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Introduction

Transverse coherent beam instabilities 1 have been observed in

virtually all high intensity accelerators and storage rings. The

theory of these instabilities is well established. However, it is

generally difficult to make" an accurate estimate of the wall

and beam properties that enter into the theory. This difficulty

results from the complex nature of the beam environment.

The present note gives an analysis of a technique by which

transverse stability as a function of beam and wall properties can

be measured. For simplicity we restrict the treatment to the case

of dipole oscillations of a single-species beam. The basic idea

is to observe the response of a beam to a deflecting rf-field.

This technique was first used by the Mura group2 several years

closely related to transverse coherent beam stability. It is shown

that the beam response to sinusoidal excitation provides a direct

measure of the stability of beam modes for given machine conditions

(beam intensity, octupole current, sextupole current, momentum

spread, etc.). This measurement includes the properties of the beam

surroundings as well as the frequency spread effective for Landau

damping. Since it is generally difficult to evaluate theoretically

the wall and beam properties that enter into stability calculations,

the information which can be obtained from rf excitation experiments

should be very valuable; especially in devising practical procedures

for reducing the severity of coherent transverse instabilities.

* Work supported by the U.S. Atomic Energy Commission.

i- Permanent address: CERN, Geneva 23, Switzerland.

ttFormerly Lawrence Radiation Laboratory.

before the detailed nature of the instability was understood. More

recently, similar experiments have been performed on the Bevatron. 3

The Mura group2 also gave a simplified analysis of the method, based

on a single particle dynamics.

Although the model considered by the Mura group explains some

of the important features of the instability, it does not include

the interaction of the particles through both local and wake fields,

nor does it give a quanti tative description of the effect of Landau

damping. The present note gives an analysis of be[~ response to

a driving force in the presence of both self-field interaction and

frequency spread. We find that a single analytic fQDctian (of

complex frequency) enters into the dispersion relation that determines

beam stability and into the response function that describes a

driven beam oscillation. Thus analytic continuation permits, at

least in principle, the determination from measured data on beam

response to a driving force, of all the relevant parameters
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describing beam stability.

Alternatively, one can regard a beam as a harmonic oscillator

with a frequency-dependent "damping constant". This d8JJlping constant,

which results from Landau damping and wake-field antid8JJlping, when
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is described by the G-term (Appendix 1). Only the harmonic of the

electrode field with W f::: (n :!: Q ) ~ is retained (~ is th2
rOO 0

average revolution frequency and Q
o

is the small-amplitude tune of

a particle of average energy). The time derivative occurring in

(1.1) is the "hydrodynamic derivative"evaluated at the frequency of a natural mode of the system, is a

measure of stability. The response of a beam to a driving force

provides a measure of the damping constant at neighboring frequencies

d
dt

o +~. iJot loe (1.2 )

and by analytic continuation the damping at the mode-frequency can

be obtained. Similarly, other information such as the stability

coefficients U, V and the frequency spread 6S, [see Ref. (l)J,

can be deduced from the response function.

The coefficients A and B can be interpreted in terms of the

familiar coherent and incoherent frequency Shifts
4, and also in

terms of the stability coefficient 1 U + V + iV. The relevant

relations, which were first obtained by L.J. Laslett (private communi-

1. E~uations of Motion

The equation of motion of the i-th particle may, in linear

cation), are derived in Appendix 2 and summarized in Table 1. We

note that the "single particle frequency shift" A is real, whereas

the "coherent shift" B includes contributions fro:n resistive valls
approximation, be written as

~x. 2 2 - -iw t (1.1)1 + Qi ~i Xi + A Xi = - B x + G e rf
dt

2

rhere x. is the position of the i-th beam particle and x = iN L x.
1 1

.s the position of the beam center of mass.

Space-charge forces acting between the particles are described

Y A and B. Only linear space-charge forces are included, so that

igher order terms in x. and xare neglected. Actually, the
1

erm Bx contains both the local space-charge field as well as wake

lelds left by particles which are located at a different azimuthal

)sition in the beam. However, for the coherent oscillation, x

and, in general, is a complex quantity and different for different

modes.

the same at every azimuth except for a phase factor. We take

Le influence of this phase factor to be included in B. 2 2
Q. ~. x.
111

presents the external focusing (~. is the i-th particle revolution
1

equency). The action of the knock-out electrode on particle i
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The ~omFlex ~Jnctions fl' (w~~) and F(wr~; :~c~ude tte ph~ses of the
~ ... ...

TABLE 1 oscillation a.'1d we assume that A and B ~re iLde!'ender:-: of frequency,

Relation between the quantities A and B [Ee[, (1.1)]; the Laslett for frequencies near the mode frequency.

Q-shifts 6Q. , 6Q ; and the LNS-coefficients U and V.
~c c Using the fact that

we find the beam response

x= ~ l: Xi r:::: f n (p) x (p) dp
U + V + iV

A + B
L'lQ = - --2-

2Do Qo

A
6Q =---

ic D 2Q2
00

B
2D Q

o 0

LNS-stability coefficient

Coherent betatron frequency
depression due to space-charge
(coherent Laslett Q-shift)

Incoherent ~-shift due to space­
charge (single-particle Q-shift)

F (W
rf

) 1
III + B

P

(2.3)

(2.4)

By combining these relations,
where

U + V + iV = D (~Q
o c

/:,Q. ).
~c

I (W )
p rf / nlJ2.Ldp

2 2
(~) + A - (w - nD)rf

(2.5)

The above L'lQ includes in-phase (resistive) components of the self-
field. c

2. Solution of the Basic Equation

In solving (1.1) we must take the effect of frequency spread

The function n(p) is the energy distribution function of the

particles, and Jm n(p)dp = 1. Both Q and Dare :runctions of p.o

Equations (2.2), (2.4), and (2.5) describe the response of the

beam. In addition to the particular solution (2.2) the oscillation

into account. The case in which this spread is due to momentum
of a particle contains the free betatron oscillation which is of

motion (2.3). If the beam is unstable there will be growing

random phase and therefore does not contribute to the average

to the rf. This point is elaborated upon in Section 5.

These terms don 't contribute to the response at frequency W
rf

'

although they usually would preclude observation of beam response

collective oscillations at the frequencies of the beam normal modes.
(2.1)

X.
1

insert a trial solution

222
Q. D. + A - (w f - nD. )
~ ~ r 1

Therefore, following the procedure first outlined by E. Courant5, we

spread is simple and will be considered first. The response of the

l.h.s. of (1.1) to the driving force Ge-iWrft is simply
-iw tGe rf

-iw t
Xi = G fie rf

- -iw tx = GF e rf

(2.2 )

Next, we proceed to include the frequency spread due to non-

linearities in the external focusing. It was pointed out by

Hereward
6

that in this case the response of the l.h.s. of (1.1)

to the driving force Ge-iWrft is



- 7 - - 8 -

X.
1.

1 - K
2 )2(QD) + A - (Wrf - nD

( 2 2QQ) + A + (w - nQ) .
_ K rf G -1.W ft

2 2 2 e r
[(Qn) + A - (W

rf
- nD) )

(2.6)

/'n(p)dp = 1
o

oo 2
J g(a) d(a QQ)

o
1

Here K = ~ di~) ~ is determined by the amplitude-dependence of

the external betatron frequencies QQ. Eg. (2.6) is correct to first

order in K and G.

Using (2.6) we obtain in a similar fashion as vas used to

derive (2.4), [see Ref. (6)J:

Now Q and Q are functions of a and p.

The observation which forms the basis for this paper is that

I(W
rf

), Eg. (2.5b), is the same dispersion integral that appears

in the LNS theoryl and is used there to determine the complex

mode-frequency Wc from the relation*

,

F (Wrr ) 1
1/1 + B

a

(2.4a)
l/I(w )

c
2 Q Q (V + V + iV)o 0

(2.6)

where

I (w f)F::= -a r

2
roo g' (a) a QD da
- 2 2o (Qn) + A _ (w - nQ)

rf

(2.5a)

In the present notation, we w.rite (2.6) as

l!I(~ ) + B =l!F(w ) = 0c c
(2.7)

are governed by the same function F(w) suggests determining the

The fact that beam response (2.4b) and mode stability (2.7)

mode-frequency w by analytic continuation of the iUnction F(w f)
c r

as measured for real frequencies (wrfJ.

To elucidate the procedure, let us introduce the inverse of F(w):

Here, g(a) is the amplitude distribution function of the particles,

and we have normalized g(a) such that

~ 2
J g(a) d(a Qn) = 1.

a

~th Q and Q are functions of a.

Finally we consider the combined effect of momentum spread and

)nlinearity. We first consider a group of particles with the

une momentum, but of different betatron amplitude; and thereafter

3. Measurement

3.1 Sinusoidal Excitation

sum over all groups. If there is no correlation between betatron

plitude and momentum of the particles we may write

X(w) = l/F(w).

Now, because X(w) [as defined by (2.4b), (2.5b), and (3.1)J is analytic,

F(w ) - 1rf --,.-
(2.4b) we can expand around some frequency wl to obtain X(u.;c):

re now

I(w f) F= - l'
r 0

2g'(a) a Q n n(p) da dp
2 2

(~) + A - (w - nn)
rf

(2. 5b)

* The "single particle shift "A does not appear explicitly in Ref. 1
but is incorporated into the V-value. The function h(a) of Ref. 1
is related to g(a) used above by hI = 2g'Qn and the a- and p-dependence
of QQ is neglected in the numerator of the dispersion integral.
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integral (2. 5b). This integral is evaluated for various distribution

X(w )
c

X(W
l

) L
<D x(n)(w )

+ 1
n!

n=l

(w
c

- wl)n. (3.2)
functions in Refs. (1) and (7). For convenience we include results

from some representative examples in Table 2.

X(w
l

) and x(n)(w
l

) can be determined for w
l

real from the measured

response curve X(w) and hence w can be determined from (2.7) and
c

In addition to the effective damping (3.7) the quantities

A, B and 68 can be deduced from the measured reSDonse curve F(Wrf )

if we can anticipate the shape of the distribution function. Let

(3.2) .
us take the function 2 of Table 2 as an example. We find the

If w
l

is close to W
c

we can neglect higher order terms in

(3.2) and obtain, from (2.7),

frequency W
a

as defined above given by

(W
c

- W
l

)
X(W

l
)

X'TW:l1

(3.3)
W

a
A

(n - Qo)Do - 2Q
o

D
o

(3.8)

Of great interest is the imaginary part Im(w ) which is a
c

direct measure of the mode stability. This quantity can, for

At w
rf

Wa

X(w )
a

B + i 1681 Q D
o 0

(j. 9)

Thus, let us assume that we measure the slope of the quantity tan u

example, be deduced from the phase response

u (w) = tan-1 (Re[X(w)]]l ImtX(w) ]

One may also e.g. measure the frequency w
b

where Re[X(~)J

For 1681 > I Re(B)/Q D I :
o 0

O.

(J.n)

(l.lO)

A
+ ­

2

Q D
o 0

Re (B)

-J [ ]22 Re (B)
i Q D (68) - Q D

o 0 0 0
1m (B) +

(n - Q)D -
o 0

X(~)

~

(3.4)

(3.5)

Then we have, byo.1m [X(w)]d
dw

s =~ (tan u)
dw

at a frequency w
a

where

from the measured quantities wa ' ~, x(wa ), X(~). Obviously, this

is only one example of how A, Band 68 can be deduced from the

'rhe unknown quantities A, 68, Re (B), 1m (B) can then be derived

(3.6)ImrX\WlJ
a

(J. 3), (3.4), and (3.5),

Re[X' (w ) J
as (w )

a

and

virtue of

measured data.

Im(w ) ~ - l/s(w ).
c a

(3.7)

In other words, the slopes(w ) is a direct measure of beam stability.
a

The evaluation of measured data is simplified if the functional

form of X(w) is known; X(w) in turn is determined by the dispersion



- 11 - - 12 -

2. l'lomentum spread from a distribution function "ith a cut-off.

TABLE 2

The dispersion integral lew): some examples

positive imaginary part, and the a-dependence of Q~ in the numerator

Iw - (n - Q)11 1« ~ ,IM I « ~ , w has a
000 0

< iJ.p;D Io

Ip - pi> 6n.o - '

Ip -

\

_2"""\f 2
rr(tlp)2 V (tip) - (p - po )2

n(p) =

°
I (w \ - 1 ( -:v 2 )

I - Q $1 tiS X - x - 1
00'

with X = rw - (n - Q)$1 + _A_] /tlS
L 0 0 2Qorlo

and CIS = LIp [(n - Qo ) ~~ - 11
0
~]

Q )11 ,
o 0

and

Assumptions:

o:f lew) is neglected. Results for fast waves, w::::: (n +

are obtained by replacing Q with - Q ,~Q with - ~Q ,
o 0 vp uP

OQ" with _ OQ
Oac ~

For real w, (1m (w) = +0):
1. Momentum spread from a distribution function with a long tail

(Lorentz Line).

( )
_ (tip)

n p - 2 2
rr[0p) + (p - po) J

x(w) B + ~ - Q 11 {en - Q)$1 - w
2 0 0 0 0

- (n - Qo)0
0

+ 2QAI1 ] /tls,
o 0

lith

lew)

x = [w

1

(2Q ~ ) (/ + 1)
o 0

(~s - I~s I ) + O-V\(M)2 - [en - Qo)rlo - 2Q:0
0
~l}

(_'ign (MJ , X ~1

where 0;;:::' -i . - 1 < x < 1

sign (LlS) , x > 1.

nd

CIS = tip [en

X(w) = 1/1 + B

() \I Q OQ]
Qo ) uP - 0 uP

B + A - 2Q 11 [en - Q)11 - w - i!tlsIJ.o 0 0 0

Remark: The damping term 1m [l/I(W
rf

)] = 0, if Ixl > 1 as a result

of the sharp cut-off of the distribution.

3. Amplitude spread from a distribution with a cut-off.

mark: The damping term 1m (1/1) is frequency independent because

e distribution has a long tail.

g(a) = 2
. (6a)2 _ a2 , a < 6e.;

Qo$10 (Lla )
4 l 0 , a > tla;

lew) - -1 [ ()]- tlSQo11
0

1 + y £r,~ ,
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with 4. Bunched Beams

- ll. -

and

6S (6a)2
[

(n - Q ) 2>1i - Ii OQ J
o Oa2 0oa2 '

The generalization to a machine with equally shaped, equally

spaced and equally populated b1J.I1ches
8

is straight forward. ':'he

same measuring techniques that were discussed for a coasting beam

y [ W - (n - Qo )Ii0 + 2 Q:Ii0 ] /6S .

can be used in this case to measure the stability cf "coherent -

bunch modes".

For real w: [Im(w) = +0]:

X(w) = B - 6S Q Iio 0 [

1 + y .Q,n\~ - i 13 'IT Y ]

(1 + Y .Q,n\ L
y
:..1:.\)2 + (13 'IT y)2 '

The other limiting case, where the bunch to bU.Dch spread is

large enough to decouple the bunches
8

will need a somewhat modified

measuring method. Since the bunches are largely decoupled, each

bunch will resonate at a slightly different freque~cy. By observing

13

1

o

Iyl < 1

Iy I > 1.

the response of a bunch in the neighborhood of its reson&~ce we may

measure the "single bunch stability". At the same time the bunch

to bunch frequency spread can be detected.

Remark: the damping term 1m [l/I(Wrf )]

distribution has a cutoff.

0, for y > 1 since the
5 . Discussion

The quantities l/s(w) or -Im(w l, which can be measured as
a c

3.2 Pulse Excitation

An alternative measuring technique which can be used is based on

pulse exciting the beam and observing the transient behaviour of

described in Section 3, are measures of the effective stability of

the mode under consideration. Thus, by measuring these Quantities

as a function of relevant machine parameters, such as intens i ty,

octupole current, energy spread and wall properties, one can predict

threshold conditions [l/s(w ) ~ 0, Im(w ) ~ 0] &~d presumably thusa c -

the modes
2 Excitation of a given mode may be accentuated by choice

devise procedures for reducing the instability.

of the pulse waveform. The transient behaviour of a mode is clearly
These measurements can only be performed in an intensity range

x= x (D)
-iw t

e c

such that the machine is stable since otherwise the driven response

will be masked by spontaneously growing (or stimulated) coherent

with w the mode frequency determined by (2.7). The decay rate of
c

modes. However, measured data can be extrapolated to the threshold.

the transient,

damping. "

-Im(w ), is a direct measure of the "effective
c

If the wall impedances are not strongly freqClency-dependent, one can

often make measurements near the stable modes and extrapolate from

there to the frequencies of the uIlstable modes, a techni que employed

in both Refs. (2) and (3).
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It is noted that the measurement of l/s(w ) or Im(w )
a c
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then

will not give explicit information on the values of U and V, but

rather a quantity related to V - 6S. However, U and V are only of
w

r
A + nB
2Qlr""

o 0

- (n - Q )S"lo 0

interest for calculating the effective beam stability and this where typically 1 < n ~ 2. We note, from Table 1, that for nil

both 6Q. and 6Q enter into the "resonance frequency"; i. e. ,
lC C

quantity is directly obtained from the measurement. If required,

U, V, and 6S can also be derived from the beam respctlse curve, as internal forces, as well as wall terms, contribute to wr ' The

described in Section 3.1.

Finally we note from the examples given in Table 2 that in

general, both the "coherent Q-shift" 6Q as well as the "single
c

particle Q-shift" 6Q. enter into the coherent beam response.
lC

Traditionally, the coherent Q-shift is worked-out under the

same phenomenon has been observed in the analysis of beam behavior,

near an integer resonance, in the presence of magnetic guide field

imperfections (In this case w + 0).10
r

Appendix 1: Rf Excitation

1.1 Unbunched Beam

assumption that all particles respond to the driving force in the

same way. This assumption is correct in the absence of frequency

spread or more precisely if the external driving frequency w

is such that

Assume a deflecting rf-field localized at s

the deflecting force as

-iw t ()F = 2rr R G e rf as.

O. Write

(Al)

In this case we find, for any distribution function, that the beam

Iw - (n - Q )S"l + ~I » 16s1
o 0 2Qo 0

Here, R is the orbit radius. Fourier expansion of the a-function

resonance frequency (defined by Re[X(w )] = 0) is given by
r

yields

a(s) 2~R Z
n =

.n
-l- S

e R

s. = R (a. + S"l.t)
l l l

w
r

A + Re(B)
2QoS"lo

- (n - Q )S"lo 0

Assume an unbunched beam. Let the test particle at time t be at

(A2)

Then the force acting on this particle is
Hence, neglecting the imaginary part of B, in this case the Q-shift

is (A + B)/2Q
o

S"l02 and this agrees with the usual coherent Q-shift

(see Table 1).

If, however, the frequency spread is large, more precisely if

F.
l

G t
n

-i ((;l f-nS"l. )t + ina.
e r l l (A3)

Iw - (n - Qo)S"lo + 2Q
A

S"l 1 < 16s1
o 0

If one of the frequencies (w f-nS"l.) is close to the betatron frequency
r l

QoS"lo' the response of the beam to this harmonic will predominate.

For an observer at a fixed azimuth e the oscillation of the beam
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is characterized by harmonics with x
n

c i(n8-w ft) d fs e r an or
n

w f~ (n - Q)~ the pattern is similar to the n-th dipole mode
roo

of a coasting beam.

1.2 Bunched Beam

x. £ = f. £G e
-i wt

1 , 1 ~

(A7)

XQ, = F£G e
-i wt

Let the center of bunch £ move in the longitudinal direction

according to

rf harmonic = number of bun:hes).

Then from (A6) we obtain the following system of linear equations for

(A8)1Wk£Fkt
K = 1

(1/1£ + B£) F£

the response, F£, of bunch £:

(A4 )(£2n + ~ t)
RhOs£

(h

that the bunch is deflected coherently.

We assume that the bunch length 26¢ is small (n26¢ « 2TI) so

The force (A2) acting on the bunch is

F£ GL
n :::: - co

-i(w -n~ )t + ins nlRe rf 0 , (AS)

Here 1£ is the integral (2.Sb) for bunch £. For coherent bunch modes
l

all Fk(W) are equal. For single bunch mOdes 8 , and near the resonance

of bunch £, all terms of the sum except the term with W££ can be

neglected. In either case only F£(W) remains in (AB).

Appendix 2: Various Coefficients

Again taking only the response of bunch £ to the harmonic The coefficients A and B which occur in Eq. (1.1) can be

of (AS) with (w f - n~ )~ Q ~ we write the equation of motionroo 0

of particle i in bunch £ as

interpreted in terms of the familiar coherent and incoherent frequenc~

4
shifts. Assuming, as in Ref. (4), that all particles oscillate

This equation suggests that the coherent frequency is

(A2.1 )
2 2 - -iwt

+ (Q ~ + A + B) x = G e
2­

d x

dt
2

coherently (x. = x) Eq. (1.1) yields
l

(A6)

22­
x. 0 + Q. ~. x. 0 + Aox. 0 + Box ol,x.. 111,;(, x-l,x.,. A,N

h

~ - -iw tL ~d ~ + G e rf
k= 1

d
2

dt
2

Here A£ and B£ are the loca~ Coulomb and image forces acting within

bunch £ and the elements Wk £ represent the wake fields acting from

bunch k on bunch £; W££ describes the wake fields from the previous

2 2w =(Q~) + A + B
c

and we identify

turns which act on bunch £ due to its own motion.

Using the same procedure employed to derive (2.S) we assume

6w
c

A + B
~ 6Q :::: - 2"Ql"2

o coo
(A2.2)
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as the coherent frequency depression due to space-charge image
NRr [ '1 ::]

4
Cx: = i l: xi = 0) 6Q =~ E: +--- + E:

2forces Similarly, when the beam center is at rest
1 2 1c 1TQ Y b Y -

and in the absence of a driving force (A2.71

2 NRr [, 2 ,2]
= --p- I b +d x. 2 2 6Qic E: + --- + E: 2 2" 2 21

+ (Q ~ + A) x. = 0 (A2.3) 2 1 y2 _ 1 g 2a (y _ 1)
dt2 1 1TQy b

and thusThus,

Ncr t "'] (A2.B)A U = D
(';1 - El ) b2 - 2" ./':,(D. = ~o /':,Qic <:::: - 2Q ~ (A2.4)

1Ta
2
QS)

lC
o 0

4
may be interpreted as the familiar single particle frequency shift .

Finally, we may identify 2QB~ as the coefficient U + V + iV
o 0

of Ref. (1). In fact, assuming no external driving forces (G = 0)

Here ';1' E
l

, and E
2

are the Laslett image coefficients, a the beam

radius, b the half-height of the chamber (for vertical oscillations),

R the orbit radius, and g the half-height of the magnet gap.

we write Eq. (1.1) as

Following the procedure used to derive Eq. (2.5) we find the

2
d x.

1 +--2-
dt

2 2
Q. ~l' X. + A x. + B x

1 1 1
(A2.5 )

1.
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