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UXO detection and identification 

 

ABSTRACT 

 

Electromagnetic induction data parameterized in time dependent object intrinsic 

polarizabilities allow discrimination of unexploded ordnance (UXO) from false targets 

(scrap metal). Data from a cart-mounted system designed for discrimination of UXO with 

20 mm to 155 mm diameters are used. Discrimination of UXO from irregular scrap metal is 

based on the principal dipole polarizabilities of a target. A near-intact UXO displays a 

single major polarizability coincident with the long axis of the object and two equal smaller 

transverse polarizabilities, whereas metal scraps have distinct polarizability signatures that 

rarely mimic those of elongated symmetric bodies. Based on a training data set of known 
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targets, object identification was made by estimating the probability that an object is a 

single UXO. Our test survey took place on a military base where both 4.2” mortar shells 

and scrap metal were present. The results show that we detected and discriminated 

correctly all 4.2” mortars, and in that process we added 7%, and 17%, respectively, of dry 

holes (digging scrap) to the total number of excavations in two different survey modes. We 

also demonstrated a mode of operation that might be more cost effective than the current 

practice.  

 

INTRODUCTION 

 

Unexploded ordnance (UXO), partly resulting from the high rate of failure among 

munitions from more than 60 years ago, present serious problems in Europe, Asia, and 

the United States. In Europe and Asia, World War I and II UXO still turn up at 

construction sites, in backyard gardens, on beaches, wildlife preserves, and former 

military training sites. In the U.S., a considerable amount of UXO was generated at 

former military bases, as a result of decades of training, exercises, and testing of weapons 

systems. Such UXO contamination prevents civilian land use, threatens public safety, and 

causes significant environmental concern. In light of this problem, there has been 

considerable interest shown by federal, state, and local authorities in UXO remediation at 

former U.S. Department of Defense sites. The ultimate goal of UXO remediation is to 

permit safe public use of contaminated lands. A Defense Science Board Task Force 

Report from 2003 lists some 1,400 sites, comprising approximately 10 million acres, that 

potentially contain UXO. This report also noted that 75% of the total cost of a current 
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response action is spent on digging scrap. Reducing the number of scrap items dug per 

munitions item from 100 to 10 could reduce total response action costs by as much as 

two-thirds. The Task Force assessment was that much of this wasteful digging can be 

eliminated by the use of more advanced instruments that exploit modern digital 

processing and advanced multi-mode sensors to achieve an improved level of 

discrimination of scrap from UXO.  

The search for UXO is a two-step process. The object must first be detected and 

its location determined; then the parameters of the object must be defined. The first step 

is now accomplished with a variety of magnetometer and active electromagnetic (AEM) 

systems. These AEM systems operate in the transient or frequency domain mode, and 

until recently used a single transmitter and up to three receivers (i.e., McNeill and 

Bosnar, 1996; Won et al., 1997). The second step involves generation of incident fields 

that induce magnetization and current flow in different directions within the object. The 

magnetic dipole moments induced in the body, normalized by the inducing field, are 

known as the polarizabilities of the object. In fact, equivalent dipole approximations have 

been used in geophysics as well as other fields for a long time. In recent applications, 

they have been used to model secondary magnetic fields arising from currents induced in 

isolated conductive, and possibly magnetic, bodies for discrimination of UXO from scrap 

metals (e.g., see Baum, 1999; Bell et al., 2001; Khadr et al., 1998; and Pasion and 

Oldenburg, 2001). In these examples, the induced dipoles were taken to be linearly 

proportional to the inducing magnetic fields at the body centers. Smith and Morrison 

(2004) give a particularly clear treatment of the problem of estimating object location and 

polarizability matrices, restraining the non-linearity of the problem to three dimensional 
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space, and solving the rest of the problem using linear methods. The secondary fields 

related to these induced polarizabilities, as a function of frequency or time, are the 

measured quantities. These polarizabilities, and their variations with either time or 

frequency, are the only fundamental object parameters that can be recovered from the 

inductive excitation of a finite body in the ground, if a dipolar representation is assumed.  

For regular bodies of revolution the induced moments are aligned with the 

symmetry axes of the object, and for a uniform inducing field, do not change direction 

with time or frequency. However, for an irregular object such as twisted scrap metal, the 

moment directions do change with time or frequency.  

Previous AEM systems have had only one transmitter, hence illuminating the 

object in different directions required multiple measurements. This was not only time 

consuming, but also tedious. At each anomaly location, a template with predefined 

system locations was laid on the ground, and data were acquired with the system 

positioned at each of these locations. In recent years, multicomponent AEM systems have 

been developed with the potential not only of detecting UXO, but also of determining its 

depth, size, shape, and metal content, even in the presence of metallic clutter and a 

heterogeneous background. This capability has the potential to significantly increase 

detection rates, lower false alarm rates, and, more importantly, enhance our ability to 

discriminate between intact UXO and scrap metal.  

In this paper we demonstrate the use of a multicomponent AEM system, both for 

detection and for target characterization. Using three orthogonal transmitters and multiple 

receivers, object location and characterization can be done using data from a single site. 

Our objective was to evaluate the discrimination capability of this approach. The field 
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site was chosen because of the known mixture of UXO and scrap metal. Furthermore, all 

detected anomalies were excavated, and ground truth was available for verification of the 

geophysical results. As a part of new decision-making processes, a new definition of a 

Receiver Operating Curve (ROC) has been proposed by the Institute for Defense 

Analyses (IDA) (Cazares et al., 2008) and it is used to present our results. 

A comprehensive summary and comparison of existing systems and their 

performance at various test sites was published in two reports, Geophysical Prove-Outs 

for Munitions Response Projects by ITRC (2004), and Survey of Munitions Response 

Technologies by ESTCP, ITRC and SERDP (2006). In recent years, significant progress 

has been made in discrimination technology, which includes both instrumentation and 

data processing and discrimination algorithms (e.g., Gasperikova et al., 2006 & 2007; 

Huang et al., 2007; Pasion et al., 2007; Snyder and George, 2005; Wright et al., 2007). 

However, acceptance of discrimination technologies by regulators requires the 

demonstration of system capabilities as well as the entire decision-making processes at 

real UXO sites, under real operating conditions. The first such effort was a recent 

discrimination study at a former military training range organized by the Environmental 

Security Technology Certification Program (ESTCP).  

 

METHODS AND INSTRUMENTATION 

 

Instrumentation 

We found in our design process that AEM systems scale roughly with depth of 

burial and target size. Thus the dimensions of the transmitter control the field strength at 
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depth and the spacing of receivers controls the accuracy of depth estimates. Smith and 

Morrison (2005) showed that a minimum of 13 independent transmitter-receiver data 

points are necessary to unambiguously determine the target parameters. Given the 

possibility of an arbitrary number of receivers, the overall system dimensions are set by 

the size of the transmitter loop and the practicality of moving this loop over the ground. 

Our prototype instrument BUD (which stands for the Berkeley UXO Discriminator), 

shown in Figure 1a is a time-domain AEM system designed to detect UXO in the 20 mm 

to 155 mm size range for depths between 0 and 1.5 m, and to characterize them in a depth 

range from 0 to 1.1 m. The system was described by Smith et al. (2007), and results from 

a local test site and the Yuma Proving Ground have been presented by Gasperikova et al. 

(2006, 2007). The system is made up of three orthogonal transmitters and eight pairs of 

differenced receivers. The footprint of the system is 1 × 1 m. The transmitter-receiver 

assembly and the acquisition box, along with the battery power and state-of-the-art real 

time kinematic (RTK) global positioning system (GPS) receiver are mounted on a small 

cart to assure system mobility.  

We use a 340 μs half-sine pulse current waveform, repeated every 1852 μs with 

alternating polarity. A series of nine pulses is fed to each of the three transmitters in turn 

and stacked over 20 such sequences, cancelling harmonics of 60 Hz. The receivers are 

critically damped dB/dt induction coils with a nominal resonance frequency of 20 kHz, 

and are designed to minimize the transient response of the primary field pulse. The eight 

receiver coils (Figure 1b) are placed horizontally along the two diagonals of both the 

upper and lower planes of the two horizontal transmitter loops. The receiver coils are 

paired along symmetry lines through the center of the system, so that each pair sees 
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identical fields during the on-time of the current pulses in the transmitter coils. They are 

wired in opposition to produce zero output during the on–time of the pulses in the three 

orthogonal transmitters. This configuration dramatically reduces noise in the 

measurements by canceling background electromagnetic fields (these fields are uniform 

over the scale of the receiver array and are consequently nulled by the differencing 

operation) and by canceling noise contributed by the movement of the receivers in the 

Earth’s magnetic field, thus greatly enhancing receiver sensitivity to gradients of the 

target response. The target transient is recovered in a 140 to 1400 μs window.  

 

UXO Identification Using Polarizabilities Curves 

The induced moment of the target depends on the strength of the transmitted 

inducing field. That moment, when normalized by the inducing field is the target 

polarizability. The secondary fields measured as a function of time, are related to the 

induced polarizabilities. The polarizabilities and their variation with time are the only 

fundamental object parameters that can be recovered from the inductive excitation of a 

finite body in the ground if a dipolar representation is assumed. Smith and Morrison 

(2004) demonstrated that a satisfactory classification scheme is one that determines the 

principal dipole polarizabilities of a target. Nearly intact UXO displays a single major 

polarizability coincident with the long axis of the object, and two equal smaller transverse 

polarizabilities, whereas scrap metal exhibits three distinct principal polarizabilities. 

Measurement results shown in Figures 2 and 3 illustrate the ability of the multi-

component AEM system to discriminate between UXO (Figure 2) and scrap metal 

(Figure 3). Both figures show the estimated principal polarizabilities plotted as a function 
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of time, with the corresponding object images at the bottom of the illustration. As 

predicted, UXO targets have a single major polarizability coincident with the long axis of 

the object and two equal smaller transverse polarizabilities (cf. Figure 2), whereas the 

scrap metal exhibits three distinct principal polarizabilities (cf. Figure 3). These results 

clearly show that the intrinsic polarizabilities of the target can be resolved, and that there 

are very clear distinctions between symmetric intact UXO and irregular scrap metal. 

Moreover, intact UXO have unique responses that allow for discrimination between the 

various UXO objects. This last characteristic was not used at this particular site but is 

essential at any site where a variety of munitions is present.  

When the target is far enough from the system such that the uniform field 

illumination and a dipole approximation are valid, the interpreted polarizabilities are 

independent of object depth and orientation. For large objects close to the system however, 

the principal polarizability curves vary with the orientation of the object. Object orientation 

estimates and equivalent dipole polarizability estimates for large and shallow objects are 

affected by higher-order (nondipole) terms induced in objects as a result of source-field 

gradients along the length of the objects. For example, a vertical 0.4 m long object (for 

example, 4.2” mortar) directly below the system needs to be about 0.90 m deep for 

perturbations caused by gradients along the length of the object to be on the order of 20% 

of the uniform field object response. This calculation was done with an assumption that 

the object needs to be approximated by two dipoles, each a quarter length from the object 

edge, rather then by a single dipole in the center of the object. For horizontal objects, the 

effect of gradients across the objects' diameter is much smaller. For example, 0.4 m long 

object needs to be only 0.20 m below the system to be correctly located and identified.  
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A polarizability index (in m3), an average value of the product of time (in 

seconds) and polarizability value (in m3/s) over the 35 sample times logarithmically 

spaced from 140 to 1400 μs, and three polarizabilities, can be calculated from the 

response of any object. We used this polarizability index to decide when the object is in a 

uniform source field. Based on UXO from the Yuma Proving Ground Calibration Grid 

together with the object lengths, objects with the polarizability index smaller than 600 

cm3 and deeper than 1.8 m below the system (or smaller than 200 cm3 and deeper than 

1.35 m, or smaller than 80 cm3 and deeper than 0.90 m, or smaller than 9 cm3 and deeper 

than 0.20 m below the system) are sufficiently deep that the effects of vertical source 

field gradients should be less than 15%. To assure proper object identification and 

UXO/scrap discrimination, in the case of large and shallow objects, we took 

measurements at five sites spaced 0.5 m along a line traversing the object. The data from 

the site at which the line from the estimated object center to the lower receiver plane 

center was closest to being perpendicular to the orientation of the objects' interpreted axis 

of greatest polarizability were used for discrimination.  

In the case where no training data are available, our object identification program 

matches the measured equivalent dipole polarizabilities to a database of previous 

measurements of equivalent dipole polarizabilities of known objects (‘exhaustive search’), 

and identifies a candidate object as the object(s) corresponding to the closest matching 

curves from the database. This is done by minimizing a robust loss function of the 

normalized absolute differences (residuals) between the measured values and those in the 

database, weighted inversely by estimated uncertainty in polarizabilities.  
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UXO/Scrap Discrimination Using Training Data 

For the UXO/scrap discrimination, we used a training data set that contained the 

principal polarizability responses of 100 objects - 45 mortars, 13 half-rounds, and 42 

pieces of scrap metal (37 objects were from the geophysical prove out area (GPO), 27 

objects from the cued area, and 36 objects from the survey area). A description of the 

survey and cued areas is given in “Field Survey and Results” section. This was 

considered to be a realistic training data set that in addition to the responses from the 

GPO area would include also responses of 10-15% of the objects that require 

discrimination. Two-thirds of the training data were randomly selected for direct use in 

training, and one third was reserved for later calibration.  

The data time interval was subdivided logarithmically into a number (ndiv) of 

subintervals. The product of each principal polarizability and its sample time was 

averaged over each of these intervals. Since there are three principal polarizabilities, this 

resulted in nfeat = 3ndiv reduced data, henceforth called “features.” We used an additional 

feature, the logarithm of the vector magnitude of the above 3ndiv features (in m3), which 

increased the total number of features nfeat to 3ndiv+1. When this feature is added, the 

partial vector of 3ndiv features is rescaled to have unit magnitude. The number of 

subdivisions ndiv was chosen using cross validation. In cross validation, results from a 

subset of training data was used to predict something about the remaining training data. 

This was done many times (“repeats”), excluding a different set of training data each 

time, and then a choice was made based on what gave the best predictions averaged over 

the many repeats. For the UXO versus scrap discrimination problem, the average cross-

validated estimated probability of UXO being scrap ranged from 0.0892, when the 
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number of subintervals (ndiv) was 3 (10 features), to 0.0336 for ndiv = 6 (19 features), 

which further decreased to 0.0222 when responses reserved for calibration were included. 

As a result, we used ndiv = 6 in our discrimination.   

For the training data (UXO or scrap) with ndiv = 6, the feature vector contained 19 

features—median features at six different times for each of the three principal 

polarizability curves, and the median loge(magnitude). Each of the features had its 

median and median absolute deviation (MAD) computed separately for UXO and scrap 

training data. There was a greater spread in the three median principal polarizabilities of 

the scrap responses than of the UXO responses, and the scrap median log magnitude was 

slightly smaller. The MADs showed greater variability in the scrap features than in the 

UXO ones, reflecting greater variability in ratios of scrap principal polarizabilities than in 

those of UXO.  

For convenience, features were differenced with median values (for UXO or 

scrap) and normalized by feature MADs (for UXO or scrap), separately for consideration 

as UXO or scrap, and denoted by vi
(uxo) or vi

(scrap) for the two normalizations, respectively. 

Training data from UXO and scrap classes were used to form trimmed-feature covariance 

matrices for the two classes separately: 
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where (class) is either (uxo) or (scrap), t denotes transpose, and n(class) is the number of 

(class) responses. In the second sum, the contribution of large magnitude feature vectors 

are downweighted. A feature vector vi
(class) probability density function is estimated 

empirically as proportional to  
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Equation (2) is a generalization of a Cauchy distribution. As pextra approaches infinity the 

distribution approaches a Gaussian distribution. With parameter pextra = 3 the outer 

exponent has the smallest half-integer value for which distribution has a finite variance. 

This value was used, allowing for very heavy tailed distributions. This was slightly 

conservative for the mortar responses, for which pextra = 9 was the maximum likelihood 

value, and very conservative for the scrap responses, which approached a Gaussian 

distribution. Density estimate (2) could be further refined by additional blurring of the 

contributions of training data with large uncertainties. 

Assuming equal a priori probability of being UXO or scrap, the probability of the 

response being caused by scrap is: 
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(Bayes’ rule, e.g., Hoel et al., 1971) and the probability of the response being caused by 

UXO is: 
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Allowing for unequal a priori probability of a response being due to UXO or scrap, with 

their ratio being α2, the probability that the response is due to scrap is: 
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and the probability that the response is due to UXO is 
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Probabilities in Equations (6) or (7) formed the basis for the discrimination between 

UXO (mortar) and scrap classes.  

The class feature covariance matrices C(uxo) and C(scrap), and the densities f(uxo) and 

f(scrap) were computed from subsets of the training data. UXO and scrap probabilities—

Equations (6) and (7)—were estimated for the remaining (excluded) training data. 

Estimated UXO probabilities of excluded training data were summed over many repeats. 

Parameter α2 was adjusted (using Newton’s method), so that the summed UXO 

probabilities yield the true number of UXO in the training set. When the ratio of mortar 

training examples to scrap training examples is their true relative probability, and 

f(uxo)(vi
(uxo)) and f(scrap)(vi

(scrap)) are the true densities, this procedure operating on expected 

values, yields the correct value of α2. When the ratio of mortar training examples to scrap 

training examples is greater than their true relative probability, this procedure will tend to 

over estimate α2 and the ensuing estimates of p(uxo). This was done for ndiv from 1 to 6 

and the ndiv that gave the lowest summed estimated probabilities of being scrap for the 

UXO in the training data set was selected. After this calibration, the algorithm was 

applied to the set of unknown responses, and the discrimination between UXO and scrap 
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classes was conducted using Equation (6) and (7). A threshold value was selected, and 

every response with puxo(v(uxo)) less than the threshold po
(uxo) was classified as scrap; the 

rest were classified as UXO (mortars).  

 

FIELD SURVEY AND RESULTS 

 

At the military test site, the primary UXO targets were 4.2” (107 mm) mortars 

(Figure 2) about 0.4 m long. The system detection threshold was based on the signal 

strength relative to levels of a background response variation. Measured signal strengths 

(field value) normalized by the background variation for a 4.2” mortar as a function of 

depth are shown in Figure 4. The solid line indicates the response of the 4.2” mortar in a 

horizontal (least favorable) orientation, and the dashed line indicates the response of the 

4.2” mortar in a vertical (most favorable) orientation. The detection threshold was set to 

ten, which is 50% of the value that would be measured for the 4.2” mortar at the depth 

equal to 11 times the diameter of the mortar.  

We demonstrated two modes of operation: (1) the simultaneous detection and 

characterization/discrimination, and (2) the cued mode. In the first mode, the survey area 

was divided into one hundred 200 m long lines oriented approximately east-west. Line 

spacing in the orthogonal direction (north-south) was 1 m. We conducted the survey at a 

speed of 0.5 m/s. The cart-mounted system was pushed along the line at a constant speed 

in the search mode, with data recorded and stored continuously. In principle, any object 

within the 1 × 1 m footprint of the horizontal transmitter coil and 1.2 m in front of the 

system can be detected and characterized. In the search mode, the operator was alerted to 
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the presence of a target every time the signal level exceeded the detection threshold. The 

operator then stopped, and a full sequence of measurements was initiated. The three 

discriminating polarizability responses were recorded and visually presented on the 

computer screen. Then the cart again was moved at a constant speed in the search mode 

until the next target was detected and the discrimination process was repeated. An 

average daily coverage in this mode of operation was 0.5 acres (~2000 m2). This mode of 

operation has the advantage that target reacquisition is not necessary for characterization. 

As described earlier, for the case in which a large shallow object was found, we collected 

five measurements spaced 0.5 m along a line traversing the object (that is, if the object 

location was at 0.0, measurements were taken at 1.0 m, 0.5 m, 0.0 m, -0.5 m, and -1.0 m), 

so that the system moved further away from the object, and hence minimized source 

gradients at one or more locations. The measurement that best satisfied the criteria 

described earlier was used for the object characterization.  

In addition to the 4.2” mortars and half-rounds shown in Figures 2 and 3, the area 

contained a lot of scrap metal; some representative responses are shown in Figure 5 and 

6. Scrap metal ranged from pieces as small as 4×1×1 cm, through 10.5×10.5×4 cm base 

plates, up to 28×17×0.5 cm half-rounds. All the objects had distinct polarizability 

signatures, which allowed for a clear discrimination between the 4.2” mortars and scrap 

metal.  

Figure 7 shows the detection map of our survey area. Colors represent measured 

signal strength normalized by the background variation. Since the detection threshold was 

set to ten (Figure 4), red and yellow colors represent the background response, while 

green and blue colors indicate locations of metallic objects. For the 4.2” mortar, the 
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polarizability index is larger than 300 cm3. Consequently, the detection list contained 

every object with a response above the detection threshold or polarizability index larger 

than 150 cm3. We identified 358 such locations. Some of these locations did not have the 

ground truth, some of the objects were a part of the training data set and some of them 

where multiple objects, hence the survey area discrimination set, provided to us by the 

IDA, contained 266 objects.  

We provided discrimination results in the form of two priority dig lists. In the first 

one, the “stop digging” point was chosen when any object past this point had an 

estimated probability of 0.01% of being a 4.2” mortar, and 0.1% probability of leaving 

any UXO in the ground. The second priority dig list had the “stop digging” point at 90% 

probability of any object being a 4.2” mortar. In the first priority dig list, we indicated 

that 75 objects had to be dug (i.e., UXO), whereas 191 objects could be left in the ground 

(i.e., scrap metal). The second priority list classified 63 objects as “need to dig” and 203 

objects that could be left in the ground.  

The ground truth data indicated that 56 of the objects were single 4.2” mortars. 

Scoring results from the IDA showed that the system performed extremely well. We 

identified correctly all 56 4.2” mortars in both cases, and we identified scrap as 4.2” 

mortar 19-times (19 false positives) in the first case, and 7-times in the second case.  

The ROC curve for the survey area priority dig list is shown in Figure 8a. The 

results are plotted with the number of false positives on the x-axis and the probability of 

discrimination on the y-axis. The green line shows objects that we identified as scrap, the 

red line indicated objects we identified as UXO. The dark blue circle represents a “stop 

digging” point from our interpretation, the magenta circle shows the number of false 
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positives if the probability would be 95%, and the cyan circle shows the number of false 

positives if the probability would be 100%. The gray shaded area indicated 95% 

confidence interval. The graph shows that the system performed extremely well: we 

correctly discriminated all mortars (cyan and magenta circles), and we had 19 false 

positives (dark blue circle), which would be only 7% of unnecessary excavations based 

on the total number of possible excavations.  

In addition to the survey described above, we performed a cued survey over 200 

objects. In this case, the system was brought to marked locations and run in the 

discrimination mode. The three discriminating polarizability responses were recorded and 

visually presented on the computer screen. Again, for large shallow objects, we collected 

five measurements spaced 0.5 m along a line traversing the object, and the measurement 

that best satisfied the criteria described earlier was used for the object characterization.  

From 200 cued survey locations, 27 objects were included in the training data set, 

and 23 others were identified as multiple objects and therefore the IDA excluded those 

from the cued discrimination set. Again, we provided discrimination results for the 

remaining 150 objects in the form of two priority dig lists. The first one, with the “stop 

digging” point at which any object past this mark had an estimated probability of 0.01% 

of being a 4.2” mortar, and 0.1% probability of leaving any UXO in the ground. This list 

indicated that 90 objects could be left in the ground, and 60 objects had to be dug. The 

second priority dig list had the “stop digging” point at 90% probability of any object 

being a 4.2” mortar. In this list, only 43 objects were identified as “need to dig,” while 

107 could be left safely in the ground.  
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The ground truth revealed that 34 of them were 4.2” mortars. Scoring results from 

the IDA showed that in both cases we correctly identified all 4.2” mortars. In the first, 

more conservative, priority dig list, we had 26 false positives—we identified scrap as 

UXO 26 times. In the second dig list, where the “stop digging” point was at 90% 

probability of any object being 4.2” mortar, we reduced false positives to 9.  

The ROC curve for the cued target priority dig list is shown in Figure 8b. Again, 

the results are plotted with the number of false positives on the x-axis and the probability 

of discrimination on the y-axis. The green line shows objects that we identified as scrap, 

the red line indicated objects we identified as UXO. The dark blue circle represents “stop 

digging” point from our interpretation, the magenta circle shows the number of false 

positives if the probability would be 95%, and the cyan circle shows the number of false 

positives if the probability would be 100%. The gray shaded area indicates 95% 

confidence interval. The graph shows that we correctly discriminated all mortars (cyan 

and magenta circles) and had 26 false positives (dark blue circle), which is 17% of the 

total number of objects submitted for discrimination. In this case we performed slightly 

worse, possibly due to an increased variability in the ground response.  

 

CONCLUSIONS 

 

The field survey at a former military site showed that a multiple-transmitter 

multiple-receiver system can accurately detect, locate, and characterize complex targets. 

Moreover, the system can clearly distinguish between symmetric intact UXO and 

irregular scrap metal, and can resolve the intrinsic polarizabilities of the target from 
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observations at a single position. The objects were identified by estimating the 

probability that an object was a single UXO based on a training data set of known targets. 

Priority dig lists were constructed based on these probabilities. The important outcome of 

this survey was that using our approach, we were able to identify all UXO and that even 

with the most conservative “stop digging” point we added only about 7%, and 17% 

respectively, of unnecessary digs (digging scrap) to the total number of excavation points 

in two different surveys.  

A traditional procedure for UXO discrimination involves a detection survey, data 

post-processing and anomaly identification, as well as the surveying of identified 

anomaly locations, and reacquisition or a cued survey. We demonstrated a mode of 

operation that involves detection and characterization/discrimination at the same time, the 

advantage of which is that target reacquisition is not necessary for discrimination. Hence, 

at the expense of smaller daily coverage, this system eliminates surveying costs and a 

second, cued survey.  

Ground response imposes an early time limit on the time window available for 

target discrimination. Once the target response falls below the ground response it will be 

poorly resolved, especially since the ground response itself is variable due to the 

inhomogeneous nature of the near surface. This might be the case for small or deep UXO 

in magnetic soils. We observed increased variability in the ground response in one area of 

the cued survey. This might have influenced the larger number of false positives in our 

priority dig list. However, since 4.2” mortars are relatively large it did not affect our 

UXO identification. 
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Our current approach works for isolated objects only. At the moment, in the case 

of non-UXO response, we are unable to discriminate a single piece of scrap from a 

combination of scrap and UXO. If multiple objects are present, a different approach is 

necessary and this is an area of future research.  

This site contained two major classes of targets – UXO and scrap metal. The next 

step in our research is to apply an improved interpretation algorithm to a survey area 

where multiple munitions are present, and to discriminate those munitions from harmless 

scrap metal.  
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Figure 1. (a) Instrument photo, (b) Schematic of transmitter and receiver positions. 
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Figure 2. Principal polarizability curves as a function of time for 4.2-inch mortar. 
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Figure 3. Principal polarizability curves as a function of time for a half-round (scrap 
metal). 
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Figure 4. Detection plot - a field value normalized by a background variation for a 4.2-
inch mortar as a function of depth. Solid line indicates the response for a 
horizontal orientation of the 4.2-inch mortar (least favorable). Dashed line 
indicates the response for a vertical orientation of the 4.2-inch mortar (most 
favorable). 
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Figure 5. Principal polarizability curves as a function of time for a small scrap. 
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Figure 6. Principal polarizability curves as a function of time for a baseplate. 
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Figure 7. Detection map of the survey area. 
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Figure 8. (a) ROC curve for the survey area priority dig list, (b) ROC curve for the cued 

targets priority dig list. 
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