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ABSTRACT 

Increasing evidence suggests that a combination of host genetics and the composition of the 

gut microbiota are important for development of Crohn’s disease (CD). Our aim was to study 

identical twins with CD to determine microbial factors independently of host genetics. Fecal 

samples were studied from 10 monozygotic twin pairs with CD (discordant n=6, concordant 

n=4) and 8 healthy twin pairs. DNA was extracted, 16S rRNA genes were PCR amplified and 

T-RFLP fingerprints generated using general bacterial and Bacteroides group specific 

primers. The microbial communities were also profiled based on their % G+C contents. 

Bacteroides 16S rRNA genes were cloned and sequenced from a subset of the samples. The 

bacterial diversity in each sample and similarity indices between samples were estimated 

based on the T-RFLP data using a combination of statistical approaches. Healthy individuals 

had a significantly higher bacterial diversity compared to individuals with CD. The fecal 

microbial communities were more similar between healthy twins than between twins with 

CD, especially when these were discordant for the disease. The microbial community profiles 

of individuals with ileal CD were significantly different from healthy individuals and those 

with colonic CD. Also, CD individuals had a lower relative abundance of B. uniformis and 

higher relative abundances of B. ovatus and B. vulgatus. Our results suggest that genetics 

and/or environmental exposure during childhood in part determine the gut microbial 

composition. However, CD is associated with dramatic changes in the gut microbiota and this 

was particularly evident for individuals with ileal CD. 
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INTRODUCTION 

Crohn’s disease (CD) is a chronic relapsing inflammatory disorder of the gastrointestinal tract 

with an unknown etiology. Available data suggests that inflammation occurs due to an 

imbalanced mucosal immune response to the commensal bacteria in genetically susceptible 

individuals (Sartor et al., 2006).  

The knowledge about genetic factors that are relevant for CD has increased 

considerably during recent years and several susceptibility genes have been associated with 

CD. For example, polymorphisms in pattern recognition receptors, such as CARD15/NOD2 

that recognize microbial components, have highlighted the importance of the microbiota in 

pathogenesis of CD (Sartor et al., 2006). The genetic influence is also supported by higher 

concordance rates (approximately 50%) for CD occurrence in monozygotic twins (Halfvarson 

et al., 2003; Jess et al., 2005; Orholm et al., 2000; Tysk et al., 1988). Still, approximately 

50% of identical twin pairs are discordant for CD (i.e. one is diseased and one is healthy) 

demonstrating that environmental factors are also important for disease incidence (Halfvarson 

et al., 2006; Loftus et al., 2004).  

It has been difficult to correlate specific causative bacterial agents to CD. An increased 

prevalence of mucosal bacteria has been observed in CD patients, with higher levels of E. coli 

and Bacteroides species (Keighley et al., 1978; Swidsinski et al., 2002; Swidsinski et al., 

2005). Representatives of these bacteria have also been demonstrated to induce colitis when 

inoculated into germ free animals, however, with conflicting results (Sartor et al., 2003). 

Recently, increased levels of adherent, invasive E. coli (AIEC) were found in ileal tissues of 

CD patients (Barnich and Darfeuille-Michaud 2007; Darfeuille-Michaud et al., 1998). 

Furthermore, there have been reports of reduced numbers and a lower diversity of Firmicutes 

in the gut microbiota in individuals with CD (Gophna et al., 2006; Manichanh et al., 2006). 

However, the total microbiota of a patient with CD has not yet been profiled to a degree 
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where its composition can be considered predictive for disease development, and specific 

bacterial species responsible for the bowel inflammation have not yet been identified.  

The search for a causative disease agent is complicated by the great individuality of 

the gut microbiota with little overlap between individuals (Dicksved et al., 2007; Eckburg et 

al., 2005; Zoetendal et al., 1998). However, previous findings have shown that there is a high 

similarity in the composition of the fecal microbial communities in monozygotic twins 

(Stewart et al., 2005; Van de Merwe et al., 1983; Zoetendal et al., 2001). Therefore, one way 

to unravel the respective contributions of host genetics and commensal bacteria towards CD 

development and establishment would be to study identical twins. 

The aims of this study were 1) to determine if the gut microbiota in healthy twins have 

a higher degree of similarity than in twins that have CD and 2) to determine whether there are 

differences in the composition of the gut microbiota in individuals that have CD compared to 

healthy individuals. In particular, we focused on a set of discordant twin pairs, where one 

individual is healthy and one has CD, because they provided each other’s genetically matched 

control thus enabling us to focus on changes in the gut microbiota according to disease state.  

To test these hypotheses, we used molecular approaches to provide community 

profiles of the fecal microbiota. By focusing on the nucleic acid composition of the gut 

microbiome, we were able to overcome the known biases with cultivation-based approaches. 

Current estimates are that only 20% of the total species residing in the human gut have been 

cultivated to date (Eckburg et al., 2005). Therefore, we are still greatly limited in our 

knowledge about the physiology and ecology of the majority of the gut microbiota.  

In this study, we used the molecular fingerprinting approach, terminal-restriction 

fragment length polymorphism (T-RFLP), to monitor the bacterial community architecture in 

concordant and discordant identical twins with CD, and healthy twins. In addition, we used 

percent guanine + cytosine (%G+C) profiling of the total bacterial microbiome as a 
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complementary approach. Furthermore, we aimed to identify members of the microbiota that 

could be linked to CD incidence or development. We specifically targeted members of the 

Bacteroides genera since these are dominant members of the commensal biota with 

functionally important roles in the gut. Some Bacteroides species have previously been shown 

to be present in increased levels in persons suffering from IBD (Gophna et al., 2006; 

Swidsinski et al., 2005), yet animal models have provided conflicting evidence as to which 

species may cause CD, warranting closer examination.  

 

MATERIAL AND METHODS 

 

Patient cohort  

The twins with CD were derived from a Swedish twin population, described previously 

(Halfvarson et al., 2003; Halfvarson et al., 2004; Tysk et al., 1988). In short, twin pairs where 

at least one twin in each pair had been hospitalized for IBD, were identified by running the 

Swedish twin registry against the Swedish Hospital Discharge Register. All twins were sent a 

questionnaire concerning diagnosis of IBD, general gastrointestinal symptoms and exposure 

to environmental factors. After consent from each twin, the medical notes of all twins were 

evaluated, to verify or refute the diagnosis of IBD and to characterize the disease according to 

the Montreal classification (Satsangi et al., 2006). Zygosity was assessed by a questionnaire-

based method, applied by the Swedish twin registry (Cederlöf et al., 1961). It relies on 

questions on childhood resemblance and has been shown to be very accurate (Lichtenstein et 

al., 2002). Monozygotic twin pairs with CD born between 1936 and 1986, who had approved 

further contact and had not undergone extensive CD related surgical resections, i.e. 

colectomy, were invited to undergo colonoscopy. Ten monozygotic twin pairs were studied, 

six of these were discordant and four were concordant for CD, for a total of 14 individuals 
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with CD. Data on age, disease location, disease duration, behavior at diagnosis in the CD 

twins is presented in Table 1. All diseased twins, except two (labeled; 10b and 15a), were in 

clinical remission according to the Harvey Bradshaw score (Harvey and Bradshaw 1980).  All 

remaining twins were in endoscopic remission or had only post-inflammatory changes. All 

twins were asked to send fecal samples 7-10 days prior to the colonoscopy. In addition they 

submitted responses to a questionnaire regarding, usage of antibiotics or Non-Steroid Anti-

inflammatory Drugs (NSAIDs) within the last 12 months, gastroenteritis within the last three 

months or specific dietary habits and this information is provided in Supplementary Table S1.  

 
Table 1. Clinical characteristics of the twins with Crohn’s disease according to the Montreal 
classification, (n=14) 
 

 CD twins (n=14) 

Mean age (y)  49 (20-70) 

Age at diagnosis  

< 40 years  9 

≥ 40 years  5 

Location  

Terminal ileum  5 

Colon  6 

Ileocolon  2 

Ileocolon  + Upper GI  1 

Behavior  

Non-stricturing non-penetrating  11 

Stricturing  2 

Penetrating  1 

Perianal disease  0 

Median (range) Harvey Bradshaw score 1.5 (1-6) 
Abbreviations: CD, Crohn’s Disease; GI, gastrointestinal 

 

Eight healthy twin pairs, five monozygotic and three dizygotic pairs, not suffering 

from any gastrointestinal disease, were also invited to participate but did not undergo 

colonoscopy. The mean (range) age of these twins was 19 (6-56) years.  All healthy twins sent 
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fecal samples and responded to the same questionnaire described above. All collected fecal 

samples were placed in a freezer at –70°C, immediately after arrival, i.e., at most one day 

after the samples were collected, and were stored there until analysis. For detailed 

characteristics of the twins, see Supplementary Table S1. The Örebro County Ethical 

Committee approved the use of human subjects for this study (Dnr;167/03) 

 

Percent guanine + cytosine profiling of the bacterial community DNA 

Bacterial cells were extracted from 0.5 g fecal samples by differential centrifugation as 

previously described  (Apajalahti et al., 1998). The isolated bacteria were then lysed and DNA 

was purified by a protocol comprising enzymatic, chemical and physical steps as described 

elsewhere in detail (Apajalahti et al., 2001; Apajalahti et al., 1998). The DNA was 

fractionated by 72 h CsCl equilibrium density gradient centrifugation, which fractionates 

chromosomes of the component taxa, based on their characteristic G+C content as described 

previously (Apajalahti et al., 2001; Apajalahti et al., 1998; Holben et al., 2004). This 

separation is based on differential density imposed by the AT-dependent DNA-binding dye 

bis-benzimidazole. Following ultracentrifugation, a Brandel model SYR-94 syringe pump 

(Brandel, Inc., Gaithersburg, Md.) was used to pass the formed gradients through an ISCO 

UA-5 UV absorbance detector (ISCO, Inc., Lincoln, Nebr.) set to 280 nm. The %G+C content 

represented by each gradient fraction was determined by linear regression analysis (r2 > 0.99) 

of data obtained from control gradients containing standard DNA samples of known %G+C 

composition as described previously (Apajalahti et al., 1998). This procedure requires a 

minimum of 30 µg high molecular weight DNA from each sample. 
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PCR amplification conditions 

DNA was extracted from duplicate 250 mg samples from each fecal sample using the MoBio 

Power Soil DNA Kit (MoBio, Solana Beach, CA), according to the manufacturer’s 

instructions. 16S rRNA genes were PCR amplified from each DNA extract (two technical 

replicates per extract) using the general bacterial primers Bact- 8F (5’-

AGAGTTTGATCCTGGCTCAG-3’) (Edwards et al., 1989), 5′ end-labeled with 6-

carboxyfluorescein (6-FAM), and 926r (5’-CCGTCAATTCCTTTRAGTTT-3’) (Muyzer et 

al., 1993) using conditions that have been described in detail elsewhere (Dicksved et al., 

2007).  

In addition, 16S rRNA genes of the Bacteroides fragilis subgroup were specifically 

PCR amplified using a Bacteroides fragilis  subgroup specific reverse primer, g-Bfra-R (5’- 

CCAGTATCAACTGCAATTTTA -3’) (Matsuki et al., 2002) in combination with the same 

end-labeled Bact-8F general bacterial forward primer mentioned above. PCR amplification 

was carried out with an initial denaturation step at 95°C for 3 min, followed by 30 cycles 

consisting of 20 s at 95°C, 20 s at 49°C and 30 s at 72°C. The reaction was completed with a 

final primer elongation step at 72°C for 5 min. PCR amplified DNA product amounts and 

sizes were confirmed by agarose gel electrophoresis using GeneRuler 100bp DNA ladder Plus 

(Fermentas Life Sciences, Burlington, Canada) as a size marker. 

 

Terminal-restriction fragment length polymorphism (T-RFLP)  

PCR products were digested with the HaeIII restriction enzyme (GE Healthcare, Uppsala, 

Sweden) and the digested fragments were separated on an ABI 3700 capillary sequencer 

(ABI), as previously described (Hjort et al., 2007). The sizes of the fluorescently labelled 

fragments were determined by comparison with the internal GS ROX-500 size standard 

(ABI). T-RFLP electropherograms were imaged using GeneScan software (ABI). Relative 
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peak areas of each terminal restriction fragment (TRF) were determined by dividing the area 

of the peak of interest by the total area of peaks within the following threshold values; lower 

threshold at 50 bp and upper threshold at 500 bp. Data was normalized by applying a 

threshold value for relative abundance at 0.5% and only TRFs with higher relative abundances 

were included in the remaining analyses.  

 

Cloning and sequencing  

Cloning and sequencing of 16S rRNA genes from DNA extracted from the fecal samples was 

performed to confirm the identities of bacterial species corresponding to dominant TRFs from 

the Bacteroides dataset. DNA samples from four twin pairs (one healthy, one concordant and 

two discordant pairs) were amplified using the Bacteroides fragilis subgroup specific primer 

g-Bfra-R in combination with the general Bact-8F primer. Three replicate PCR products from 

each individual were pooled and gel purified using the Qiagen gel extraction kit (Qiagen, 

Hilden, Germany). A total of eight libraries were constructed by inserting PCR products into 

TOPO TA pCR 4.0 vectors (Invitrogen, Carlsbad, CA), followed by transformation into 

Escherichia coli TOP 10 competent cells (Invitrogen). A total of 24 inserts from each library 

were PCR amplified using vector primers M13f and M13r (Invitrogen) using the same 

thermal cycling program as described above for amplification using general bacterial primers 

for T-RFLP. The PCR products were diluted 50-fold and used in a nested PCR reaction with 

primers g-Bfra-R and fluorescently tagged primer Bact-8F for T-RFLP analysis of inserted 

clones, with the same running conditions as described previously for these primers (see 

above). All clones with unique TRF sizes were selected for sequencing, in addition to several 

clones from redundant TRFs, for a total of 136 clones. Obtained sequences were examined 

using MacVector 8.1.1 (Accelrys Software Inc, San Diego, CA), to remove redundant 

sequences. The remaining sequences were aligned against GenBank database entries using 
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standard nucleotide BLAST at NCBI (URL: www.ncbi.nlm.nih.gov). Hits defined as 

unknown or uncultured bacteria were subsequently aligned against sequenced bacterial 

genomes (genomic BLAST at NCBI), as well as examined with the Ribosomal Database 

Project II Sequence Match, in an attempt to classify them. Sequences with 99-100% identity, 

were given the same name as the species hit. Sequences with 97-99% identity were assigned 

“spp-like”. Sequences were aligned using the online MAFFT (standard FFT-NS-i) aligner 

(Katoh et al., 2002), followed by construction of a circular Neighbor-Joining tree, using 

BioNJ settings in PAUP4b10 (Swofford, 1993). Unique sequences were deposited in 

GenBank at NCBI, under the following accession numbers: EU381163-EU381180. 

 

Statistical analysis  

The samples were initially statistically assessed as a blind study; i.e. without any prior 

knowledge of disease status or twin relationship, to avoid potential biases in subsequent data 

analyses. T-RFLP data from each individual was normalized and entered into a data matrix 

that consisted of the TRFs as variables and individuals as objects. A consensus T-RFLP 

profile, from each biological replicate, was constructed by averaging the technical duplicates. 

Principal component analysis (PCA) plots were generated using the multivariate statistics 

software Canoco (version 4.5, Microcomputer Power, Ithaca, N.Y.) and statistical significance 

of ordination was tested using a Monte Carlo permutation test with 999 permutations. 

Diversity, defined as evenness and richness of the bacterial community members detected as 

TRFs by T-RFLP analysis, was calculated using Simpson’s index of diversity (D) (Begon et 

al., 2006) and Shannon’s diversity  (H) and equitability index (E) (Begon et al., 2006). 

Differences in diversity between different groups of twins were analyzed by Mann Whitney’s 

U test. Agreement of diversity within twin pairs was analyzed by calculating the intra-class 

correlation coefficient (ICC) according to Dunn (Dunn et al., 1989). Good agreement is 

http://www.ncbi.nlm.nih.gov/
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indicated by an ICC value higher than 0.8, fair agreement by values between 0.8-0.4 and a 

great disagreement by negative values. Differences in bacterial composition (TRF data) within 

each of the twin pairs were computed with Manhattan distances, and significance between the 

groups was tested with an ANOVA and Tukey’s post hoc test. T-RFLP binary data, i.e. 

presence or absence of TRFs, was analyzed by cluster analysis using Jaccard’s similarity 

index. P values <0.05 were considered statistically significant.  

 

RESULTS 

 

Percent G+C profiling 

Percent G+C profiling of the bacterial chromosomes recovered from the fecal samples was 

used to detect major differences in the fecal bacterial communities of healthy and diseased 

individuals in a subset of the twin samples. The power of this method is its robustness; i.e. it 

examines a large pool of DNA representing the microbial community of interest, and is not 

susceptible to biases caused by primer mismatches or PCR inhibitors. Six monozygotic twin 

pairs (one healthy, two discordant and three concordant) were analyzed using this approach. 

The %G+C profiles that were obtained from the healthy twin pair were very similar which 

shows that the major bacterial genera present were similar (Figure 1). Microbial communities 

in the feces of the twin pairs that were concordant for CD were also very similar, but the 

profiles from discordant twin pairs were dissimilar, illustrating that the microbial composition 

differed when one of the twins was healthy and the other had CD (Figure 1). It was not 

possible, however, to distinguish a common pattern for sick or healthy individuals by 

assessment of the %G+C profiles in this sample set.   
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T-RFLP profiles using general bacterial primers 

T-RFLP was used to obtain bacterial community profiles from fecal samples obtained from 10 

monozygotic twin pairs with CD (concordant; n= 4 and discordant; n = 6) and 8 healthy pairs. 

The reproducibility of the T-RFLP data was very high within technical and biological 

duplicates. Similarity scores for biological replicates were generally higher than 90%, 

regardless if abundance data (Manhattan index) or binary data (Jaccard’s index) were used. 

Similar to the %G+C profiling results shown in Figure 1, we found that the T-RFLP patterns 

were more similar for healthy twins, and for some of the concordant twin pairs, whereas the 

discordant twins had large differences in their T-RFLP profiles. An illustrative example of the 

distribution of TRFs for discordant, concordant and healthy twins is shown in Figure 2A.  

 

Community diversity based on TRF diversity 

Diversity indices were used to determine the richness (number of TRFs) and evenness of the 

T-RFLP profiles. The TRF diversity was significantly higher in the healthy group, median 

(range) 0.91 (0.82-0.93) than in CD patients, median (range) 0.87 (0.71-0.94) when 

Simpson’s index of diversity was used (P = 0.029). However, this significance could not be 

reproduced for the entire sample group with Shannon’s diversity (H) and equitability (E) 

index (Figure 3). Nevertheless, all healthy individuals in the discordant twin pair sets had a 

higher TRF diversity than their matched disease twin according to pair wise comparisons 

using all diversity indices. Using the intra-class coefficient (ICC), a high agreement was 

observed within healthy pairs (ICC=0.51). In contrast, this high agreement was not observed 

in discordant (ICC=-0.16) or concordant twin pairs with CD (ICC=-0.05).  

 

Multivariate analyses of T-RFLP profiles  
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The T-RFLP data representing the gut microbial community profiles were analyzed using 

multivariate statistics separately for the healthy twin pairs (Figure 4A) and the twin pairs that 

were concordant or discordant for CD (Figure 4B). Principal component analyses of the T-

RFLP profiles obtained from the healthy twin pairs clearly demonstrated that the bacterial 

community profiles were highly similar to each other for both the first and the second 

principal component (x and y-axes on the PCA plot, respectively), for individuals of a given 

pair (Figure 4A). The second principal component differed for only one of the pairs (6a and 

6b in Figure 4A). The dizygotic twins [(3a,b, 5a,b, and 8a,b) in Figure 4A] were as similar to 

each other as the monozygotic pairs in their microbial profiles (Figure 4A).  

The bacterial community profiles from fecal samples of twin pairs that were 

concordant or discordant for CD were less similar to each other compared to those from the 

healthy twin pairs (Figure 4B). In particular, two of the discordant twin pairs showed large 

differences in their community profiles (16a,b and 18a,b in Figure 4B). Interestingly, all of the 

healthy twins in the discordant pairs, grouped to the left of the PCA plot, suggesting that the 

microbial communities of the healthy individuals share some characteristics that differentiate 

them from many of the CD individuals. There was, however, no clear gradient that 

differentiated the whole CD group from the healthy group. However, the bacterial community 

profiles of twins with ileal involvement were separated from the others and grouped to the 

right of the PCA plot (Figure 4B). In contrast, the community profiles of twins with colonic 

disease were similar to those of the healthy individuals, and localized to the left region of the 

PCA plot (Figure 4B). This separation according to location of the disease was highly 

significant in ordination space (P = 0.001).  

To verify the results shown with PCA, Manhattan distances were computed for each 

twin pair to determine the similarities of the microbial communities within twin pairs. The T-

RFLP profile similarities within pairs were significantly different when making between 
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group comparisons (P = 0.008), with the highest degree of similarity in healthy pairs 

compared to concordant (P = 0.019) or discordant (P = 0.033) pairs. In addition, by comparing 

Manhattan differences within discordant pairs, we observed that individuals with ileal CD 

involvement were less similar to their healthy matching twin compared to discordant twins 

with colonic CD.  

 

Binary analyses of the T-RFLP data  

The T-RFLP binary data, i.e. presence or absence of TRFs, was analyzed by cluster analysis 

using Jaccard’s similarity index. In this analysis all sample data were analyzed together, 

including healthy, concordant and discordant twin pairs. Four out of eight of the healthy twin 

pairs, both monozygotic and dizygotic, were more closely clustered to each other than to other 

individuals, supporting the PCA analyses shown above. Two out of four of the concordant, 

and one out of six discordant twin pairs, were also similar in their microbial compositions, 

according to binary similarities (Figure 4C). One of the older healthy pairs (6a,b) had 

community profiles that were similar according to Jaccard’s similarity index of the binary 

data, but this similarity was not reflected to the same extent in the PCA plots when abundance 

values were included. Another older twin pair (1a,b) had community profiles that were closely 

clustered on the PCA plots, but not so when analyzing binary data.  

Similar to the PCA analyses, the samples grouped into several clusters (Figure 4C).  In 

particular, CD patients with ileal involvement, except for three individuals (10b, 17a, and 

12b), clustered separately from all others. Patients with colonic disease tended to cluster with 

healthy individuals. There was, however, a large cluster with 16 healthy individuals and only 

two CD patients, one with ileal involvement (12b) and one with colonic disease (14b).  

 

T-RFLP analysis using primers targeting Bacteroides 
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When using general bacterial primers some trends were observed in the abundances of TRFs 

within discordant twin pairs with CD, possibly representing Bacteroides spp. (Figure 2).  

For example, CD individuals tended to have a higher relative abundance of TRF 264 (Figure 

2A, black areas) and a lower relative abundance of TRF 262 (Figure 2A, dark blue areas). 

According to in silico digestion of 16S rRNA genes deposited in existing databases these TRF 

sizes could represent Bacteroides spp. Although other genera could potentially have similar 

TRF lengths, it is highly likely that these are representative of Bacteroides in our samples 

since it is known that Bacteroides spp. are dominant members of the fecal microbiota (Ott et 

al., 2004; Scanlan et al., 2006; Seksik et al.; 2003) and our Bacteroides clone sequences from 

the same material had the same TRF sizes (see below). Therefore, a group specific primer set 

was used during T-RFLP, to focus on the Bacteroides group in the same DNA extracts from 

the fecal samples that were previously analyzed using general bacterial primers. The T-RFLP 

profiles of the Bacteroides community generally had a low complexity, with one or a few 

dominant peaks shared by most of the individuals, however with large differences in the 

abundances between individuals (Supplementary Figure S1). In contrast to the results 

obtained using the general bacterial primers (Figure 4A), the Bacteroides profiles within the 

healthy twin pairs were not more similar compared to discordant or concordant pairs (P = 

0.85). However, some of the twin pairs had highly similar Bacteroides profiles (over 85% 

similarity based on Manhattan distances), which could not be correlated to disease state 

(Figure 2B, and Supplementary Figure S1). Interestingly, when the discordant and concordant 

CD pairs were analyzed by PCA the pattern of the clustering was similar to that observed with 

general bacterial primers; i.e. the samples from healthy twins in discordant twin pairs grouped 

together with individuals with colonic disease and the individuals with ileal involvement were 

significantly separated from the others (P = 0.030, Supplementary Figure S2).  
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Clone libraries of Bacteroides spp.  

To determine the identities of the different Bacteroides spp. detected in the T-RFLP profiles, 

clone libraries of the amplified 16S rRNA genes were made from four twin pairs [one 

concordant (15a,b), one healthy (6a,b) and two discordant pairs (12a,b and 18a,b)]. The same 

Bacteroides group specific target regions for PCR amplification were used as those used for 

T-RFLP of the Bacteroides group. A total of 24 clones from each clone library were screened 

for their TRF fragment sizes (192 total) and 136 of these were sequenced. Most of the clones 

were identified as Bacteroides vulgatus, B. uniformis and B. ovatus, (Figure 5). TRFs 262 and 

264 matched to sequences corresponding to B. uniformis and B. ovatus, respectively, and both 

TRFs 83 and 142 matched to B. vulgatus sequences. Some of the CD individuals had a higher 

relative abundance of the TRF corresponding to B. ovatus and a lower relative abundance of 

the TRF corresponding to B. uniformis compared to healthy individuals, but this trend did not 

hold for the entire sample cohort. However, when looking at disease location the TRF 

representative of B. uniformis was present in significantly lower abundances in twins with 

ileal involvement (P = 0.0005, average abundance; 21± st. dev.11%) compared with both 

healthy (average abundance; 45±15%, P = 0.006) and twins with colonic disease (average 

abundance; 54±19%, P = 0.0003). By contrast, there was a trend that the TRFs corresponding 

to B. ovatus (264; P = 0.08) and B. vulgatus (83 and 142, P = 0.12) were present in higher 

abundances in patients with ileal involvement (Supplementary Figure S1).  Some TRFs had 

no sequence matches in the clone library and this was generally the case for those TRFs that 

had a low relative abundance. The relative proportions of specific populations detected by T-

RFLP and by cloning and sequencing were highly correlated (Supplementary Table S2).      
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DISCUSSION 

 

The most widely accepted hypothesis about the pathogenesis of CD is that it is due to a 

combination of microbial colonization, environmental factors, immune dysfunction, and host 

genetics. Untangling the possible contribution of microorganisms to CD has been complicated 

by the large variability in the composition of the gut microbiota in humans. Basically, each 

human has an individual fecal microbial fingerprint (Dicksved et al., 2007; Eckburg et al., 

2005; Zoetendal et al., 1998). However, the study of monozygotic twins basically eliminates 

the variable of host genetics, except for potential epigenetic factors. In particular the study of 

a set of discordant monozygotic twin pairs, where one had CD and the other was healthy, was 

extremely valuable for determination of differences in the gut microbiota, independent of host 

genetics.  

The microbial compositions in fecal samples collected from healthy twin pairs were 

highly similar, using both T-RFLP and %GC profiling techniques, supporting the hypothesis 

that genetics has a strong influence on the composition of the gut microbiota. However, six 

out of eight healthy pairs were young and were still living in the same household. This could 

contribute to their similar microbial profile. Nevertheless, it was particularly interesting to 

note that the microbial community profiles of individuals in healthy twin pairs that had lived 

apart for many years/decades, for example, twin pairs 1a,b and 6a,b, were still highly similar. 

Zoetendal et al. (2001) also observed high similarities among identical twins that had lived 

separated for more than five years.  

In our sample set, three of the healthy twin pairs were dizygotic and the similarities 

were not higher within the monozygotic compared to the dizygotic twins, although too few 

pairs were studied to determine the significance of these observations. Even if dizygotic twins 

share a certain genetic relatedness they are not as closely related as monozygotic twins and 
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therefore, our results also lend support to the hypothesis that there is environmental 

programming of the gut microbiota soon after birth (Ley et al., 2006). In addition, all of the 

dizygotic healthy twin pairs were very young, (7-8 years old), and were still living in the same 

household and this could also contribute to their high similarities in profiles.   

Another important finding in this study was that patients with CD ileal involvement, 

had a significantly different gut microbiota than healthy individuals and those with colonic 

CD. It is increasingly apparent that Crohn´s disease is not a homogenous disease but a tissue 

response to various etologic factors (Järnerot, 1996), and our results lend support to this 

hypothesis. Pairwise comparisons of the microbial profiles from twin pairs also showed that 

all discordant twins with ileal involvement had community profiles that were less similar to 

their healthy twin compared to discordant pairs with colonic disease. A possible confounding 

factor could be surgical impacts prior to sampling, such as ileocecal or ileocolonic resection. 

However, for the subjects included in this study, their prior surgery was not sufficiently extent 

for short bowel syndrome to develop. In support of our findings, ileal CD has previously been 

reported to differ from colonic CD with dysbiosis of the ileal mucosa-associated microbiota 

correlating to the ileal disease phenotype (Baumgart et al., 2007). Also, there are differences 

in genetic susceptibility (Ahmad et al., 2002) and adaptive immune responses (Targan et al., 

2005) of CD patients with ileal disease compared to those with colonic CD. In this study, 

dysbiosis of the fecal microbiota correlated with ileal involvement of CD, suggesting that 

fecal samples could be used as a potential diagnostic marker for the ileal disease phenotype. 

Some reports suggest that feces are not appropriate for diagnosis of CD, as they may not 

reflect the composition of mucosa-associated bacteria that are more directly responsible for 

inflammation (Lepage et al., 2005). However, previous findings show that components of 

feces are relevant for ileal CD recurrence (Rutgeerts et al., 1991) and induction of 

inflammation (Harper et al., 1985). Importantly, fecal samples are non-invasive and easier to 
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obtain than biopsies and our findings provide encouragement in the use of fecal samples for 

eventual monitoring and/or diagnosis of CD.  

Previous studies have found that the microbial diversity in the gut is lower in 

individuals with CD compared to healthy individuals (Manichanh et al., 2006; Scanlan et al., 

2006; Seksik et al., 2003). For example, there have been reports of a reduced diversity of 

Firmicutes (Gophna et al., 2006; Manichanh et al., 2006) and Bacteroides (Frank et al., 2007; 

Ott et al., 2004) in CD patients. We also found a significantly higher bacterial diversity in 

healthy individuals (based on T-RFLP profiles) compared to the CD patients. In addition, all 

healthy individuals in the discordant twin pairs had higher T-RFLP profile diversities 

compared to their respective CD twin. Assessment of the ICC coefficient of T-RFLP diversity 

for the twin pairs also showed a higher agreement within healthy pairs compared to those 

found within discordant and concordant pairs. These results highlight the power of studying 

twins as genetically matched controls.   

In this study, all of the CD twins, except for two (10b and 15a), were in clinical 

remission. It has been previously shown that the microbiota of CD patients differ from healthy 

individuals regardless of disease state (Seksik et al., 2003). The two individuals that had 

active disease in this study had a low degree of inflammation. A possible advantage of 

studying patients in remission is that during the active stage of the disease, alterations in the 

microbiota could be an echo, rather than a cause of inflammation (Manichanh et al., 2006). In 

addition, patients in remission have a lower probability of taking medication that could induce 

changes in the microbiota independent of disease state.    

We focused our attention on Bacteroides species as these seemed to differentiate 

between healthy individuals and those with CD when using general bacterial primers for T-

RFLP. Bacteroides vulgatus, B. uniformis, and B. ovatus were the most abundant Bacteroides 

species detected. B. uniformis (TRF 262) was present in all samples and B. ovatus (TRF 264) 
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and B. vulgatus (TRFs 83 and 142), were present in most of the samples (Supplementary 

Figure S1). The reason for two representative TRFs for B. vulgatus is probably due to 

different strain variations of the 16S rRNA gene within this species. The Bacteroides 

communities were not significantly similar within any of the twin sets, including the healthy 

twins (Supplementary Figure S1). However, it has been previously shown that the Bacteroides 

group has a very large inter-individual variation (Eckburg et al., 2005; Jernberg et al., 2007).  

Interestingly, our data suggest that there are differences in the composition of 

Bacteroides species in healthy individuals and CD patients with ileal involvement 

(Supplementary Figure S2). This difference was largely due to lower relative abundances of 

B. uniformis and higher abundances of B. ovatus and B. vulgatus, in patients with ileal 

involvement compared with both healthy twins and twins with colonic disease.  Several 

previous reports have also shown an abnormal Bacteroides community in CD patients 

compared to healthy individuals (Ott et al., 2004; Scanlan et al., 2006; Seksik et al., 2003). 

For example, Scanlan et al. (2006) reported a lower complexity of DGGE profiles within the 

B. fragilis subgroup in CD patients than in healthy individuals and a difficulty in obtaining 

PCR products from CD patients compared to controls.  In this study, it was not problematic to 

obtain PCR products for the Bacteroides group, which could simply reflect differences in 

Bacteroides abundances within the sample groups of the two studies.  

One main conclusion of this study was that the healthy twins and some of the 

concordant twins that were sampled had similar microbial community profiles and these were 

closely matched within a particular twin set. However, this similarity did not hold for 

discordant twins suggesting that the diseased individuals had a different microbial community 

structure than their healthy twins. This finding was made using two independent molecular 

approaches: %G+C profiling and T-RFLP. By assessing the T-RFLP diversity within twins a 

higher agreement was found within healthy twin pairs compared to that within discordant and 
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concordant twin pairs. In addition, the bacterial diversity was higher in healthy twins 

compared to CD twins. Interestingly, cluster analysis of binary T-RFLP data as well as 

ordination techniques of T-RFLP abundance data showed that CD twins with ileal 

involvement differed from healthy twins as well as from twins with colonic disease. This 

difference could partly be explained by a shift of the dominant Bacteroides community 

members of CD patients with ileal involvement.  
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Figure 1. Percent guanine+cytosine profiles for six twin pairs: healthy pair (A), two discordant (B, C), 
and three concordant (D-F) twin pairs for Crohn’s disease (CD). Healthy individuals are labeled dark 
or light blue and CD individuals are labeled pink or red. Sample identifications are provided at the top 
of each panel according to assignments given in Supplementary Table S1. Horizontal axis shows GC 
content in percent and the vertical axis indicates relative absorbance values in percent. 
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Figure 2. Terminal restriction fragment (TRF) distributions generated using general bacterial primers 
(Panel A), and a Bacteroides group specific reverse primer (Panel B), for three twin pairs (one healthy, 
one discordant and one concordant for Crohn’s disease). Identification of individuals according to 
assignments given in Supplementary Table S1 is shown below each pie chart. Each area represents the 
relative abundance of a particular TRF. TRFs of the same size are the same color for all individuals 
and for both panels A and B considering that the forward primer used for PCR was the same in all 
cases. 
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Figure 3. Box plots comparing the diversity of T-RFLP profiles calculated for healthy individuals to 
those with CD: (A) Simpson’s index of diversity, (B) Shannon’s richness index and (C) Shannon’s 
evenness index. 
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Figure 4. Principal component analysis (PCA) plots for T-RFLP profiles (including TRF size and 
relative abundance data) for healthy twins  (Panel A) and twins discordant or concordant for CD 
(Panel B); Eigenvalues are shown in parentheses for PC1 and PC2. Panel C shows a similarity plot 
based on the binary T-RFLP data (i.e. presence or absence of TRFs) for all individuals calculated 
using Jaccard’s index and UPGMA as a cluster method. Twin pairs are coded according to colors and 
shapes of symbols: healthy individuals in control group, closed triangles; healthy individuals in 
discordant twin pairs, closed circles; individuals with CD, closed squares. Individuals within a twin 
pair have the same colored symbol. In Panel C, clusters comprised of healthy individuals are indicated 
with blue branches whereas those for CD individuals with red. Sample ID is shown next to the 
symbols on the PCA plots (panels A and B) according to the assignments given in Supplementary 
Table S1. Abbreviated disease locations: I: Ileum, C: colon, IC: Ileocolon, and U: Upper 
gastrointestinal tract. 
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Figure 5. Neighbor joining tree showing clustering of the Bacteroides clone sequences based on 
libraries created from one healthy twin pair (6a,b), one concordant CD pair (15a,b) and two discordant 
CD pairs (16a,b and 18a,b); the T-RFLP abundance data for these individuals are shown in 
Supplementary Figure S1. Coloring of branches illustrate the respective Bacteroides species that 
matched to the clone sequences. For sequences where the species names are given, the matches were 
99-100%, and species with sequence identities >97%, were called Bacteroides spp-like. 
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