Ni-NTA resin with pH 5.3 buffer. Lane 4, pH 5.3 elution product from Ni-NTA resin was

applied to a heparin-affinity column. Shown is the elution of rFGF7-His from the heparin-

affinity resin with 1.0 M LiCl.
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1          2         3         4
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Figure 4. Mitogenic activity of rFGF7-His on urothelial cell DNA synthesis. A,

Primary culture of human urothelial cells at confluency (passage 3). Note large

supeficial cell at top of photograph and the round, refractile dividing basal cell at bottom.

B,  Passage 4 bladder urothelial cells were plated at a density of 39,000 cells well-1 of a

96-well plate and grown to confluency in the presence of growth medium. Cultures were

rendered quiescent by incubation for 16 hr in medium that lacked growth stimulators

(“starvation medium”). Increasing concentrations of rFGF7-His were mixed with

starvation medium that contained 0.5 µCi ml-1 [3H]-thymidine  added in a pulse-chase

experiment.
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URINARY 
BLADDER
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URINARY 
BLADDER
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Figure 5. Induction of murine urothelial cell proliferation by recombinant FGF-7

(Palifermin). rFGF-7 (Palifermin) was administered via intraperitoneal injection each

day for 14 days to C57BL/6J mice. Shown is a section of urinary bladder mucosa that

reacts with immunoglobulins specific for the nuclear antigen Ki-67. Arrows, regions of

urothelium that contain cells positive for Ki-67 (brown nuclei). bv, capillaries.

Counterstained with toluidine blue. 200x.
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Figure 6. Proliferative response of the murine urothelium in response to partial outlet

obstruction. Wild-type or FGF7-null mice (C57BL/6J strain, 8-weeks old) were anesthetized and

the urogenital cavity was opened. A 26 g catheter was inserted into the urethra and up into the

bladder. Silk-thread was tied around the urethra-bladder neck junction. The catheter was

removed and reinserted to verify that partial outlet obstruction would result. After closure of the

cavity, mice were allowed to recover, and housed for 8 additional days. After animals were

euthanized, bladders were removed, fixed, and paraffin-embedded. Sections were cut according

to principles of unbiased stereology, immunostained with antibodies specific for the proliferation

marker Ki-67, and counterstained with Toluidine blue. Quantification of total number of urothelial

cells (A) and total Ki-67 positive urothelial cells (B) was achieved by stereological counting (64).

Reliable estimates of the number of Ki-67 positive proliferating cells contained within the

developing urinary tract was determined by use of the Optical Fractionator (61, 65). wt (wild-

type), ko (knockout or FGF7-null), horizontal bar is mean. Diamond, cell count for an individual

animal that underwent urethral ligation surgery. See Table 4 for corresponding values.
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Figure 7.  Representative disector placement on FGF-10 positive lamina propria

fibroblast cell.   Shown is a representative section from a FGF7-null mouse bladder

immunostained with monoclonal antibodies specific for FGF-10.  Rectangle, disector;  L,

lumen; U, urothelium; LP, lamina propria; MP, muscularis propria. Size bar =     µm.
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SUPPLEMENTAL MATERIALS SECTION

Materials and Methods: Materials

Human urinary bladder cDNA was obtained from Invitrogen (Carlsbad, CA).

Oligonucleotide primers were synthesized by Keystone Laboratories (Foster City, CA).

Escherichia coli strains NovaBlue and BL21trxB(DE3), Perfectly Blunt Cloning Kit, plasmid

pET21d, Bug Buster lysis reagent, and carbenicillin were purchased from Novagen (Madison,

WI). Restriction enzymes NcoI and XhoI, T4 DNA ligase, Taq polymerase, and Complete

Protease Inhibitors were from Roche Molecular Biochemicals (Indianapolis, IN). Ni-NTA metal-

chelate affinity resin was from Qiagen (Chatsworth, CA). HiTrap heparin-sepharose affinity

resins were from Amersham Biochemicals (Piscataway, NJ). SDS-PAGE gels and the Amplified

Alkaline Phosphatase ImmunoBlot Assay detection system were obtained from BioRad

(Hercules, CA). Tetracycline and kanamycin were from Calbiochem (La Jolla, CA).

Recombinant FGF-7 (rFGF-7, Palifermin, rHuKGF)) was provided by Amgen (Thousand Oaks,

CA). Rabbit anti-bovine uroplakin immunoglobulins were obtained from Dr. H. Sun (New York

University, New York, NY).

Methods: Isolation and Dideoxy Sequencing of FGF-7 from Human Urinary Bladder

A population of human bladder cDNAs was used as a template for Taq polymerization. One

pair of oligonucleotide primers was synthesized:  “NcoI”, 5’-

CATCCGGATCCATGGCTTGCAATGACATGACTCCA-3’ and “XhoI”, 5’-

ACTCTCCGGCTACTCGAGAGTTATTGCCATAGGAAG-3’. These primers were designed to

partially anneal to FGF-7 cDNA – the noncomplimentary regions encoded sites for the

restriction endonucleases NcoI and XhoI. Initial PCR conditions employed were 1 cycle at 95 °C
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for 12 min, 30 cycles at 95 °C and 60 °C at 30 s each, 1 cycle at 72 °C for 10 min, and a hold at 4

°C. Subsequent gel electrophoresis indicated a lack of detectable PCR-DNA product. Forty µl of

this reaction product was used as template in a second round of Taq polymerization with the

following thermocycler parameters:  1 cycle at 95 °C for 12 min, 40 cycles at 95 °C and 50 °C

and 72 °C for 1 min each, 1 cycle at 72 °C for 12 min, and a hold at 4 °C. Following gel

electrophoresis, 250 ng of the principal PCR-DNA product at 0.52 kbp was excised from the gel,

recovered by extraction, converted to blunt ends, ligated into pSTBlue-1, and transformed into

competent NovaBlue E. coli. Subsequent growth at 37 °C on agar plates that contained Luria

broth, 50 µg ml-1 carbenicillin, and 15 µg ml-1 kanamycin, resulted in recombinant cultures that

were archived as glycerol stocks and characterized with respect to insert size and dideoxy DNA

sequencing. Clones that were identified as containing correctly oriented and in-frame inserts

were designated pSTBlue-FGF7.

Methods: Cloning into the Bacterial Expression Vector pET21d

Six and one-half µg of pSTBlue-FGF7 were restricted with NcoI and XhoI endonucleases and

electrophoresed through an agarose gel. The DNA of a 0.52 kbp band was excised from the gel,

extracted, and ligated to the expression plasmid pET21d, previously prepared by incubation with

NcoI and XhoI and dephosphorylation with shrimp alkaline phosphatase. After transformation

into BL21trxB(DE3) E. coli, recombinant colonies were generated by growth on Luria broth-agar

plates that contained 50 µg ml-1 carbenicillin, stored as glycerol stocks, and designated pET21d-

FGF7. The resultant open reading frame that included six C-terminal His residues generated a

fusion protein designated as rFGF7-His.
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Methods: Expression, Isolation, and Characterization of Recombinant FGF-7 in E. coli

The insert coding region from pSTBlue1-FGF7 was recloned into the pET21d expression

vector to ultimately form the expression plasmid pET21d-FGF7. The expression of recombinant

FGF-7 (rFGF-7) by transformed E. coli was found to be dependent on the addition of isopropyl-

1-thio-β-D-galactopyranoside, a reagent known to inactivate the lac repressor, thereby permitting

synthesis of FGF-7 mRNA.

Methods: Stereology Procedures

Estimates of the number of total and proliferating (Ki-67 positive) urothelial cells of

obstructed murine bladders were determined by use of the Optical Fractionator (61). The Optical

Fractionator method combines a 3-dimensional unbiased counting frame (the optical disector)

and an unbiased sampling method  (the fractionator) to generate estimates of the total number of

particles of interest, in this case Ki-67 positive urothelial cells. The ensuing estimate is unbiased

and free of volume artifacts commonly present with other counting methods (62).

Implementation of the Optical Fractionator was performed using a BH-2 Olympus microscope

equipped with an Optronics DEI 750 digital video camera and Ludl high precision motorized

stage. Data collection and microscope operation was controlled by Stereo Investigator software

(version 3.19, MicroBrightField, Williston, Vermont).

The application of the fractionator in the present sampling design consisted of initially

systematically collecting every 40th section across the entire bladder starting with a random start

(e.g. a random start might be 12, therefore collect the 12, 52, 92… sections). Hence this set of

sections (and the structure of interest contained within, i.e., the obstructed bladder) represented

1/40th of the entire structure. Following staining of this set of sections, Ki-67 positive urothelial
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cells were counted in a known aerial fraction of the transitional epithelial layer. The aerial

fraction was determined by placing a random stepping grid, generated by the Stereo Investigator

software program, over the section. An appropriate stepping grid (500 x 500 µm, or an area of

250,000 µm2) was used to place sequential disectors across the surface of the sections. A disector

frame (10 x 10 = 100 µm2) was placed in each stepping grid and used to count Ki-67 positive

cells according to optical disector counting rules. Immunopositive cells were readily identified

by the dark brown coloration of the nuclei characteristic of the staining procedures (see Figure 5

in manuscript). The overlay of this stepping grid was placed randomly (independently) over the

transitional epithelium, thus ensuring that each step was systematic and random. In our

experiments, the optical disectors sampled 1/2500th of the transitional epithelium. Combined

with the 1/40th of the structure represented by the section, the optical disectors sampled

1/100,000th of the entire structure. Cell counts were summed from all disectors across all sections

collected, and the total number was determined by multiplying the number counted by the

inverse of the fraction sampled. Systematic random sampling has been determined to be fair

because every part of the original structure had an equal probability of being selected due to the

random position set within the first interval, and systematic random sampling offers additional

advantages of efficiency (63).

Supplemental Figure 1. Agarose gel electrophoresis of human
urinary bladder FGF-7 cDNA.

Lane 1, 100-bp markers are indicated to the left of the figure in
kbp

Lane 2, RT-PCR DNA products encoding FGF-7 from
oligonucleotide primers designed to generate rFGF7-His. Lane
3, RT-PCR DNA products encoding FGF-7 from
oligonucleotide primers designed to generate wild-type rFGF-7.
Shown is a fluorescent image generated by photography of the
gel stained with Sybr Green I. The band at ~525 bp corresponds
to FGF-7 cDNA.
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Results: Isolation and Sequence Analysis of FGF-7 cDNA from Human Urinary Bladder

A partial cDNA fragment that encoded the mature, secreted form of FGF-7 was isolated from

a human urinary bladder cDNA library by reverse transcription (RT) and PCR. Supplemental

Figure 1 demonstrates that the RT-PCR yielded a product that was approximately 0.52 kbp in

size, in agreement with the size predicted from the FGF-7 cDNA cloned from the human

embryonic lung cell line M426 (Accession M60828) (66).

The 0.52 kbp RT-PCR product was subcloned into the high copy vector pSTBlue1 to form

the recombinant plasmid designated pSTBlue1-FGF7. Subsequent dideoxy sequencing of this

0.52 kbp RT-PCR product revealed the presence of a 0.492 kbp bladder sequence. This sequence

was found to be 100% identical with the corresponding region present in the NCBI reference

sequence encoding FGF-7 mRNA (Accession NM_002009.2).

Results: Expression of Recombinant FGF7-His in E. coli

Two types of recombinant (r) FGF-7 were used in this study. rFGF-7 (lacking a C-terminal

His-tag) was prepared and provided by Amgen as the pharmaceutical Palifermin (67). rFGF7-His

was prepared as described below.

A loop of recombinant bacteria from a frozen glycerol stock was streaked on a plate of agar

that contained Media A (Luria broth, 100 µg ml-1 carbenicillin, and 0.2% glucose) and incubated

at 37 °C for 16-24 hr. A 50 ml starter culture in Media A was inoculated with a single colony and

propagated until the optical density at 600 nm reached ∼0.6. After storage of the culture

overnight at 4 °C, cells were recovered by sedimentation at 5000 x g, resuspended in 4 ml of

Media A, and inoculated into 2 L of prewarmed Media A. Once the cultures reached an optical

density at 600 nm of ∼0.6, isopropyl-1-thio-β-D-galactopyranoside was added to a final
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concentration of 1 mM. After 3-4 hrs of continued growth at 37 °C, cells were collected by

sedimentation at 5,000 x g at 4 °C and frozen at –20 °C.

Luria broth used in these experiments contained peptone derived from meat so as to eliminate

lactose that would normally be found in peptone derived from milk. We have found that lactose

in the medium elicits premature activation of the T7lac promoter and of rFGF7-His synthesis.

Isolation of rFGF7-His

Thawed pET21d-FGF7-BL21trxB(DE3) cells were lysed with Bug Buster reagent that

contained additional Complete protease inhibitors. Lysed material was fractionated into soluble

and insoluble fractions by centrifugation at 20,000 x g for 45 min at 4 °C.

 Soluble material was dialyzed overnight at 4 °C versus Buffer A (0.1 M NaH2PO4, 0.3 M

NaCl, and 0.05 M Tris-HCl) (pH 8.0). After clarification of the dialyzate by centrifugation at

20,000 x g for 20 min at 4 °C, imidazole was added to the soluble phase at a final concentration

of 0.025 M. This sample mixture was then applied to a 4 ml column of Ni-NTA resin previously

equilibrated in Buffer A (pH 8.0). The column was developed with Buffer A (pH 8.0) until the

A280 nm < 0.01, with Buffer A (pH 6.0) until the A280 nm < 0.01, with Buffer A (pH 5.3) to elute the

monomeric rFGF7-His protein fraction, and finally with Buffer A (pH 4.5) to elute the

multimeric rFGF7-His protein fraction. Column eluates were monitored at 280 nm by a

Pharmacia Uvicord spectrophotometer connected to analog-to-digital boards of an Intel-based

computer workstation running Rainin Dynamax software.

Alternatively, heparin-affinity chromatography was used to isolate rFGF7-His by the

following procedure. Soluble fractions (above) were dialyzed against 0.05 M Tris-HCl (pH 7.4)

that contained 0.2 M LiCl, and loaded onto a HiTrap Heparin column, equilibrated in the same

Thr –COOH (– His6x)

Heparin-binding region

Thr –COOH (– His6x)

Heparin-binding region

Supplemental Figure 2. Heparin-
binding region and C-terminal His
hexamer of rFGF7-His is accessible
to the solvent. Shown is a
spacefilling model based on the
published coordinates for the 3.1
angstrom crystal structure of rat FGF-
7 (1) (PDB Accession 1QQK).
Amino acids identified as comprising
a heparin-binding motif are in cyan.
A His tag (His6x) is covalently linked
to the C-terminal Thr140 residue
(green).
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buffer, at 1 ml min-1. After a baseline was established, the column was developed with step

gradients of increasing LiCl concentrations: 0.5 M, 1.0 M, 1.5 M, and 2.0 M. rFGF7-His was

eluted at 1.0 M LiCl.

Results: Distribution and Characterization of FGF-7 Sequences in the Human Genome

Supplemental Figure 3 displays a detailed sequence alignment for the duplicated copies that

have complete sequence information for exons 3 and 4. Of interest was which duplicated copies

retained coding potential. Exon 4 is divided into the coding and noncoding segments at position

12719 (vertical line within the exon 4 box). Frameshift mutations in exon 4 were detected at 2, 2,

and 1 site(s) of the duplicated copies on chromosome 18, 21, and the region proximal to the

centromere of 9q, respectively. Supplemental Figure 3 also includes the sequence alignment at

the junctions of the FGF-7 duplication. The 5' boundaries of the FGF-7 duplicated sequences on

chromosome 18, 21, 9pm, 9qt, and 9qc all appeared to be different except that the sequence

homology of 9pm and 9qt extends beyond the FGF-7 homology. The sequence homology at the

3' ends of chromosome 18, 21, and 9pm also extends beyond the FGF- 7 homology. This

indicates that the FGF-7 duplicated segments on these chromosomes are parts of a larger

duplication unit.
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Supplemental Figure 3. Sequence alignment of exons 3 and 4, and of adjacent regions, of the

FGF-7 gene among human chromosomes. Top line, FGF-7 gene of chromosome 15. Nucleotides

that do not match with the FGF-7 gene of chromosome 15 are in black background. Boxed areas,

exons 3 and 4. Chr9pc, FGF-7 copy located proximal to the centromere on the p arm. Chr9pm,

middle copy on the p arm. Chr9pt, copy located proximal to the telomere on the p arm. Chr9qt,

copy located proximal to the telomere on the q arm. Chr9qc, copy located proximal to the

centromere on the q arm.



Page 47 of 48
6/9/2008

chr15 : ACCGGAAGAAACTTGGAATCCCTCGTGACAGTGAAGTTCTGGATAAGAAAGTGAAAGACATGACAGCACAGGTGTTGTTTTCATTTTTTCTTCTAGTTTT

chr18 : AATTTTTGGCTGTAGCCAACTATAAACCACTTTTTGAAATGAATCAAAGTAAAGCGATATTGTCTATGAATGACAAAAGACAGAATAGCCATGGTTAAAG
      = 1         11        21        31        41        51        61        71        81        91

chr15 : ATCTCATGACTTTAGAAGTGAAAAAAAAAAAAAAGCTGTGAAAGTAAACACCTGGCCATTAACAACAGTGTTGAAAATAAGACTTGTCTTTCTGGCTGTT
chr18 : ACACAATTGACAAGGAAATTTGATTATTTCTATGGCTAACAAAAACCTGTGAATGCCAAGCAACATCCCCTCCACTCTTTCAGTGGTTATTTAGTTATTC
      = 101       111       121       131       141       151       161       171       181       191

chr15 : AGCTTAGAATAACTGAAAAAATAGGCTCCTGGAGTTTTATGTACATTTTATGAAGAACGCATTTGAAGTAAAGTGAAATTGGGGTGCATTAGTTAAGATT
chr18 : AGCTTAGAATAACTGAAAAAATAGGCTCCTGGAGTTTTATGTACATTTTATGAAGAATGCATTTGAAGTAAAATGAAATTGGGGTGCATTAGTTAAGATT
      = 201       211       221       231       241       251       261       271       281       291

After 3,700 bp of intron 2 ...

chr15 : AAGAATTGCTTGATCCTGGGAGGTTCAAGACCCTTGACAATTTGGCCCTAACTCTTTTTCCACCCTCTCACTATTTTGTTACACTTCCTATTCCAGACAT
chr18 : AAGAACTGCTTGAACCTGGGAGGTTCAAGACCCTTGACAATTTGGCCCTGACTCTTTTTCCACCCTCTCACTATTTTGTTACACTTCCTATTCCAGATAT
chr21 : ATATACATGCTTCAGATTCCAGGATTTATGTCATGGGGATGGATCAGGAGTCCTTGAAACCTGGCACTTATTAATAAATGTTGTTTCTAATTTTCTATCA
      = 4001      4011      4021      4031      4041      4051      4061      4071      4081      4091

chr15 : ACAGCTCTAGTTTCAATCTTCTGAACATGACTTTTGAATCTTTGCTTCCATGGCCTTGCACATAGTACTTTTATCTCTCAATTAGCATGTTTCCATCTTT
chr18 : ACAGCTCTAGTTTCAATCTTCTGAACACGACGTTTGAATCTTTGCTTCCATGGCCTTGCACATAGTACTTTTATCTCTCGATTAGCATGTTTCCATCTTT
chr21 : CTGCAAGGTACTCTTATAGACACCATGTGAACATAGTACTTTTATCTCTCTAGCCTTGCACATAGTACTTTTATCTCTCGATTAGCATGTTTCCATCTTT
      = 4101      4111      4121      4131      4141      4151      4161      4171      4181      4191

After 600 bp of intron 2 ...

chr15 : TATTATTAAAGTCAGCTGCATTTAAAAATTAGTAGACTTTGTATTTTAGAACACTTTTAGATTTACAAAAAAAATTGAGCAGATAGGCCAGGCGTGGTGG
chr18 : TATTATTAAAGTCAGCTGCATTTAAAAATTAGTAGAATTTGTATTTTAGAACACTTTTAGATTTAAAAAAATAATTGAGCAGATAGGCCGGGCGCGGTGG
chr21 : TATTATTAAAGTCAGCTGCATTTAAAAATTAGTAGAATTTGTATTTTAGAACACTTTTAGATTTAAAAAAATAATTGAGCAGATAGGCTGGGCATGGTGG
chr9pm: CCACAAATCAAAGAACCTCAGAGAACACCAGATGCTACTATCCTGTCATAAATTAGGTAGTTATTTTATTAAAATAAAAAGATAGGGCCGGGCGCGGTGG
chr9qt: CCACAAATCAAAGAACCTCAGAGAACACCAGATGCTACTATCCTGTCATAAATTAGGTAGTTATTTTATTAAAATAAAAAGATAGGGCCGGGCGCGGTGG
      = 4801      4811      4821      4831      4841      4851      4861      4871      4881      4891

chr15 : CTCACGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGTGGGCAGATCACAAGGTCAGGAGATTGAGACCATCCTGGCTAACACGGTGAAACCTCGTCTCT
chr18 : CTCACCCCTGTAATCCCAGCACTTTGGGAGGCCGAGGTGGGCAGATCACAAGGTCAGGAGATCGAGACCATCCTGGCTAACACGGTGAAACCTCGTCTCT
chr21 : CTCACCCCTGTAATCCCAGCACTTTGGGAGGCCGAGGTGGACAGATCACAAGGTCAGGAGATCAAGACCATCCTGGTTAACACGGTGAAACCTCGTCTCT
chr9pm: CTCACGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGTGGATCACAAGGTCAGGAGATCGAGGCCATCCTGGCTAACACGGTGAAACCCTGTCTCT
chr9qt: CTCACGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGTGGATCACAAGGTCAGGAGATCGAGGCCATCCTGGCTAACACGGTGAAACCCTGTCTCT
      = 4901      4911      4921      4931      4941      4951      4961      4971      4981      4991

After 800 bp of intron 2 ...

chr15 : AAAACCTGGGGGCATGACTGCTGGATTATATAGTAAGAGTATGTTTAGTTTTTAAGAAACTGCCAAACTGTCTTCCCATGTGACTGCACCATTTTGCATT
chr18 : AATACCTGGGGGCATGACTGCTGGATTATAT------AGCATATTCAGTTTTTAAGAAACTGCCAAATTGTCTTCCCATGTGACTGCACCATTTTGCATT
chr21 : AATACCTGGGGGCATGACTGCTGGATTATAT------AGCATATTCAGTTTTTAAGAAGCTGCCAAATTGTCTTCCCATGTGACTGCACCATTTTGCATT
chr9pm: AATACCTGGGGGCATGACTGCTGGATTATAT------AGCATGTTTAGTTTTTAAGAAACTGCCAAACTGTCTTCCCATGTGACTGCACCATTTTGCATT
chr9qt: AATACCTGGGGGCATGACTGCTGGATTATAT------AGCATGTTTAGTTTTTAAGAAACTGCCAAACTGTCTTCCCATGTGACTGCACCATTTTGCATT
chr9qc: CAACAGAGTCTTTAGTTGACCATAGAGCTCAGCACAGAGGCCTGCTCAAAGGAGAAGTTTGATATACTTTACATGACTTAAATGATTTTAACTTTGTTGA
      = 5801      5811      5821      5831      5841      5851      5861      5871      5881      5891

chr15 : CCCACTAGTAATGAAAGAGTTTTGGTTGCTTTGCATCCTTGCCAGCATACAGCACTGTTAGTTTTTTGGAGTTTAGTCACGCTAATAGTTGTACAGAGGT
chr18 : CCCACTAGTAATGAAAGAGTTTTGGTTGCTTTGCATCCTTGCCAGCGTACAGCACTGTCAGTTTTCTGGAGTTTAGTCATGCTAATAGTTGTATAGAGGT
chr21 : CCCACTAGTAATGAAAGAATTTTGGTTGCTTTGCATCCTTGCCAGCATACAGCACTGTCAGTTTTTTGGAGTTTAGTCATGCTAATAGTTGTATAGAGGT
chr9pm: CCCACTAGTAATGAAAGAGTTTTGGTTGCTTCGCATCCTTGCCAGCATACAGCACTGTCAGTTTTTTGGAGTTTAGTCATGCTAATAGTTGTATAGAGGT
chr9qt: CCCACTAGTAATGAAAGAGTTTTGGTTGCTTCGCATCCTTGCCAGCATACAGCACTGTCAGTTTTTTGGAGTTTAGTCATGCTAATAGTTGTATAGAGGT
chr9qc: AACTTGTTTAATGAAAGAGTTTTGGTTGCTTTGCATCCTTGCCAGCATACAGCACTGTCAGTTTTTTGGAGTTTAGTCATGCTAATAGTTGTATAGAGGT
      = 5901      5911      5921      5931      5941      5951      5961      5971      5981      5991

After 5,300 bp of intron 2 ...
                                                               EXON 3
chr15 : TTTCTGTGATTCCTTGCAGATATCATGGAAATCAGGACAGTGGCAGTTGGAATTGTGGCAATCAAAGGGGTGGAAAGTGAATTCTATCTTGCAATGAACA
chr18 : TTTCTGTGATTCCTTGAATATATCATGGAAATCAGGACAGTGGCAGTTGGGATTGTGGCAATCAAAGGGGTGGAAAGTGAATTCTATCTTGCAATGAATG
chr21 : TTTCTGTGATTCCTTGCAGATATCATGGAAATCAGGACAGTGGCAGTTGGGATTGTGGCAATCAAAGGGGTGGAAAGTGAATTCTATCTTGCAATGAATG
chr9pm: TTTCTGTGATTCCTTGCAGATATCATGGAAATCAGGACAGTGGCAGTTCGGATTGTGGCAATCAAAGGGGTGGAAAGTGAATTCTATCTTGCAATGAACG
chr9qt: TTTCTGTGATTCCTTGCAGATATCATGGAAATCAGGACAGTGGCAGTTCGGATTGTGGCAATCAAAGGGGTGGAAAGTGAATTCTATCTTGCAATGAACG
chr9qc: TTTCTGTGATTCCTTGCAGATATCATGGAAATCAGGACAGTAGCAGTTGGGATTGTGGCAATCAAAGGGGTGGAAAGTGAATTCTATCTTGCAATGAACG
      = 11301     11311     11321     11331     11341     11351     11361     11371     11381     11391
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                 EXON 3
chr15 : AGGAAGGAAAACTCTATGCAAAGGTATTGATAATTGATAGCTTAGGCTTAATTTTTAAAACTCATTTTTGTCAAAATATCTCACCTTTCTGAAAAGTAAA
chr18 : AGGAAGGAAAACTCTACGCAAAGGTATTGATAATTGATCGCTTAGGCTTAATTTTTAAAACTCATTTTTGTCGAAATATCTCACCATTCTGAAAAGGAAA
chr21 : AGGAAGGAAAACTCTATGCAAAGGTATTGATAATTGATCGCTTAGGCTTAATTTTTAAAACTCATTTTTGTCAAAATATCTCACCATTCTGAAAAGGAAA
chr9pm: AGGAAGGAAAACTCTATGCAAAGGTATTGATAATTGATAGCTTAGGCTTAATTTTTAAAACTCATTTTTGTTGAAATATCTCACCATTCTGAAAAGTAAA
chr9qt: AGGAAGGAAAACTCTATGCAAAGGTATTGATAATTGATAGCTTAGGCTTAATTTTTAAAACTCATTTTTGTTGAAATATCTCACCATTCTGAAAAGTAAA
chr9qc: AGGAAGGAAAACTCTATGCAAAGGTATTGATAATTGATAGCTTAGGCTTAATTTTTAAAACTC--TTTTGTTGAAATATCTCACCATTCTGAAAAGTAAA
      = 11401     11411     11421     11431     11441     11451     11461     11471     11481     11491

After 1,000 bp of intron 3 ...
                                                               EXON 4
chr15 : GTTTGTTTGTTTGTTTTAACAGAAAGAATGCAATGAAGATTGTAACTTCAAAGAACTAATTCTGGAAAACCATTACAACACATATGCATCAGCTAAATGG
chr18 : GTTTGTTTGTTTGTTTTAACAGAAAGAATGCAATGAAGATTGTAACTTCAAAGGACTAATTCTGGAAAACCATTACAACACATATGCCTCAGCTAAATGG
chr21 : GTTTGTTTGTTTGTTTTAACAGAAAGAATGCAATGAAGATTGTAACTTCAAAGGACTAATTCTGGAAAACCATTACAACACATATGCCTCAGCTAAATGG
chr9pm: GTTTGTTTGTTTGTTTGAACAGAAAGAATGCAATGAAGATTGTAACTTCAAAGAACTAATTCTGGAAAACCATTACAACACATATGCAGCAGCTAAATGG
chr9qt: GTTTGTTTGTTTGTTTGAACAGAAAGAATGCAATGAAGATTGTAACTTCAAAGAACTAATTCTGGAAAACCATTACAACACATATGCAGCAGCTAAATGG
chr9qc: GTTTGTTTGTTTGTTTTAACAGAAGGAATGCAATGAAGATTGTAACTTCAAAGATCTAATTCTGGAAAACCATTACAACACATATGCAGCAGCTAAATGG
      = 12501     12511     12521     12531     12541     12551     12561     12571     12581     12591

   EXON 4
chr15 : ACACACAACGGAGGGGAAATGTTTGTTGCCTTAAATCAAAAGGGGATTCCTGTAAGAGG-AAAAAAAACGAAGAAAGAACAAAAAACAGCCCACTTTCTT
chr18 : ACACACAATGGAGGGGAAATGTTTGTTGCCTTAAATCAAAAGGGGATTCCTCTAAGAGG-AAAAAAAATGAAGAAAGAAC-AAAAACAGCCCACTTTCTT
chr21 : ACACACAATGGAGGGGAAATGTTTGTTGCCTTAAATCAAAAGGGGATTCCTGTAAG--G-AAAAAAAATGAAGAAAGAAC-AAAAACAGCCCACTTTGTT
chr9pm: ACACACAATGGAGGGGAAATGTTTGTTGCCTTAAATCAAAAGGGGATTCCTGTAAGAGG-AAAAAAAACGAAGAAAGAACAAAAAACAGCCCACTTTCTT
chr9qt: ACACACAATGGAGGGGAAATGTTTGTTGCCTTAAATCAAAAGGGGATTCCTGTAAGAGG-AAAAAAAACGAAGAAAGAACAAAAAACAGCCCACTTTCTT
chr9qc: ACAAACAACGGAGGGGAAATGTTTGTGGCCTTAAATCAAAAGGGGATTCCTGTAAGAGGAAAAAAAAACAAAGAAAGAACAAAAAACAGCCCACTTTCTT
      = 12601     12611     12621     12631     12641     12651     12661     12671     12681     12691

                       END(of coding)                          EXON 4
chr15 : CCTATGGCAATAACTTAATTGCATATGGTATATAAAGAACCAGTTCCAGCAGGGAGATTTCTTTAAGTGGACTGTTTTCTTTCTTCTCAAAATTTTCTTT
chr18 : CCTATGGCAATAACTTAATTGTATATGGTATATAAAGAACCAGTTCCAGCAGGGAGATTTCTTTAAGTGGACTGT----TTTCTTCTCAAAATTTTCTTT
chr21 : CCTATGGCAATAACTTAATTGCATATGGTATATAAAGAACCAGTTCCAGCAGGGAGATTTCTTTAAGTGGACTGTTTTCTTTCTTCTCAAAATTTTCTTT
chr9pm: CCTATGGCAATAACTTAATTGCATATGGTATATAAAGAACCAGTTCCAGTAGGGAGATTTCTTTAAGTGGACTGTTTTCTTTCTTCTCAAAATTTTCTTT
chr9qt: CCTATGGCAATAACTTAATTGCATATGGTATATAAAGAACCAGTTCCAGTAGGGAGATTTCTTTAAGTGGACTGTTTTCTTTCTTCTCAAAATTTTCTTT
chr9qc: CCTATGGCAATAACTTAATTGCATATGGTATATAAAGAACCAGTTCCAGCAGGGAGATTTCTTTAAGTGGACTGTTTTCTTTCTTCTCAAAATTTTCTTT
      = 12701     12711     12721     12731     12741     12751     12761     12771     12781     12791

After 2,700 bp of 3’ UTR ...
                         EXON 4
chr15 : AAAATGTTCTTTGAAAGATAAAATTAAATACATGAGTTTCTAACAATTAGAAAAGAAAAAATTAAAACATGAAATGATAACAAAAGTAAACAAAAGATAC
chr18 : AAAATGTTCTTTGAAAGATAAAATTAAATACATGAGTTTCTAACAATTAGAAAGGAAAAAATTAAAATATGAAATGATAACAAAAGTAAACAGAAGATAC
chr21 : AAAATGTTATTTGAAAGATAAAATCAAATACATGAGTTTCTAACAATTAGAAAGGAAAAAATTAAAATATGAAATGATAACAAAAGTAAACAGAAGATAC
chr9pm: AAAATGTTCTTTGAAAGATAAAATTAAATACATGAGTTTCTAACAATTAGAAAGGAAAAAATTAAAATATGAAATGATAACAAAAGTAAACAAAAGATAC
chr9qt: AAAATGTTCTTTGAAAGATAAAATTAAATACATGAGTTTCTAACAATTAGAAAGGAAAAAATTAAAATATGAAATGATAACAAAAGTAAACAAAAGATAC
chr9qc: AAAAATTTTCTTTGA----AAGATAAAATACATGAGTTTCTAACAATTAGAAAGGAAAAAATGAAAATATGAA---ATAACAAAAGTAAACAAAAGATAC
      = 15501     15511     15521     15531     15541     15551     15561     15571     15581     15591

After 100 bp ...

chr15 : TACAAATTCAATTTAATGACAGAAGAGAAGGGATGCTGGAGG----TAAATTCTTAGGGTTTCTATCTCATAGAGTTTGCTCTTCTGGTTCTCTAGACTG
chr18 : TACAAATTCAATTTAATGACAGAAGAGAAGGGATGCTGGAGG----TAAATTCTTAGGGTTTCTATCTCATAGAGTTTGCTCTTCTGGTTCTCTAGACTG
chr21 : TACAAATTCAATTTAATGACAGAAGAGAAGGGATGCTGGAGG----TAAATTCTTAGGGTTTCTATCTCATAGAGTTTGCTCTTCTGGTTCTCTAGACTG
chr9pm: TATGAATTCAATTTAATGACAGAAGAGAAGGGATGCTGGAGG----TAAATTCTTAGAGTTTCTATCTCATAGAGTTTGCTCTTCTGATTCTCTAGACTG
chr9qt: TATGAATTCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
chr9qc: CACAAATTCAATTTAATGAAAGAAGAGAAGGGATGCTGGAGGTAAATAAATTCTTAGAGTTTCTATCTCATAGAGTTTGCTCTTCTGGTTCTCTAGACTG
      = 15701     15711     15721     15731     15741     15751     15761     15771     15781     15791

After 700 bp ...

chr15 : GCTACTCTTTATTCCACTTCTGTACAGTATTTATTCAACCAAGCTGCTGCTTTCAATGAAGGTCACTTGTTCCTTCAGGGACACATATACTCCCACCTAT
chr18 : GCTACTCTTTATTCCACTTCTGTACAGTATTTATTCAACCAAGCTGCTGCTTTCAATGAAGGTCACTTGTTCCTTCAGGGACACATATACTCCCACCTAT
chr21 : GCTACTCTTTATTCCACTTCTGTACAGTATTTATTCAACCAAGCTGCTGCTTTCAGTGAAGGTCACTTGTTCCTTCAGGGACACATATACTCCCACCTAT
chr9pm: GCTACTCTTTATTCCACTTCTGTACAGTATTTATTCAACCAAGCTGCTGCTTTCAATGAAGGTCACTTGTTCCTTCAGGGACACATGTACTCCCACCTAT
chr9qc: GCTACTCTTTATTCCACTTCTATACAGATCATGTCATCTTCAAATAGAGACACTTTCACTTCTTTTCCAATTTGGATGCCTTTTATTTCTTTTTCTTACC
      = 16501     16511     16521     16531     16541     16551     16561     16571     16581     16591

After 1,900 bp ...

chr15 : TGTTTTTGCATCAGAATGATTATGGAATACAAAGTGCACAAAAGTTCTCCCTCCCCCACCACAGTCCATTCTCAAACAGAGCAGCCAAAGTGATTCTGTT
chr18 : TGTTTTTGCATCAGAATGATTATGGAATAGAAAAAAGCATTTCATGCAAATGGACACCAAAAGCGAGCAGCAGTAGCTATTCTCATATGAGACAAAACAA
chr21 : TGTTTTTGCATCAGAATGATTATGGAACAGAAAAGGGCATTTCATGCAAATGGACACCAAAAGCCAGCAGCAGTAGCTATTCTCATATGAGACAAAACAA
chr9pm: TGTTTTTGCATCAGAATGATTATGGAATAGAAAAAGGCATTTCATGCAAATGGACACCAAAAGCGAGCAGCGGTAGCTATTCTCATATGAGACAAAACAA
      = 18501     18511     18521     18531     18541     18551     18561     18571     18581     18591
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