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Abstract
The response of an intense beam of interacting particles to
a deflecting rf-signal is computed theoretically and shown to be
closely related to transverse coherent beam stability. It is shown
that the beam response to sinusoidal excitation provides a direct
measure of the stability of beam modes for given machine conditions
(beam intensity, octupole current, sextupcle current, momentum
spread, etc.). This measurement includes the properties of the beam
surroundings as well as the frequency spread effective for Landau
damping. Since it is generally difficult to evaluate theoretically
the wall and beam properties that enter into stability calculations,
the information which can be obtained from rf excitation experiments
should be very valuable; especially in devising practical procedures

for reducing the severity of coherent transverse instabilities.
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Introduction

Transverse coherent beam instabilities . have been observed in
virtually all high intensity accelerators and storage rings. The
theory of these instabilities is well established. However, it is
generally difficult to make an accurate estimate of the wall
and beam properties that enter into the theory. This difficulty
results from the complex nature of the beam environment.

The present note gives an analysis of a technique by which
transverse stability as a function of beam and wall properties can
be measured. For simplicity we restrict the treatment to the case
of dipole oscillations of a single-species beam. The basic idea
is to observe the response of a beam to a deflecting rf-field.

This technigue was first used by the Mura group2 several years
before the detailed nature of the instability was understood. More
recently, similar experiments have been performed on the Bevatron.3
The Mura group2 also gave a simplified analysis of the method, based
on a single particle dynamics.

Although the model considered by the Mura group explains some
of the important features of the instability, it does not include
the interaction of the particles through both local and wake fields,
nor does it give a quantitative description of the effect of Landau
danmping. The present note gives an analysis of beam response to
a driving force in the presence of both self-field interaction and
frequency spread. We find that a single analytic function (of
complex frequency) enters into the dispersion relation that determines
beam stability and into the response function that describes a
driven beam oscillation. Thus analytic continuation permits, at
least in principle, the determination from measured data on beanm

response to a driving force, of all the relevant parameters



describing beam stability.

Alternatively, one can regard a beam as a harmonic oscillator
with a frequency-dependent "damping constant”. This demping constant,
which results from Landau damping and wake-field antidamping, when
evaluated at the frequency of a natural mode of the system, is a
measure of stability. The response of a beam to a driving force
provides a measure of the damping constant at neighboring frequencies
and by analytic continuation the damping at the mode-frequency can
be obtained. Similarly, other information such as the stability
coefficients U, V and the frequency spread AS, [see Ref. (1)],
can be deduced from the response function.

1. Equations of Motion

The equation of motion of the i-th particle may, in linear

approximation, be written as

2
d x, - -3
1oL Q.29.2x. +Ax, =-~Bx+Ge lwrf‘t (1.1)
-2 S S | i
dt
there X, is the position of the i-th beam particle and X = % ) X

.5 the position of the beam center of mass.

Space-charge forces acting between the particles are described
¥y A and B. Only linear space-charge forces are included, so that
igher order terms in X5 and X are neglected. Actually, the
arm Bx contains both the local space-charge field as well as wake
ields left by particles which are located at a different azimuthal
>sition in the beam. However, for the coherent oscillation, x
; the same at every azimuth except for a phase factor. We take
e influence of this phase factor to be included in B. Q,zQ_Qx

i1

presents the external focusing (Qi is the i-th particle revolution

equency ). The action of the knock-out electrode on particle i

- L -
is described by the G-term (Appendix 1). Only the harmonic of the
+ .
. R —_ + . . he
electrode field with w .= {n QO) QO is retained (QO is t
average revolution frequency and QO is the small-amplitude tune of
a particle of average energy). The time derivative occurring in

{1.1) is the "hydrodynamic derivative'

d o 0

)
& Tt tOe )

The coefficients A and B can be interpreted in terms of the

familiar coherent and incoherent frequency shiftsh, and also in

terms of the stability coefficient 1 U+ V + 1V. The relevant
relations, which were first obtained by L.J. Laslett (private communi-
cation), are derived in Appendix 2 and summarized in Table 1. We
note that the "single particle frequency shift" A is real, whereas

the "coherent shift" B includes contributions from resistive walls
and, in general, is a complex quantity and different for different

modes.



TABLE 1
Relation between the quantities A and B [Eq, (1.1)]; the Laslett

Q-shifts AQic, AQC; and the LNS-coefficients U and V.

U+V+iv=- gQBQ LNS-stability coefficient
oo
AQ = A+B Coherent betatron frequency
Q=- oq 2 depression due to space-charge
° Qo (coherent Laslett Q-shift)
AQ, = - ——ég—— : Incoherent Q-shift due to space-
e 20 % charge (single-particle Q-shift)

By combining these relations,

U+V+ivs QO(AQC - AQic).

The above AQc includes in-phase (resistive) components of the self-
feld.

2. Solution of the Basic Eguation

In solving (1.1) we must take the effect of frequency spread
into account. The case in which this spread is due to momentum
srread 1s simple and will be considered first. The response of the
5 - -iw bt . .

I.h.s. of (1.1) to the driving force Ge ~ rf is simply
Ge—imr t

f (2.1)

Q. +4a - (w —nQi)2

1 0i rf

5

Therefore, following the procedure first outlined by E. Courant”, we

insert a trial solution

x, = G f.e  ¥pgt (2.2)
1 1

-iw .t
r

X =GF e £
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The complex functions fi(wyb) and F(wrtﬁ ‘nclude the vhases of the

oscillation and we assume that A and B are irdevendernt of frequency,
for frequencies near the mode frequency.

Using the fact that

b xi‘= S nlp) x(p) dp (2.3)

B
i
==

we find the beam response

- 1 {2.4)
Flog=s 959753
P
where
I lw )= fm n(p) dp {2.5)
p rf o] (Qﬂ)e + A - (wrf - nQ)2

The function n(p) is the energy distribution function of the
particles, and Ofm n{p)dp = 1. Both § and Q are functions of D.

Equations (2.2), (2.L), and (2.5) describe the response of the
beam. In addition to the particular solution {2.2) the oscillation
of a particle contains the free betatron oscillation which is of
random phase and therefore does not contribute to the average
motion (2.3). If the beam is unstable there will be growing
collective oscillations at the frequencies of the beam normal modes.
These terms don't contribute to the response at frequency wrf’
although they usually would preclude observation of beam response
to the rf. This point is elaborated upon in Section 5.

Next, we proceed to include the frequency spread due to non-
linearities in the external focusing. It was pointed out by
Hereward6 that in this case the response of the 1.h.s. of (1.1)

to the driving force Ge_lwrft is



x, = oKX 2
o) va - (wpp = n2)
» (@)% + A +(mrf - n0)? cemi0 gt (2.6)
(@)% + & - (w_, - a0)*)°
a(en) =

Here K =

o=

Py ) is determined by the amplitude-dependence of
the external betatron frequencies Qf. Eq. (2.6) is correct to first
order in K and G.

Using (2.6) we obtain in a similar fashion as was used to

derive (2.4), [see Ref. (6)]:

_ 1 (2.kg)
Flog) =77 73
a
where
2
® g'(a) a” on da . (2.58)
Ia (wrf>F: - of 2 2
() + A -~ (wrf - nf)

Here, g(a) is the amplitude distribution function of the particles,
and we have normalized gla) such that

ofmg(a) d(ag QR) = 1.

loth § and § are funections of a.

Finally we consider the combined effect of momentum spread and
>nlinearity. We first consider a group of particles with the
ume momentum, but of different betatron amplitude; and thereafter

sum over all groups. If there is no correlation between betatron

plitude and momentum of the particles we may write

S S {2.bp)
Flo o) = 77773

re now

' 2
Tw ) e - £ & () 2= Q Q nip) da dp (2.5b)
vt ° (Q9)2 + A - (wrf - nQ)2

ofm gla) d(aZQQ) =1

Now Q and @ are functions of & and p.

The observation which forms the basis for this paper is that
I(wrf),iEq. {2.5D), is the same dispersion integral that appears
in the LNS theoryl and is used there to determine the complex

mode-frequency «, from the relation*
= +V o+ i . 2.6
l/I(wc) 290 U +v+1iv) (2.6)
In the present notation, we write (2.6) as

1/I(mc) + B = l/F(wc) =0 (2.7)

3. Measurement

3.1 Sinuscidal Excitation

The fact that beam response (2.4b) and mode stability (2.7)
are governed by the same function F(w) suggests determining the
mode-frequency w, by analytic continuation of the function Flw

rf)'

To elucidate the procedure, let us introduce the inverse of Plw):

rf)

as measured for real frequencies (w

X(w) = 1/F(w).
Now, because X{w) [as defined by (2.4b), (2.5b), and (3.1)] is analytic,
we can expand around some freguency

N ?o obtein X(mc):

¥ The "single particle shift"A does not appear explicitly in Ref. 1
but is incorporated into the v-velue. The function h{a) of Ref. 1

is related to g(a) used above by h' = 2g'Q and the a- and p-dependence
of Qf is neglected in the numerator of the dispersion integral.



c. X w. )
Xlw,) = X)) + Z———-L - w)™ (3.2)

)

{
X(wl) and X" (wl) can be determined for w, real from the measured

1
response curve X(w) and hence w, can be determined from (2.7) and
(3.2).

Ir wl is close to w, we can neglect higher order terms in

(3.2) and obtain, from (2.7),

6 -0 e (3.3)

Of great interest is the imaginary part Im(wc) vhich is a
direct measure of the mode stability. This quantity can, for

example, be deduced from the phase response

o () = tant ﬁ;[i(g)]} (3.1)

Thus, let us assume that we measure the slope of the gquantity tan o
d
s = (tan o) (3.5)

aw

at a frequency wa where %a- Im [X(w)] = O. Then we have, by

virtue of (3.3), (3.4), and (3.5),

Re[X'(wa)]
s(w,) = 5] (3.6)
a
and
Im(wc) = - l/s(wa)- (3.7)

In other words, the slopes(wa) is a direct measure of beam stability.

The evaluation of measured data is simplified if the functional

form of X(w) is known; X(w) in turn is determined by the dispersion
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integral (2.5b). This integral is evaluated for various distribution
functions in Refs. (1) and (7). TFor convenience we include results
from some representative examples in Table 2.

In addition to the effective damping (3.7) the guantities

)

A, B and AS can be deduced from the measured response curve F(wrf
if we can anticipate the shape of the distribution function. Let

us take the function 2 of Table 2 as an example. We find the

frequency wa as defined above given by

Wy T (o - Qo)Qo -

2Q

O O
X(wa) =B+ i [as| Q2 (3.9)

One may also e.g. measure the frequency w,_ where Re[X(wb)] = 0.

For |AS] > | Re(B)/QOQOI

The unknown gquantities A, AS, Re (B), Im (B) can then be derived
from the measured quantities w , w,, X(wa), X(mb). Obviously, this
is only one example of how A, B and AS can be deduced from the

measured data.
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TABLE 2

The dispersion integral I(w): some examples

Assumptions: |w - (n - 0,08, | << Qs las] << 9, whas a

positive imaginary part, and the a-~dependence of @ in the numerator

of I{w) is neglected. Results for fast waves, w2 (n + QO)QO,

are obtained by replacing Q with - Q ,D‘—Q- with - a—Q , and
o 0’ Qp op

Pole) Y]

6—3—2 with —5;2 .

1 Momentum spread from a distribution function with a long tail

(Lorentz Line).
- {Ap)
7T[(Ap)2 + (p - po)e]

tw = > 55 =
(2QOQO)(X + 1)

3

vith

_ A
x = [w - (o~ QO)S?O + ~—-———2QOQO ] /AS,

nd

AS = Ap [(n - QO)%-g—— Qog—%}

X(w) =1/T+B=B+A-200 [(h-0q)2 -w- ilag]l.

mark: The damping term Im (1/I) is frequency independent because

e distribution has a long tail.
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2. Momentum spread from a distribution functicn with a cut-off.
—2A ) - - b - o | < o
2 o] o]
w(Ap)
n(p) =
o lp - » | > 80
Iw) = —=efx Va2 1],
Q & As
o o
with x= fw- (a-o00 + oA | s
oo 2Q 1 >
(e}
o8 Qg
and AS = A (n - 22 Q0 .
? [ " %) 3 o Op

>
£
i
td
+
SIS
i
OD
2
<}
[
=)
1
D
o
<
o
|
)

sign (As) , x > 1.

Remark: The damping term Im [1/I(w )] = 0, if [x| > 1 as a result
of the sharp cut-off of the distribution.

3. Amplitude spread from a distribution with a cut-off.

(Aa>2 - a2 s a < Alay
ala) =________2_._.E
QOQO(Aa) 0 , &> bla;
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with

and

For real w: [Im(w) = +0]:

1 -
‘———14 -idém
NS . v

1+y &n
X(w) = B - A8 QOQO ,
(1 +y &n l—;—xl)g + (87 y)2
1 > !y! <1 ?
§ =
o, ly] > 1.

Remark: the damping term Im [l/I(wrf)] = 0, for y > 1 since the

distribution has a cutoff.

3.2 Pulse Excitation

An alternative measuring technigue which can be used is based on

pulse exciting the beam and observing the transient behaviour of
the modesg. Excitation of a given mode may be accentuated by choice

of the pulse waveform. The transient behaviour of a mode is clearly

%= % (0) e it

with w, the mode frequency determined by (2.7). The decay rate of
the transient, -Im(wc), is a direct measure of the "effective

damping."

-~ 1h -
b, Bunched Beams

The generalization to a machine with equally shaped, equally
spaced and equally populated bunches8 is straight forward. The
same measuring techniques that wefe discussed for a coasting beam
can be used in this case to measure the stability cf "coherent
bunch modes".

The other limiting case, where the bunch to bunch spread is
large enough to decouple the bunches8 will need a somewhat modified
measuring method. Since the bunches are largely decoupled, each
bunch will resonate at a slightly different frequercy. By observing
the response of a bunch in the neighborhood of its resonance we may
measure the "single bunch stability". At the same time the bunch
to bunch frequency spread can be detected.

5. Discussion

The guantities l/s(w)a or —Im(wc), which can be measured as
described in Section 3, are measures of the effective stability of
the mode under consideration. Thus, by measuring these gquantities
as a function of relevant machine parameters, such as intensity,
octupole current, energy spread and wall properties, one can predict
threshold conditions [l/s(wa) >0, Im(wc) + 0] and presumably thus
devise procedures for reducing the instability.

These measurements can only be performed in an intensity range
such that the machine is stable since otherwise the driven response
will be masked by spontaneously growing (or stimulated) coherent
modes. However, measured data can be extrapolated to the threshold.
If the wall impedances are not strongly freguency-dependent, one can
often make measurements near the stable modes and extrapolate from
there to the frequencies of the unstable modes, a technique employed

in both Refs. (2) and (3).
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It is noted that the measurement of l/s(wa) or Im(wc)
will not give explicit information on the values of U and V, but
rather a quantity related to V - AS. However, U and V are only of
interest for calculating the effective beam stability and this
quantity is directly obtained from the measurement. If required,
U, V, and AS can also be derived from the beam respcnse curve, as
described in Section 3.1.

Finally we note from the examples given in Tablzs 2 that in
general, both the "coherent Q-shift" AQC as well as the "single
particle Q-shift" AQiC enter into the coherent beam response.
Traditionally, the coherent Q-shift is worked-out under the
assumption that all particles respond to the driving force in the
same way. This assumption is correct in the absence of frequency
épread or more precisely if the external driving frequency w

is such that

A
RS

O O

lo - (o - g2 + | >> |as] .

In this case we find, for any distribution function, that the beam

resonance frequency (defined by Re[X(wr)] = 0) is given by

_ A + Re(B)
we = 2Q - (o - QO)QO
o 0
Hence, neglecting the imaginary part of B, in this case the Q-shift
. 2 . .
is (A + B)/EQOQO and this agrees with the usual coherent Q-shift

{see Table 1).

If, however, the frequency spread is large, more precisely if

A
2Q 8

o 0

o= (n - a0 + | < lss]

.
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then

where typically 1 < n < 2. We note, from Table 1, that for n # 1
both AQic and AQC enter into the "resonance frequency"; i.e.,
internal forces, as well as wall terms, contribute to wr. The

same phenomenon has been observed in the analysis of beam behavior,
near an integer resonance, in the presence of magnetic guide field
10

imperfections (In this case w, > 0).

Appendix 1: Rf Excitation

1.1 Unbunched Beam
Assume a deflecting rf-field localized at s = 0. Write
the deflecting force as
v=o2rRGe Yret §(s). (A1)
Here, R is the orbit radius. Fourier expansion of the d-function

yields

Assume an unbunched beam. Let the test particle at time t be at

s. =R {a, + 2,t) . (a2)
1 1 1

Then the force acting on this particle is

[

r, = G ZE:: e—i(wrf—nﬂi)t + ina, (43)

n=-o

If one of the frequencies (wrf-nﬂi) is close to the betatron freguency
QOQO, the response of the beam to this harmonic will predominate.

For an observer at a fixed azimuth 6 the oscillation of the beam
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i(n6-w _t)
r

is characterized by harmonics with x, = £ e f and for

wrf:: (n - QO)QO the pattern is similar to the n-th dipole mode
of a coasting beam.
1.2 Bunched Beam

Let the center of bunch £ move in the longitudinal direction

according to

sy = R (&%1 * Qe (ak)

(h = rf harmonic = number of bunches).

The force (A2) acting on the bunch is

©

F,= 0 j{: e—i(wrf—nﬂo)t + insg/R . (45)

n =-

We assume that the bunch length 2A¢ is small {(n2A¢ << 27) so
that the bunch is deflected coherently.

Again taking only the response of bunch £ to the harmonic

of (A5) with (w _ = nQo):: QOQO we write the equation of motion

rf

of particle i in bunch £ as

2 2 2 _
d - Xi’ + Qi Qi Xi,Z + Alxi,l + BQXQ
at ,
= E Wey F * G it (46)
k:l

Here A2 and BQ are the local Coulomb and image forces acting within
bunch £ and the elements wkl represent the wake fields acting from
bunch k on bunch £; wzi describes the wake fields from the previous

turns which act on bunch £ due to its own motion.

Using the same procedure employed to derive (2.5) we assume

- 18 -

-1 wt
-1 wt
e

Then from (A6) we obtain the following system of linear equations for

the response, Fl’ of bunch £:
h

(1/12 + BR) Foo- ZE: wngk =1 (A8)

k=1

Here I, is the integral (2.5b) for bunch R. For coherent bunch nodes'
all Fk(w) are equal. For single bunch modesS, and near the resonance

of bunch &, all terms of the sum excepli the term with W g can be

L

neglected. In either case only FQ(w) remains in (A8).

Appendix 2: Various Coefficients

The coefficients A and B which occur in Eg. (1.1) can be
interpreted in terms of the familiar coherent and incoherent frequenc:
L
shifts.  Assuming, as in Ref. (4), that all particles oscillate

coherently (xi = x) BEq. (1.1) yields

2

+ (Q292 +A+B)x=¢G oWt (82.1)

|

n

at

This equatiocn suggests that the coherent frequency is

wc2 =(QQ)2 + A+ B

and we identify

o)
n
L
0
x>
o
o
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as the coherent frequency depression due to space-charge image

forces . Similarly, when the beam center is at rest (X = % I X,
i
and in the absence of a driving force
dgxi 22 :
5+ (Q™Q° + A) x, = o . (A2.3)
dt
Thus ,
Ao, =Q ANQ, =~ - A (A2.4)
ic o) ic 2QOQO :

may be interpreted as the familiar single particle freguency shift

. . . -B
Finally, we may identify 56?7— as the coefficient U + V + iV
o o

of Ref. (1). 1In fact, assuming no external driving forces (G =
we write Eq. (1.1) as

d2x.
i

at * :

Following the procedure used to derive Eg. (2.5) we find the

dispersion relation Eq. (2.7), and by comparison with the "standard

notation" we identify

U+ VvV +iv = -
o 0

By combining (A2.2),(A2.4) and (A2.6) we may express the LNS-
coefficient U + V + iV in terms of the Laslett Q-shifts as indicated
in Table 1. ©Note that the coherent Q-shift defined this way includes

the effect of finite wall conductivity. It is therefote, in general,

complex and different for different modes of oscillation.

The coefficient U is determined by the Q-shifts in their usual

definition (perfectly conducting vacuum chamber). From Ref. (k)

we have -- assuming that the mode frequency w = (n - Q )0 # 0 —-
c 0’0o

Here El,

2. 2
5t Qi € x, +Ax, +Bx (A2.5)

R (42.6)

and thus
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NR 2
AQ = p e, + El ve, X
2 1 2 2 2
¢ mayb Yy -1 g
(a2.7)
2
Aq, = ™ g, + il +€ Ei + 5
iec ~ 2 2 2,2
e avve | Y F - g- 22 (y - 1)
Ner 2
1
U = L (6, -e) & -2, (a2.8)
2 2
WaEQB 1 1 5
El’ and 82 are the Laslett image coefficients, a the beam

radius, b the half-height of the chamber (for vertical oscillations),

R the orbit radius, and g the half-height of the magnet gap.
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