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ABSTRACT

The electromagnetic interaction of an intense relativistic coasting beam

with itself, including the effect of a confining nonperfect vacuum tank, or a

quiescent rf cavity, is investigated theoretically. It is shown that the resonances

that may occur between harmonic s of the particle circulation frequencies and the

electromagnetic modes of the cavities can lead to a longitudinal instability of the

beam. A criterion for stability of the beam against such longitudinal bunching is

obtained as a restriction on the shunt impedance of the rf cavity, or the Q of the

vacuum tank. This criterion contains the energy spread and intensity of the coast-

ing beam, ae well as the parameters of the accelerator. Numerical examples are

given which indicate that in general the resonances with the vacuum tank will not

cause instabilities, while those with an r{ cavity can be prevented from causing

instabilities by choosing the shunt impedance at a sufficiently low but still con-

venient value 0



-2- UCRL-9328

COHERENT ELECTROMAGNETIC EFFECTS IN HIGH-CURRENT
PARTICLE ACCELERATORS:

III. ELECTROMAGNETIC-COUPLING INSTABILITIES IN A COASTING BEAM*

L. Ja.ckson Laslett
Ames Laboratory, Iowa State University, Ames, Iowa, and

Midwestern Universitiea Research Alieociation, Madison, Wisconsin

and

V. Kelvin Neil and Andrew M. Sessler t

Lawrence Radiation Laboratory
University of California

Berkeley, California

July 1960

1. INTRODUCTION

In the second article (Part II) of this series 1 it was shown that a resonance

can occur between a beam of particles in an accelerator and the characteristic

electromagnetic modes of the vacuum tank. It is possible that this resonance could

lead to instabilitites in an intense relativistic coasting beam. This problem is

distinguished from the longitudinal instabilities investigated previously by a

number of authors G, 3 because resonance can occur only with modes characterized

by short wavelengths in the azimuthal direction. Thus we shall be dealing with

perturbation frequencies that are very high harmonics of the particle circulation

frequency.

iii
This work was done under the auspices of the U. S. Atomic Energy Commission.

tpermenent address: Ohio State University, Columbus, Ohio.
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We shall again take a toroid with rec;:tangular cross section as a model of

the vacuum tank (Fig. l), neglecting all windows, discontinuities, and straight

sections. The conductivity of the walls is sufficiently high to allow the vanishing

of the tangential electric field to be used as a boundary condition in the solution of

Maxwell'a equations. Therefore, we can use the results in Part II of this series.

The stability of the coasting beam 21.180 may be affected by the presence of

an rf cavity through which the beam must pass. If the cavity has an eigen­

frequency near a harmonic of the beam circulation frequency, a resonance condition

exists between the beam and the cavity. Such a resonance generally occurs for a

much lower harmonic than the resonance with the modes of the vacuum tank.

For purposes of this calculation we assume that the cavity is not driven externally.

Transverse particle motion will be neglected throughout this work, except in­

sofar as it contributes to the cr08S- sectional area of the beam. The density of

particles in the unperturbed beam i6 taken as being uniform azimuthally. In

Section II we aS8ume an infinitesimal perturbation that preserves the cr08S­

sectional dimensions of the beam. It Is then possible to solve the linearized

one-dimensional Vla-sov equation to obtain a dispersion relation that gives the

allowed values of the perturbation frequency. This disper sion relation contains

the azimuthal electric field generated by the perturbation: and in Section III

convenient expressions are cited for this component of the electric field, using

results from Part II of this series.

Section IV is devoted to a discussion of the disperaion relation. A criterion

for stability is derived that places an upper limit on the quality factor Q of the

resonant mode of the vacuum tank. If the beam is near a resonance with the rf

cavity, this criterion can be expressed as an upper limit on the input impedance

of the cavity. These criteria contain the total number of particles in the machine
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as well as the energy spread of the coasting beam. Numerical estimates using

the parameters of two quite different accelerators are giverl in Section V and i11-

dicate that instabilitie8 ad'sing fran:: exc itation of vaCUUI1'l tank modes in general

will not be a sfirious problem.. Instabilities induced by an r! cavity, on the other

hand, may place significant upper limits on the input impedance of r£ cavities

used in beam stacking schemes.
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II. THE DISPERSION RELATION
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It will be convenient in what follows to introduce the action variable\V.

which is defined by

IN: dE

f (E)
(2.1 )

Here E is the energy of the particle and £ the instantaneous circulation frequency

of the particle. The variable W is canonically conjugate to the angle variable <\>

describing the particle's position in azimuth. In the absence of an applied radio-

frequency voltage. the equations of motion are given by

Vi = 21T e R Eep
(2.2)

and

The effective azimuthal electric field is designated by E~;

We may denote the distribution function for particles in synchrotron phase

'Space by ~ (W. <:>. t), and it can then be shown
2

that ~ satisfies the one-dimensional

Vlasov equation,

(2.3 )

in the well- jU8tified approximation of ignoring collisions between particles. In

Eq. (2.3), (R E 9) involves the longitudinal electric field averaged over the beam

crose section. For the investigation described here, we may safely replace this

average by the orbit radius times the electric field at the center of the beam.

Since the umperturbed coasting beam is assumed to be uniform in azimuth,

the unperturbed distribution of particles in W - .p space may be described by a

function tlJO(W). We shall consider an infinitesimal perturbation such that the total

distribution function ~ (q" W, t) may be written as

~(q" IV, t) := tVO(W) + ~l (n. W, w) ei(n..p-wt) (2.4 )
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Note that the perturbation doee not affect the transverse distribution of particles.

Linearizing Eq. (2.3) leads to

1· \ 0 4JO / aw
tVl(n, W, w) '" -2 '!Tie R, E",)

~/ (w - u~)
(2.5)

The electric field in Eq. (2.5) arises from the charge and current densities

of the perturbation only. The particle density associated with the perturbation is

6 N r N e i(nep-wt) , (2.6)
n

where

N
n

(

:: I
.,/

4Jl (n, W, w) dW, (2.7)

and the associated azimuthal electric field at the beam center may be written as
i \ '

/RE '= EN e i(n<1>-wt) (l.8)
'\ 4'/ n

The quantity E thus defined will be investigated in the next section. If we insert

Eq. (2.8) into Eq. (2.S) and use Eq. (l. 7), the condition for a solution to the

Vlasov equation becomes
{ d IlJO

l=-Ztrie EJ
d vr

dW

(w-n~ )
(2.9 )

The particular dependence of ~jo upon VI is not important as long as

dljJO/dW hae no di6continuities. A completely realistic distribution function

would necessarily vanish for values of W corresponding to particles moving

faster than the velocity of light. For convenience, however, we shall take a

Lorentz (resonance) line shape for 4JO and set

N(A W)
(2.10)4Jo (W) =

2 'IT
Z

[(W - w0)2 + {A W)2 J

This function falls off as W- 2 for large values of W, and this behavior should

not appreciably affect the results of the calculation. In Eq. (2.10), N is the

total number of particles circulating in the machine. The distribution is centered
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about the value W:; "v0 and has a characteristic width A W
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The integral in

Eq. (2.9) may be evaluated by integration along the W axis. as 8.1 ming w has a

small positive imaginary part. 2 and employing the relation
, .

• /,,, \ .. I UC , • ~ , f d f !
0/ \ VY I =: ep \ vI! 0' "f' (, Tr t l~ I

One obtains

d ~O d W

d W (w- n~)

::

-nkN 1

l
(w - n Wo + iT)

(2.11)

in which k :: l Tf f df/dE. Wo is the central frequency of the beam (equal to

~ (W0))' and T :: n I k ! A W is n/l. times the characteristic frequency spread of

the distribution.

Having evaluated this integral. we have reduced Eq. (2.9) to the form

-21 = i e k N n • ( ())-n Wo + i 'T)

The next section is devoted to a discus sion of the quantity E.

(2.12)
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III. AZIMUTHAL ELECTRIC FIELD
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For resonances with the accelerator tank we may use directly the result of

II Eqa. (3.4), (3.5), (3.9) and (3.10) to obtain

Z
i w

with

B =t

2:)1.. d Z 1 2
2ec R !crrl B

'. ,

z.. b 2
n q tl r Z dr

a

(3.1)

(3.2)

for a resonance in the first possible mode. The notation is that of Part II of this

series.

Although the contribution to the azimuthal electric field from the resonant

mode is the major contribution, other contributions also arise from current and

charge distributions that vary as exp (in cp). These additional contributions may

be attributed to the excitation of modes characterized by the same value of n, but

having more than one wavelength in the rand z directions. A more general

treatment of this problem. including the excitation of nonresonant modee, shows

that the nonresonant contributions to the electric field have little effect on the

-:oesults of the dispersion analysis. We shall therefore use the expression for (i

of Eq. (3.1) in the dispersion relation.

For resonance with an rf cavity, we may proceed from Eq. (2.9) of I Part I

of this series. 4 and write the effective azimuthal electric field as

eW
r

Zc Nne i(114) - wt)

2lTRn
(3.3)

which is a valid expres sion if the perturbation frequency is exactly equal to the

resonant frequency of the cavity. If the cavity is being driven slightly off resonance,
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we may write
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i e u) w 2 (Z ! Q ) N e i (n q, - w t)
~ c c n

., (Z Z . Z / )
4. 'If n w - w - 1 w /0

r r C

It follows immediately that

with

e Z !.o.'
C r

B :::----
C

(3.4 )

(3.5)
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IV. CRITERION FOR ST ABILITY
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Either for resonance with a tank mode or resonance with the rf cavity, we

may write the dispersion relation, Eg. (2.12). in the form

-1 - e k N n B w
2 2 2

eTl - (,)
r

2
i wr

(\

- 1

-2
( {~ - n {J.lO + i 'T) , (4.1)

with B given by Ega. (3.2) or (3.5). One can see that the fourth-order Eq. (4.1)

has various roots corresponding to possible instabilities. One root is always

stable (w - - l.>.ir),two correspond to the longitudinal instability of a coasting beam

treated previously, and the root in which (,) -wr corresponds to the possible in­

stability as sociated with the electromagnetic mode with eigenfrequency w . Setting
r

W = CJ.) + v, we solve for 11 by linearizing the dispersion relation in 11. The
r

imaginary part of II is then obtained as a function of wr - n wOo The criterion for

stability i8 1m v < 0, and since the 1m 11 is largest for W;c - n Wo ~ ± 'T, we make this

substitution to obtain

= :i:: 'T.

A wr :t: 2 wr 'T1Q
11=-------------

2 ( - '* 'T - A) :t: i (27 ++ )'T
~~ ~;

where A::; e k N n B. The plus or minus signs refer to the choice of

W r - n (i,O

Observing that 0> > 1, we have as a criterion for stability

r I
~

(2w : 7w i W r \l- r 21 d.-r+ Aj 2 7" i : 0 (4.3).Aw
r + Q

., I
i ± 'T + r- i <

I ,
~ I

or

(4.2)

± -A ~ < O. (4.4 )

By appropriate choice of the sign, de-pending upon whether k is positive or negative

(corresponding to the beam's being below or above the transition energy), we obtain
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as the most stringent requi rement for stability: 5

0<
2 ,.2

(4.5)

We now may use the definitions of k and 7" which, after substi tution of B

for the case of a tank resonance yields

(4.6)

rib 2: r Z dr
I a
! Z

N

n
4 I~ I (to £)2 h

where r O. the classical electron radius. is 2.8 X 10- 13 cm.

For w < < R this may be written as

(4.7 )

where a few illustrative values for the last bracket can be found in Part II, while

tables of values are in Ref. 8 of Part II of this series.

For resonance with an rf cavity, we obtain as the condition of stability from

Eq. (4.5) that the shunt impedance Zc must satisfy

Z <
c

(4.8)

The quantity 3- is the impedance of free space, which is equal to 377 ohms

inmksunits, and4rr/cin cgsunits.
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V. NUMER leAL EX.AMPLES

A. RF Cavity Resonances

UCPL-9328

As an example of a resonance with an rf cavity, we take the MURA 40-Mev

electron model:

df . 12 -1 - 2
£ <II: == 1. 1 X 10 Mev sec

6 -1
f :: 25 X 10 sec

n ::: 1

b.E ::: 3 Mev,

13
N ::: 1.5 X 10 .

This requires that the shunt impedance Z must be less than 3200 ohms I to prevent
c

a longitudinal instability. It is sufficiently high to ensure no difficulty.

As a second example, we might consider a hypothetical proton storage ring

for 15 -Bev particles. As reasonable parameters, we take

df
dE

f

-1 -1
::: 0.70 Mev sec

6 -1:: 10 sec

n :: 10,

b.E = 300 Mev,
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In this case the shunt impedance of an rf "maintaining cavity" must be less than

5
5.1 X 10 ohms, which would preclude the UBe of a very-high-O cavity such as

otherwise might have been used in such a device. For example, the cavities at

the Cambridge electron accelerator have shunt impedances of 10
7

ohms. 6

B. Tank F: esonances

As a first example, we consider the MURA electron model in which the

vacuum tank has a heIght of 5 em, inner radius of 122 em, and outer radius of

224 em. The 38-Mev beam will be stacked at a radius of 203 em. From Eq. (A-18)

of Part II, the estimated n value for the first resonance is approximately 200, but

the coupling factor Z2dx /(~;) ~ is so small that the restriction on Qt is

satisfied by a vacuum tank made of even the best conducting material imaginable.

As a second example, we consider a full-scale FFAG accelerator for which

the following parameters might be typical:

3
f 10

6 - 1a ::: 7 X 10 em, ::: sec

b ::: 7300 em, df 0.70 Mev- ~\ -1
dE

::: sec

RB
::: 7275 em, E ::: I5Mev,

h ::: 15 em, AEE :: 300 Mev,

N :: 10
14

.

The first resonance is at n :: 30,000, and once again there need be no concern about

a longitudinal instability for any physically realizable cavity.
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Fig. 1. Cutaway view of toroidal cavity.
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