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Preface 
Cancer cells are endowed with diverse biological capabilities driven by myriad inherited 

and somatic genetic and epigenetic aberrations that commandeer key cancer-relevant 

pathways.  Efforts to elucidate these aberrations began with Boveri’s hypothesis of aberrant 

mitoses causing cancer and continue today with a suite of powerful high-resolution technologies 

that enable detailed catalogues of genomic aberrations and epigenomic modifications.  

Tomorrow will likely bring the complete atlas of reversible and irreversible alteration in individual 

cancers. The challenge now is to discern causal molecular abnormalities from genomic and 

epigenomic “noise”, to understand how the ensemble of these aberrations collaborate to drive 

cancer pathophysiology.   Here, we highlight lessons learned from now classical examples of 

successful translation of genomic discoveries into clinical practice, lessons that may be used to 

guide and accelerate translation of emerging genomic insights into practical clinical endpoints 

that can impact on practice of cancer medicine. 

 
 



Introduction 
The human cancer genome harbors wholesale alterations on the chromatin, 

chromosome and nucleotide levels, resulting in irreversible numerical and structural aberrations 

as well as reversible epigenetic modifications (Figure 1) that affect hundreds to thousands of 

genes or regulatory transcripts.  Collectively, these molecular abnormalities serve to activate or 

neutralize biological events that define diverse aspects of cancer pathophysiology including 

altered growth, death, metabolism, angiogenesis, immune sequestration and metastasis 1.  

Mining the complex cancer (epi)genome for aberrations governing these processes has become 

a major activity in cancer research, as it is widely appreciated that embedded within the 

oncogenomic landscape are mechanistic clues to disease pathogenesis that can inform the 

broader efforts of identifying molecular events for therapeutic intervention and molecular 

biomarkers for early detection and prognosis, improved diagnosis and response prediction.  

Recognizing this, multiple national and international efforts, including The Cancer Genome Atlas 

(TCGA) pilot project by the NCI and NHGRI 2, have been initiated to accelerate the compilation 

of the comprehensive atlas of cancer genomic alterations.  

In recent years, cancer genomics – defined here as the study of the ensemble of DNA-

associated abnormalities that enable and accompany cancer development - has exploded as a 

field, enabled by genome-wide high-resolution high-throughput platforms (see textbox). These 

technologies now yield informative but dauntingly complex multi-dimensional genomic datasets 

that describe in detail the myriad changes in epigenomic modifications and DNA copy number 

and structural aberrations as well as sequence mutations within individual tumors and how 

these differ between individual tumors.  There is real potential that these datasets will transform 

the practice of cancer medicine as evidenced by therapies that target distinctive molecular 

events that result from genome aberrations features such as EGFR mutations (gefitinib or 

erlotinib)3-5, the BCR-ABL translocation (imatinib mesylate)6 and ERBB2 amplification 

(trastuzumab, lapatinib) 7 and assays for these aberrations that are now used to stratify patients 

for treatment.  In parallel, assays for germline mutations identify individuals at high risk of 

cancer development – for example, p53 mutations are associated the Li-Fraumeni cancer 

syndrome8, BRCA1/2 mutations signal increased risk for breast and ovarian cancer risk9-11, 

mutations or epigenomic modification of DNA mismatch repair (MMR) genes such as MLH1 or 

MSH2 or MSH6 associates with hereditary non-polyposis colorectal cancer (HNPCC)12 and 

CDKN2A mutations indicate increased risk for familial atypical multiple mole melanoma-

pancreatic cancer 13.   



 These examples have demonstrated the promise of cancer genomics, stimulated rapid 

advances in genome technologies and computational science, and galvanized an entire 

generation of multi-disciplinary scientists on the quest to identify the next set of key cancer 

targets and disease biomarkers.  While there has been tremendous success in the rapid 

accumulation of genomic data, vast majority of these enormous datasets have not yet translated 

into meaningful clinical endpoints. Historically, translation of each genome aberration 

discoveries into improved patient management has taken at least a decade and sometimes 

billions of dollars. This pace and expense will not permit the range of genomic discoveries to be 

effectively exploited unless more efficient, less costly strategies are developed.  What are the 

barriers to rapid conversion of genomic information into useful diagnostics and effective 

therapeutics?  Is statistical significance in the absence of mechanistic insights sufficient to 

harness the full translational potential of these complex genomic datasets in a cost-efficient and 

effective way?  Or, is some degree of molecular biological function required for efficient 

translation?  In this regard, the ABL, ERBB2 and EGFR paradigms appear to support the view 

that the coupling of genomic insights with pathobiology holds the greatest promise for clinical 

impact.  In this article, we will review some examples of successful translation of genomic 

discoveries to the clinic and lessons learned from these first experiences.  Against this 

backdrop, we will discuss the challenges and potential paths forward to translate the promise of 

a complete cancer genome atlas.  

 
Historical lessons 

There have been several pioneering examples of successful translation of genomic 

aberration discoveries in cancers into diagnostics and therapeutics with dramatic impact on 

practice of cancer medicine.   Although many of these successes predated present-day high-

throughput genome-wide technologies – indeed, some resulted from decades of painstaking 

work - they nevertheless presage the translation of cancer genomic discoveries into useful 

clinical tests and effective treatments.  We review several here as lessons for modern genome 

researchers that may guide and accelerate translation of the genome aberrations now being 

discovered.  

Translocations.  The first recurrent genome aberration discovered to be associated with 

a human malignancy was the “Philadelphia chromosome” discovered by Nowell and Hungerford 

in 196014.  In the ensuring decades, cytogenetic and molecular studies showed this to be a 

translocation between chromosomes 9 and 22, resulting in a fusion product, BCR-ABL.  This 

fusion gene deregulates tyrosine kinase activity in patients with chronic myeloid leukemia (CML) 



and some forms of acute lymphoblastic leukemia (ALL).  More than 30 years after the discovery 

of the Philadelphia chromosome, a kinase inhibitor, imatinib mesylate, was developed as an 

effective therapeutic agent against BCR-ABL in patients with CML6.  Unfortunately, despite 

initial dramatic responses, this targeted therapy does not lead to durable cure since resistant 

tumors emerge that abrogate the inhibitory effect of imatinib mesylate15. Genomic analyses of 

the resistant tumors showed the acquisition of point mutations (sometimes amplified). This 

insight guided development of new kinase inhibitors designed to counter this resistance 

mechanism, leading to recent approval of nilotinib and dasatinib16.  This suggests a recursive 

paradigm of therapy/biomarker developments in which genomic analysis guides the 

development of targeted therapies and associated predictive markers followed by genomic 

studies of resistant tumors to aid development of second and third generation inhibitors to 

counter resistance mechanisms.  Banking of tumor tissues from drug resistant patients will be 

essential to support these studies.  Another lesson to be learned from the imatinib mesylate 

story is that genomic analyses can effectively guide the use of small molecule inhibitors that 

show multi-target specificity.  Imatinib mesylate, for example, also inhibits the c-Kit receptor 

tyrosine kinase.   Guided by genomic analyses of gastrointestinal stromal tumors (GIST 

sarcomas)17 and mucosal melanomas18 showing that both harbor c-Kit mutations,  imatinib has 

been successfully used to treat patients with GIST (sarcoma) and mucosal melanomas17-19.    

Numerous causal recurrent translocations have been discovered in human leukemias 

and lymphomas via molecular cytogenetic analyses since the pioneering discovery of the 

Philadelphia chromosome20.  However, discovery of causal translocations in solid tumors has 

been difficult, possibly reflecting the complex genomic profiles and heterogeneous nature of 

these malignancies.  With current day genomic analyses coupled with sophisticated analytical 

approaches and expanding genomic information, recurrent structural aberrations are being 

discovered in solid tumors and may be more prevalent that previously thought.  A notable 

discovery is the high-frequency of TMPRSS2:ETS-family translocations in human prostate 

cancer.  Using a novel integrative analytical methodology called COPA (Cancer Outlier Profile 

Analysis) that identifies associations between genomic and transcriptional abnormalities, 

Chinnaiyan and colleagues identified this family of common translocations that brings an 

oncogenic ETS transcription factor under control of the androgen response element TMPRSS2, 

effectively placing expression of the ETS oncogene under androgen regulation21. Molecular 

assays for the fusion events are now being developed and evaluated as early detection markers 

for prostate cancers22. Similar computational approaches on emerging multi-dimensional 

datasets will hopefully yield other causal structural aberrations in solid tumors.  And this is only 
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the beginning.  Next generation sequencing technologies that enable DNA sequence analysis of 

entire tumor genomes will be particularly valuable in discovering fusion genes and other 

structural rearrangements.  The promise of this approach is illustrated by the revelation of 

remarkable structural complexity in the cancer genomes by end sequence profiling23 or genomic 

region sequencing24. 

Gene amplification.  Another prominent success story involves the now well-established 

oncogene, ERBB2.  This gene with homology to erb-B and the tumour antigen p185 was initially 

identified as a transforming oncogene in NIH-3T3 cells25 that was also amplified in human 

breast cancer cell lines26-28.  Shortly thereafter, ERBB2 amplification was found in ~30% of 

primary tumors wherein amplification was associated with short survival duration and time to 

relapse29.  Based on these observations, diagnostic assays for Her2 amplification30 or 

overexpression were developed and used in early clinical trials of trastuzumab (a monoclonal 

antibody directed against the extracellular domain of HER2) to demonstrate survival benefit in 

Her2 positive metastatic breast cancer patients7.  More recently, molecular assays for ERBB2 

have guided the clinical deployment of the EGFR/ERBB2 targeted small molecule inhibitor, 

lapatinib 31.   

Mutations.  Since completion of the human genome sequence, several high-impact 

discoveries in genome science have come from systematic re-sequencing of cancer genes or 

pathways or gene family.  One of the first and perhaps the most celebrated success from such 

large-scale sequencing projects is the discovery of frequent activating somatic mutations in 

BRAF, a serine threonine kinase in 60% of malignant melanoma, 10% of colorectal cancer as 

well as in lower frequencies of other cancers32.  This discovery has driven multiple BRAF 

inhibitor development programs with several drugs already entered clinical trials.   Other notable 

discoveries from large-scale sequencing efforts included frequent PI3KCA33 and AKT134 

mutations in many cancer types, ERRB2 and EGFR mutations in NSCLC35,36, among others.  

The discovery that, in addition to gender, ethnicity, smoking history and histopathological 

subtypes; EGFR-activating mutations predict responses to anti-EGFR targeted therapies in 

chemotherapy-refractory advanced NSCLC patient 3-5 has immediately changed the standard of 

care for patients with NSCLC.  EGFR mutation testing is becoming routine prior to treatment 

decision with EGFR inhibitors36.  Here, the ability to assay EGFR genotype retrospectively using 

banked tumor tissues with matched germline DNA was crucial in enabling the stratification of 

responders and demonstration of efficacy, leading ultimately to FDA approval of erlotinib for 

NSCLC37.  A lesson to learn from this is the importance and values of uniform collection of pre- 

and post-treatment tumor specimens with matched normal controls from clinical trials to enable 



future prospectively designed retrospective analyses of clinical responses, perhaps even at the 

expense of slower patients accrual.    

Germline susceptibility. In addition to somatic genetics, genomic science is also 

revolutionizing our searches for germline susceptibility genes or polymorphisms in inherited 

disease predisposition including cancers.  One of the early successes in this area was the 

discovery of BRCA1 mutation association with familial breast cancer9,10. Genetic screening for 

germline mutations in BRCA1 and now a second cancer susceptibility gene, BRCA211 are now 

being deployed world-wide to identify patients at high risk of developing early onset breast and 

ovarian cancer.  Moreover, the knowledge that BRCA1 is necessary for error-free double-strand 

break repair led the way to development of PARP inhibitors, a new treatment paradigm38.  

These and subsequent studies established the concept that efforts to discover inactivating 

germline mutations associated with increased susceptibility to cancer can be guided by 

analyses of LOH or reduced genome copy number and/or methylation in the tumors that 

eventually develop.  Application of current and future day genomic technologies in coordinated 

germline and tumor studies are likely to significantly accelerate that identification of 

susceptibility genes of this class thereby enhancing our ability to stratify high-risk individuals for 

aggressive surveillance, prevention and management.  However, this will require coordinated 

collection of tumor specimens along with germline DNA in large cohort genetic susceptibility 

studies. 

 

Making sense of the oncogenome  
Empowered by our improved capability to survey the cancer genome with increasing 

accuracy and resolution, hundreds of cancer genomic studies have been conducted or initiated 

with the hope of discovering the next EGFR, HER2 or BRAF.  Instead, these analyses are 

uncovering hundreds of recurrent genomic or genetic alterations impacting thousands of 

“genetic elements of interest (GEOI)” – including annotated genes, non-coding micoRNA, or 

other conserved elements – that might contribute to the pathophysiology of human cancers.  

The nature and “strength” of each GEOI, our certainty of its contribution and therefore its 

translational importance varies substantially.  Some will be strong, causal “drivers” of important 

cancer hallmarks1, others will be weaker but important “contributors” to the development of 

cancer pathophysiology while many will be genomic “noise” or “passengers” that are biologically 

neutral and have been accumulated by chance during the cancer’s life history.   Distinguishing 

the drivers and contributors from the passengers is a central challenge in genomic research 



today.  This is made more challenging by the diversity of GEOI function and the likelihood that 

GEOI function may be tumor type (or subtype) as well as microenvironment dependent.   

In cases of high-frequency events such as amplifications of regions encoding EGFR in 

GBM (45%) or ERBB2 in breast cancer (20%); deletions of regions encoding CDKN2A or PTEN 

in upwards of 80% in solid tumors or mutations of p53, RAS, BRAF and PIK3CA in a wide range 

of solid tumors (see http://www.sanger.ac.uk/genetics/CGP/Census/), assignment of GEOIs as 

“drivers” is compelling and rests on weight of functional evidence built up over decades, a 

“luxury” not afforded by novel GEOIs born to present day high-throughput cancer genomics.   

Furthermore, these prominent “gene-mountains” appear to be few and far between relative to 

the numerous “hills and valleys” stretching broadly over large regions of the oncogenome 39,40.  

Which of these GEIOs are on the critical path to malignancy?  What are their relative 

contributions?  These are challenging questions without simple answers, but they do converge 

on the theme of integration and triangulation (Figure 2).  Below we highlight several examples of 

approaches that have been utilized successfully to find the “needles” – drivers and contributors 

– in the haystack of cancer genome data.  

 

Integrative analyses of multi-dimensional data 

The cancer genome is dysregulated by multiple mechanisms, including DNA and 

chromatin modifications and changes in DNA structure, copy number and mutations of coding 

and non-coding sequences that alter RNA transcription, translation, gene function and/or post-

translational modification.  Technological advances that allow examination of the cancer 

genome in multiple “omic” dimensions are helping to focus driver and contributor discovery 

since these GEOIs tend to be deregulated by several different mechanisms.  A classic example 

is the CDKN2A (p16INK4A/p14ARF) tumor suppressor, which can be inactivated by homozygous 

deletion of the 9p21 locus, epigenetic silencing of gene expression via promoter methylation, or 

point mutations crippling p16INK4A functions41.  Similarly, the oncogene, PIK3CA, can be 

activated by amplification and over-expression42 and/or activating mutations33.   Such multi-

mechanism deregulation is clearly illustrated when examining well-known bona fide oncogenes 

in a typical signaling pathway (Figure 3).  In other words, if it is important, cancer will find a way 

to deregulate a genetic element by any mechanism possible.  By this reasoning, targeted re-

sequencing of resident genes within regions of amplification has yielded clinical fruits, such as 

KIT in mucosal and acral melanomas18.  Thus, demonstration of complementary modes of 

deregulation through integration of multiple dimensions of genomic information is a piece of 

strong evidence in support of a likely pathogenetic GEOI.  The current large-scale cancer 



genome projects with coordinated comprehensive genome-wide characterization will be most 

powerful in leveraging such multi-dimensional data for integrative analyses.  Additionally, 

triangulation across tumor types can be highly informative as well, as it is clear that the 

mechanisms of deregulation of many bona fide cancer genes, such as MYC, EGFR, AKT, RAS 

or p53, PTEN and CDKN2A vary according to tumor type – for example, genes like MYC that 

are activated by translocation in leukemias may be activated by amplification in solid tumors.  

Convergence among different tumor types can rapidly prioritize GEOIs that are likely to be 

important broadly.  As a byproduct, it is likely that the predictive or prognostic power of genome 

biomarkers will increase substantially if assays are developed that assess the accumulated 

effect of all mechanisms of deregulation, such as changes in protein level or structure. 

 

Comparative oncogenomics  

Evolutionary conservation can be a powerful guide to cancer gene discovery since 

genes involved in pathways that are deregulated in cancers such as  RTK signaling, cell cycle 

regulation and apoptosis are strongly conserved across species43,44.  This comparative 

approach proved to be enormously helpful in refining the draft of the human genome.  With 

respect to cancer, it has been established that cancer genes from one species can effect the 

malignant transformation of cells derived from different species despite poor primary sequence 

conservation (e.g., dMyc transformation of rodent cells 45).  Recent large-scale cross-species 

comparison has established that mouse and human tumors sustain orthologous genomic events 

which target novel cancer genes in diverse tumor types 46-48, supporting the view that genomic 

alterations conserved across species are more likely to represent critical events in 

tumorigenesis, and that evolutionary conservation can provide a potentially powerful solution to 

the central problem of noise in genomic datasets.  

While it began with histopathological diagnoses, cross-species comparison has evolved 

to include genetic/genomic analyses to demonstrate that genetically engineered mouse models 

can model genetic aspects of human cancer, as exemplified by cross-species conservation of 

transcriptional signatures for KRAS activation in lung cancers49 or somatic mutations of 

NOTCH1 in mouse and human T cell leukemia 50.   This was followed by proof-of-concept that 

comparison of genomic profiles of mouse and human tumors enabled discovery of novel 

oncogenes46,47.  In the case of the study by Kim et al, ability to manipulate stages of tumor 

evolution, from regression to recurrence to escape in vivo, was leveraged to force selection of 

aberrations conferring metastatic capability.  Genome-wide copy number profiles revealed focal 

amplification in mouse metastastic tumors that were syntenic to human 6p24-25, a region that 



sustains copy number gain in 36% of human metastatic, but not primary, melanoma51.  Although 

6p gain is highly recurrent, suggestive of potential pathogenetic and/or prognostic importance in 

human tumors, its extended nature in human tumors renders identification of 

drivers/contributors difficult to impossible.  Given the focal nature of the event in the mouse, 

cross-species comparison was able to narrow one region of interest to an 850 KB region 

encompassing only 8 annotated genes, with NEDD9 as a putative driver. With that information 

as a guide, further functional and clinicopathological studies documented NEDD9s metastasis-

promoting activities, and elucidated its molecular action via focal adhesion kinase46.   Likewise, 

comparisons of recurrent genome copy number aberrations in tumors with ERBB2 amplification 

in human breast tumors and in a transgenic mouse model in which oncogenic Erbb2 (NeuNT) 

was expressed under control of the endogenous Erbb2 promoter implicated GRB7 and 14-3-3-σ 

as contributors in ERBB2 mediated oncogenic process52.   

While syntenic aberrations have been observed between murine and human tumors, it is 

important to note that genomes of most mouse tumors accumulate far fewer genome 

aberrations than do human solid tumors.  For example, mouse tumors from oncogene-driven 

mouse models often exhibit few to no copy number aberrations (CNAs), and infrequent (typically 

simple) CNAs presumably occur only under strong selective pressure.  This simplicity facilitates  

genomic identification driver and contributor aberrations as exemplified by studies by Kim et al 

and Zender et al 46,47.  On the other hand, the disadvantage is that it does not lend itself to 

widespread use of cross-species comparison.   

Based on the observations that telomere dysfunction-induced DNA breakage events can 

drive regional amplifications and deletions and that laboratory mouse does not experience 

telomere-based crisis, DePinho and colleagues knocked out in the mouse germline the RNA 

component of the telomerase holoenzyme, generating a telomerase-deficient mouse that 

experienced progressive shortening of telomere length through successive generations, 

eventually leading to crisis53.  Tumors from these animals indeed showed high level of 

instability, harboring large number of non-reciprocal translocations and complex CNAs 54-56.  

Unbiased genome-wide comparison of such genome-unstable murine tumors and several 

human cancers of diverse origins demonstrated compelling non-random overlaps over copy 

number aberrations, proving that murine and human tumors experience common biological 

processes driven by the orthologous genetic events 48.  Attesting to the potential of such cross-

species comparison for gene discovery, focused re-sequencing of GEOI within syntenic 

deletions revealed high frequency mutation of FBXW7 in human T-ALL, and PTEN48, the latter 

also shown to modify responses to NOTCH1 inhibition in clinic57.  These studies support the 



notion that cross-species synteny serves not only as a measure of validation by virtue of their 

evolutionary conservation and utilization of different genetic mechanisms (i.e., mutation and 

copy number), but also guide the discrimination of drivers/contributors from bystanders.  

Another aspect where the mouse has proven its value in comparative genomics is in 

identification of susceptibility loci.  Extending the concepts used to identify BRCA1, one might 

expect to find mutations or polymorphisms that contribute to cancer susceptibility be subjected 

to positive selection during cancer genome evolution.  Thus, these mutations might be found 

through allele specific analysis of genome copy number and gene expression in defined model 

systems.  As an example, Balmain and colleagues used genomic strategies to identify 

polymorphic variants of the aurora kinase, AURK or STK15, to be associated with increased risk 

of developing cancer in multiple anatomic sites in the mouse58,59.  These studies began with 

analysis of the genetic localization of quantitative trait loci (QTL) in mice that controlled 

susceptibility to skin tumor formation in interspecific mouse crosses (Mus musculus x Mus 

spretus).  One of these, Skts13, was orthologous to a region of recurrent copy number increase 

in human cancers of the breast, colon, ovary and colon at 20q13 that encoded the aurora 

kinase, AURKA.  Analyses of expression of the mouse ortholog, stk6, showed allele specific 

difference in the mouse intercrosses while genome copy number analyses of AURKA 91A and 

AURKA 91T showed preferentially amplification of the AURKA 91A allele in human colon 

tumors.  A subsequent meta analysis of the association of AURKA T+91A alleles risk of cancer 

development of the colon, breast, prostate, skin, lung and esophagus showed an increased risk 

in both homozygotes and heterozygotes. These results confirmed that the AURKA T+91A 

variant is a low penetrance cancer susceptibility allele affecting multiple cancer types.  Overall, 

this integrative analysis of quantitative cancer traits in mice, analysis of allele specific copy 

number change and expression and assessments of susceptibility in large case control studies 

may be essential to identify the likely large number of low penetrance, high prevalence 

polymorphisms that influence cancer risk. 

Finally, model systems including the mouse are ideally suited for forward genetic 

screens where one can “listen” and let the cancer cells “tell” us what events they require or 

prefer on their path toward full malignant transformation.  For example, retroviral insertional 

mutagenesis in the mouse has yielded recurrent and common insertion sites at genomic loci 

encoding genes such as RAS, Myc, Notch1, Flt3, Kit or p53 (60 and references therein), 

attesting to their potential power as cancer gene identification when triangulated with existing 

and emerging human cancer genomic data.   

 



Cell line model systems 

Much of our understanding of cancer cell biology including aspects of gene regulation 

and signaling has come from studies of cancer cells in culture.  The roughly 50,000 publications 

describing uses of the HeLa cell line and 20,000 publications describing uses of the NIH 3T3 

cell line attest to this fact.  That said, no cancer biologist or geneticist will argue that established 

tumor cell lines grown on plastic dishes, in thee dimensional cultures or in immune 

compromised mice can fully recapitulate all biological aspects of human tumors growing in the 

complex human microenvironment.  Nor can any models fully represent the responses of the 

range of human tumors to therapy – in part due to differences in biological environment and in 

part because the models do not capture the range of biological and (epi)genomic diversity found 

in human tumors.  Therefore, it is expected that each model system has pros and cons, strength 

and weakness.  Mouse is one such example; as highlighted above and discussed in greater 

details elsewhere 61, its value is unequivocal.  As long as we are mindful of the limitations of any 

one model, we can leverage information such system can offer.  Integrating across multiple 

models will bring us closer to a true picture.   

So, what CAN we learn about genomic aberrations from cell line models?  And why are 

they important?  Simply put, cell lines are essential for functional and biological validation of 

GEOI.  Almost without exception, demonstration of functional activities and molecular bases for 

their action are necessary for the discovery of novel cancer genetic elements, including genes 

or microRNAs.  Such efforts inevitably begin with various cell model systems, including 

established cancer cells, for their ease of manipulation and versatility (Figure 4).  In such 

system, one can simulate the cancer-associated events (e.g. enforced expression of a GEOI 

resident in an amplification or RNAi-knockdown of a GEOI in a deleted region) to interrogate the 

biological and biochemical consequences of GEOI deregulation and to define its role (e.g. driver 

vs contributor vs passenger) in cancer development.  Clearly, a major obstacle to accurate 

interpretation of functional data in established cancer cell lines is the lack of clarity on the 

complements of genetic alterations they carry, as it has become clear that genotypes of the 

system, be it a cell line, a model or even a patient, can dictate behavior of the cancer cells and 

alter response to a manipulation such as RNAi knockdown or pharmacological inhibition. As in 

the case of the tumors from which they were derived, no two cancer cell lines are alike. 

Moreover, there is the legitimate concern that genomic aberrations will be gained or lost during 

extended passages in culture. Therefore, it is important that cell line models – on plastic, in 3-

diminesional culture or in xenografts - are subjected to same level of comprehensive genomic 

characterization as human tumor specimens so that interpretation of functional studies can be 



guided by knowledge of the similarities and differences between the cell lines and tumors they 

are intended to model.  It is also important that any cell line “system” used for functional 

oncogenomic studies is comprised of multiple independent cell lines with molecular diversity.  If 

sufficiently diverse, analyses of such cell line collections minimize the risk that the elucidated 

function of an aberration will be idiosyncratic to a particular cell line.    

As in model organisms, forward functional genetic screen using cancer cell line model, 

particularly in recent years with advance of RNAi technology, has been touted as one powerful 

platform to identify cancer relevant genes.  Such screens in vitro may be limited by the 

phenotype (life and death, predominantly) amenable to high-throughput biological assays.  

Nonetheless, recent studies that intersect high-throughput RNAi screen in vitro with human 

cancer genomic data have led to the identification of REST as a tumor suppressor in colon 

cancer 62, IKBKE as an oncogene in breast cancers 41 and PIK3CA mutations as important 

determinants of resistance to trastuzumab 63.   

Cell lines also represent an important model system for drug sensitivity and resistance in 

the quest to identify possible biomarkers to guide early phase clinical trial studies, to identify 

drugs that may be effective in tumor subtypes that are resistant to the current standard of care 

and to identify effective drug combinations. Although still in its infancy, a growing literature 

supports the concept that analyses of responses of collections of molecularly characterized cell 

lines to chemotherapeutic agents targeting molecular mechanisms intrinsic to the tumor cells 

will reveal molecular markers that can be used to predict drug response64 65-68.  As a corollary, 

these analyses also identify drugs with high specificity to cancer cell subsets defined by specific 

molecular characteristics. Examples include in vitro analyses that predict (a) the known 

sensitivities of ERBB2 amplified tumors to trastuzumab 69 and lapatinib 66, (b) the sensitivity of 

tumors carrying EGFR mutations to gefitinib3-5, and (c) acquired gefitnib resistant mutation in 

EGFR 70 as well as (d) the resistance of tumors with mutated or amplified BCR-ABL to imatinib 

mesylate 71.   

In short, while not fully recapitulating real tumors in patients, cell model systems with 

large number of independent established lines of broad molecular and cellular diversity 

accompanied by comprehensive genomic characterization can be and will be tremendously 

useful in translation of genomic insights to clinical endpoint.  These systems can be further 

improved by development of (i) co-culture or 3D culture conditions that better model in vivo 

microenvironment and (ii) strategies to establish primary or short-term cultures that minimize 

“culture-shock” associated with adaptation to plastics. 

 



Molecular understanding in translation 
Through integrative analyses of multi-dimensional data and comparison across multiple 

model systems or species (Figure 2), the process of identifying driver/contributor GEOIs, 

especially the relatively weaker or less prevalent ones (e.g. the hills and valleys) can be greatly 

accelerated.  But is this milestone of ‘guilt by association’ sufficient for translation?  We think 

not.  Cancer is a complex and heterogeneous collection of disease entities as defined by 

clinical, histopathological and genetic parameters.  Given this disease heterogeneity, the 

identification of compelling correlation defined in a test-validation set in a laboratory setting (e.g. 

a collection of genomic data; behavior in a model system, even responses in a clinical trial), no 

matter how significant, may not apply generally (i.e., the next new patient entering hospital care 

or enlisted into a randomized Phase III clinical trial).  We believe that, without a definition of the 

genomic and biological context under which these GEOIs exert their mission-critical roles in 

cancer (i.e., its neutralization is associated with a robust anti-oncological response), the full 

therapeutic, diagnostic, and/or prognostic value of these genomic insights will not be realized 

but rather will be lost in translation. 

Consider the example of EGFR mutations in NSCLC and GBM.  Mutational activation of 

EGFR in NSCLC identifies a subpopulation of patients highly responsive to targeted inhibition of 

EGFR.  The percentage of patients with EGFR activation mutation in NSCLC is small (circa 

10% in US studies, somewhat higher in Asian populations) 36, and thus the therapeutic 

response of these patients to gefitnib would not have emerged in the absence of genetic 

stratification of this clinically distinct population. Conversely, EGFRvIII deletion and amplification 

are very prevalent in GBM (approximately 45%) 72, yet EGFR TKIs show a strikingly meager 

clinical impact.  A positive, albeit transient, clinical response has been detected in patient 

subsets with an EGFR event and intact PTEN 73, indicating this key downstream molecule can 

modify the tumor biological response.  However, it is notable that these positive responses are 

not durable despite documented pharmacological extinction of mutationally activated and 

amplified target.  Here, the proteomic profiling of RTK activation patterns in solid tumors, 

including GBM and lung cancer, has provided a rational explanation for the patterns of clinical 

responses.  Specifically, Stommel et al showed that established GBM tumor cell lines, 

xenotransplants and primary patient specimens possess multiple co-activated RTKs, and that 

inhibition of EGFR alone can lead to replacement by other co-activated RTKs in the PI3K 

complex, thus maintaining downstream survival signaling74.  Downstream signaling was 

extinguished only when multiple RTKs were targeted by RNAi or combination TKI74.  Thus, the 

integration of genomic and proteomic insights with molecular dissection of the signaling complex 



now provides a more accurate blueprint for the rational deployment of TKIs in GBM, lung and 

other solid tumors.   

While critical to translation, establishing the molecular basis of cancer-relevant action of 

a GEOI in specific tumor-biological context is perhaps the most difficult step in cancer 

genomics.  Compounding the challenges of lengthy and laborious functional - clinicopathological 

validation (Figure 4) is the biological phenomenon of false negatives.  Such false negatives can 

arise in many ways, including when (i) cancer-related biological activities of a genetic element 

are not captured by standard cell-based cancer assays (e.g. interaction with the host stroma); 

(ii) genetic element plays relevant role but only under specific cellular or genetic context not 

recreated in the validation assay; or (iii) a genetic element contributes partially to the overall 

activity conferred by a genomic event, thus single GEOI activity is negligible in the absence of 

these cooperating partner(s).   Therefore, validation must not rely on a single assay by a single 

manipulation.  Gain-of-function and loss-of-function manipulations for multiple tumor-

phenotypes using multiple cell lines should be performed to search for the context in which 

biological activity can be revealed.  Here, one can benefit from other tumor biological knowledge 

of the disease or gene family or pathways, including insights from triangulation data that 

nominate the specific GEOI.  For example, if a GEOI identified by integrative genomic analyses 

is further prioritized on basis of its known role in neural-stem-cell (NSC) homeostasis, one will 

specifically assess how its manipulation impacts on NSC renewal/maintenance/differentiation in 

addition to the more generic assays of anchorage independence or proliferation (Figure 4).  

Similarly, if a GEOI is identified in a subset of tumors with a particular genotype (e.g. with 

activated RAS vs EGFR mutation), one needs to assay its biological importance under the 

appropriate context.  This has been demonstrated in two recent studies46,47.  Kim et al, showed 

that NEDD9 had gain-of-function pro-invasion activities only in cells with concomitant BRAF or 

RAS activation, an experimental design informed by the characteristics of the metastatic 

escapers harboring NEDD9 amplification46,47.  Zender et al, demonstrated cIAP1 and Yap 

exhibited oncogenic activities in p53+/- hepatoblasts with Myc activation, but not ones with Akt 

or RAS activation, consistent with the presence of 9qA1 amplicon (targeting cIAP1 and Yap) in 

that specific mouse model of HCC46,47.    In the Zender et al study, not one, but both cIAP1 and 

Yap were shown to be cooperative targets of 9qA1 amplification, highlighting yet-another level 

of complexity that contributes to biological false negatives.  Here, functional genomics can be an 

efficient path forward.  Not only does such approach allow increased throughput in assaying 

large number of GEOIs for tumor biological activities, genetic screens with low-complexity 

libraries representing GEOIs resident within a particular genomic event (especially ones that are 



large and gene-rich) will enable identification of cooperating contributors that together confer the 

biological advantage sought by the cancer cells.  This approach will likely be important for 

sorting out which of the less impressive “hills and valleys” are biologically important.  

Similarly challenging is the issue of biological false positives.  For instance, RNAi-

mediated loss-of-function assay is a powerful mean to determine whether expression of a GEOI 

is required in a cell for a specific turmorigenic phenotype (e.g. survival, anchorage 

independence or invasion etc).  However, given the innumerable genetic and epigenetic 

alterations present in established tumor cells (and consequent altered signaling between 

pathways and networks), it is possible that the phenotype observed may be true-true-unrelated.  

Here, complementary gain-of-function activity can help to increase the weight of evidence in 

support of a particular GEOI being a true driver or contributor to cancer.  Additionally, type of 

functional activity also conveys different level of confidence; anchorage independent growth in 

soft agar is a more stringent assay than enhanced proliferation in fully supplemented cultured 

media with 10% serum.  Biological false positive can also emerge as a direct consequence of 

the artificial nature of our assays.  Consider the possibility that overexpression of a GEOI may 

confer a strong anchorage independent phenotype, but such may be the result of its 

supraphysiological level of expression in vitro;  conversely, knockdown of a GEOI may lead to 

cell death for its expression is required for survival of all cells, not just cancerous ones.  Here, 

clinicopathological validation utilizing tissue microarrays can provide added support for cancer-

relevance by demonstrating prevalence of dysregulation on DNA (by FISH) and protein (by IHC 

or IF) levels in independent large cohorts of specific tumor types and of broad tumor spectrum.  

This can be particularly informative if such TMA cohorts are annotated with clinical outcome as 

such survey will not only add to the weight of evidence, but also provide invaluable clues and 

insights into possible clinical context for therapeutic development.   In the end, it is the 

cumulative weight of evidence based on strength of specific functional activities, magnitude of 

clinicopathological data as well as significance of mechanistic clues that ultimately gives one the 

confidence of assigning a GEOI as a cancer-relevant “driver” or “contributor” rather than a mere 

passenger.   

  

Conclusion 
Cancer is the phenotypic endpoint of numerous epi/genomic alterations accumulated 

within the cancer cells and interactions of such alterations with the stromal components in a 

unique host microenvironment.  Some of the major challenges in translation of cancer genomics 

stem from the fact that many cancer-associated DNA changes represent genomic noise and 



there is incomplete understanding of the biological functions of many of the genetic elements in 

recurrent genomic alterations.  Compounding these is the unfortunate reality that cancer is a 

highly complex, nimble and versatile disease.  We have argued here that making sense of this 

complexity can be greatly facilitated by triangulation and integration with genomic and biological 

insights from model systems and clinical knowledge of the disease, and that translation can be 

accelerated by rigorous biological validation and mechanistic exploration in preclinical setting to 

better define the clinical context(s) in which a specific genetic element (or its linked 

pathway/network components) represents an effective therapeutic point of intervention.  At the 

same time, we need to be mindful that our current knowledge of what makes a strong driver, a 

cooperating contributor or, for that matter, a genomic passenger is limited at best and possibly 

wrong.  Therefore, this must be an iterative learning process where results of downstream 

biological validation and mechanistic studies, even clinical experiences when inhibitors or 

biomarkers are developed and deployed, can and must inform the integrative analyses and the 

validation approaches.  This effort will be facilitated by development or assembly of model 

systems that are characterized to the same degree as primary tumors that can be used to 

quickly test hypotheses suggested by the tumor “omic” analyses.  In other words, efficient 

translation of cancer genomics must go beyond statistical analyses of large genomic datasets 

and will require the amalgamation of expertise and insights from cancer biology, cancer 

genetics, cancer modeling and system biology as well as clinical experiences.  While each of 

these components may be pursued in an individual laboratory or research program, effective 

integration will enable timely exchange and bring synergy not possible otherwise.  Therefore, in 

parallel of multiple national and international large-scale cancer genome projects aimed at 

systematic and comprehensive characterization of the human oncogenome, it is also important 

to establish cancer genome translation centers or cooperatives where such diverse expertise 

can be assembled and efforts coordinated to mine the rich genomic datasets, generate 

hypotheses for validation, elucidate mechanisms and rationally design clinical development plan 

for biomarkers and therapeutics. 
 
 
 



Textbox:  Translating the cancer genome 
Comprehensive analyses of genome copy number, transcription, epigenomic 

modification and DNA sequence in cancers are now underway worldwide.  A central challenge 

in analyzing complex datasets emerging from these efforts is to devise strategies to efficiently 

prioritize (epi)genomic aberrations for assessment of biological importance and translational 

potential.  Traditionally, such prioritization is based on recurrence of the aberrations, 

associations with clinical endpoints such as histopathology and outcome, as well as biological 

activities.  A rapidly evolving suite of technological solutions now enable analysis of the 

oncogenomic landscape with remarkable resolution and accuracy.  

Copy number aberrations.  Comparative genomic hybridization (CGH) allows changes 

in genome copy number to be mapped onto a representation of the normal genome thereby 

allowing ready identification of the genes involved in the aberrations.  Modern CGH analysis 

platforms map these changes onto DNA sequences arranged in microarrays and allow 

quantitative assessment of changes in genome copy number in cancer genomes - including 

individual alleles in some platforms – with subgene resolution. Even at this resolution, some 

aberrations may be missed, especially with platforms that are gene oriented given the growing 

appreciation of the roles of regulatory, non-coring RNA transcripts in cancer pathogenesis.  Next 

generation technologies that efficiently sequence small genome fragments randomly collected 

from tumor genomes will complement microarray based copy number analysis strategies  by 

allowing sequencing of sufficiently large numbers of DNA fragments that copy number along the 

genome can be assessed simply by summing up the number of DNA sequence elements in 

genome resolution elements distributed along the genome.  The resolution of this approached 

can be made arbitrarily high by sequencing to increasing depth. 

Structure aberrations. Structural changes may involve segmental deletions or 

insertions, translocations or complex rearrangements (e.g. those occurring during gene 

amplification or copy number change).  These may be discovered using sequence based 

strategies. (a) End sequence profiling (ESP) is an adaptation of whole genome shotgun 

sequencing that allows detection of structural aberrations23 in which DNA from a tumor is cloned 

into a large insert vector and the ends of the resulting clones are sequenced and mapped onto 

the normal human DNA sequence.  Paired ends that map farther apart than the maximum size 

tolerated by the cloning vector indicate the presence of a structural aberration. This approach 

has the advantage clones containing aberrant DNA sequence fusion can be sequenced to 

identify the exact DNA sequence at the breakpoint.  (b) Paired end sequencing combines the 



rescue and capture of paired ends of short DNA fragments with high throughput sequencing  

and a computational approach to map DNA reads onto a reference genome to reveal structural 

variants 75.  

DNA sequence abnormalities.  Recent large scale DNA sequence analysis efforts 

have identified several hundred candidate cancer genes that may play function roles in various 

human cancers39,40.   Some occur at relatively high frequency but most are present in only a few 

percent of tumors.  Results from the extensive sequencing and mutation validation efforts now 

underway will be necessary to establish prevalence and clinicopathological associations for 

these GEOIs.  Both established and next generation sequencing technologies will be brought to 

bear on this issue.  (a) Sequencing by bybridization (SBH) 76 is an array based strategy in which 

mutations are detected based on intensity of hybridization to arrays comprised of comprised of 

short oligonucleotide probes that are designed to be perfectly complementary to the reference 

sequence plus oligonucleotide probes that differ by one base at each “substitution position” in 

the genome to be tested for mutation. This approach is well suited to resequencing.  (b) Dideoxy 

sequencing 77 is the current standard mutation detection methodology. Dideoxy sequencing 

typically is applied to products resulting from PCR amplification using primers that flank regions 

of interest.  Sequence “reads” typically are about 750 bp.  Most implementations of mutation 

detection using dideoxy sequencing will miss mutations that are present in less than about 20% 

of the cells in the PCR amplified population. Mutations discovered so far are summarized at 

http://www.sanger.ac.uk/genetics/CGP/cosmic/. (c) Shotgun sequencing proceeds by 

fragmenting a target genome into numerous small segments that are sequenced using dideoxy 

sequencing. Most regions of the genome will be sequenced several times and computer 

programs assemble overlapping sequences into a contiguous sequence.  (d) Single Molecule 

Sequencing Methods allow genome wide DNA sequencing starting from single molecules rather 

than a population of molecules 78,79.   Current read lengths range from ~30 to 300 bp and the 

number of reads per analysis ranges from 300,000 to 30,000,000.  These technologies facilitate 

detection of rare mutations.  Recent affinity enrichment techniques allow subsets of the genome 

to be enriched prior to sequencing (e.g. all known exons) thereby decreasing the cost of 

targeted sequencing 40,80. 

Epigenome analysis.  It is clear that epigenomic modifications are major contributors to 

tumorigenesis and progression – especially during early stages of development.  Several 

techniques for genome wide assessment of DNA methylation and chromatic structure are now 

established or emerging that will facilitate further elucidation of the oncogenomic roles 

http://www.sanger.ac.uk/genetics/CGP/cosmic/


epigenomic aberrations play. (a) Restriction Length Genomic Scanning (RLGS) 81 using 

methylation sensitive enzymes was the first method developed as a genome-wide screen for 

CpG island methylation.  This double-restriction-digest, gel separation technique allows analysis 

of methylation in up to 4000 loci 82,83. (b) Microarray array epigenome analysis methods 84 

proceed via hybridization of tumor and reference DNA samples arrays comprised of 

oligonucleotides comprised of CpG island sequences after digestion with methylation sensitive 

restriction enzymes that cut preferentially in CpG islands. Comparison of signal intensities 

derived from the tumor and reference samples provides a profile of sequences that are 

methylated in the tumor but not the references (or vise versa).   (c) Reduced representation 

bisulfite sequencing (RBBS) 85 is a large-scale genome-wide shotgun sequencing approach in 

which  tumor  and reference DNA samples are treated with bisulfate to convert cytosine to uracil 

while leaving 5-methylcytosine unconverted, digested with a methylation specific enzyme and 

sequenced.  Comparison of CpG sequences in the tumor and reference genomes could then 

reveal bisulfite induced changes.  This method is well suited to next generation single molecule 

sequencing strategies.  (d) methylation-specific Digital Karyotyping (MSDK) methodology 86 is a 

modification of digital karyotyping technique for DNA copy number profiling 87 where sequencing 

is performed to count accurately tag numbers for comparison between samples, thereby 

permitting quantitative measurement of methylation events. (e) Chromatin immunoprecipitation 

plus microarray analysis (ChIP on chip)88 employs immunoprecipitation to enrich DNA 

sequences associated with chromatin modifications such as histone acetylation and histone H3 

methylation for which antibodies are available. Immunoprecipitated DNA sequences are 

analyzed using microarray technologies or single molecule sequencing strategies. 
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Figure Legend 
 
Figure 1. Illustration of various types of genomic and epigenomic aberrations in cancers and 

type of genomic data that report on such changes.  These alterations presumably will lead to 

altered expression of resident genetic element of interest (GEOI), including coding mRNA and 

non-coding microRNA.  GEOI expression changes can manifest as increased or decreased 

level of expression or shift in pattern of spliced variant expression or appearance of aberrant 

transcripts that are cancer specific, such as ones derived from a fusion gene.   

 
Figure 2.  Integrative genomic analyses of human cancers of different cell lineages can be 

triangulated with genomic and biological data from tumors and genetics from model systems 

and from forward genetic screens in human cell systems.  Additionally, association with clinical 

parameters can prioritize GEOIs.  GEOIs identified from such integrative analyses will require 

biological and clinicopathological validation, a laborious process that can be greatly accelerated 

by deployment of functional genetic screens.  Exploration of mechanistic basis for a GEOI’s 

cancer-relevant activities can provide hints to their uses in the clinics.  Results from these 

downstream activities will feed back to inform and refine analyses and derive improved 

validation platforms. 

 

Figure 3.  Illustrative signaling pathway, highlighted with known examples of bona fide cancer 

genes that are subjected to deregulation by multiple genomic mechanisms. 
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