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Abstract 

China’s annual energy-related carbon emissions surpassed those of the United States in 

2006, years ahead of published international and Chinese forecasts.  Why were forecasts 

so greatly in error and what drove the rapid growth of China’s energy-related carbon 

emissions after 2001?  The divergence between actual and forecasted carbon emissions 

underscores the rapid changes that have taken place in China’s energy system since 2001.  

In order to build a more robust understanding of China’s energy-related carbon emissions, 

this article reviews the role of economic restructuring, urbanization, coal dependence, 

international trade, and central government policies in driving emissions growth.    
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1. INTRODUCTION 

In the year 2000, leading teams of Chinese, American, and international forecasters all 

projected that China’s energy-related carbon emissions would not surpass the United 

States’ until 2019 or later.  As late as 2004, the expected year that China would surpass 

the United States in energy-related carbon dioxide emissions had moved even further in 

the future, to after 2025 or 2030.   

 

It did not happen that way.  Instead, China surpassed the United States in energy-related 

carbon dioxide emissions in 2006 (1).  Figure 1 shows the growth of energy-related 

carbon dioxide emissions from 1980 to 2006.  It is clear that a profound change in the 

growth rate Chinese emissions occurred around 2002.   

 

Figure 1: Annual energy-related carbon dioxide emissions, 1980-2006 
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Source: US annual emissions amounts reported by US EIA in the 2006 Annual Energy Review 
and 2007 Flash Estimate; China emissions are derived from revised total energy consumption 
data published in the 2007 China Statistical Yearbook using revised 1996 IPCC carbon emission 
coefficients by LBNL. 
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Table 1 provides information on the two leading international forecasts of energy-related 

carbon dioxide as a function of the year of forecast.  (It should be noted that the data used 

in a forecast year are generally from several years prior to that year; thus there is a lag in 

the models catching up with actual results.  This explains why the 2007 forecasts do not 

pick up the fact that China had overtaken the United States before that year.) 

 

Table 1: International Forecasts of China Surpassing American Energy-Related 

Carbon Emissions (1, 2) 

Forecast Organization 

Year of Forecast IEA (WEO) EIA (IEO) 

1998 (after 2020) 2016 
1999 - 2019 
2000 (after 2020) 2019 
2001 - (after 2020) 
2002 (after 2030) (after 2020) 
2003 - (after 2025) 
2004 2030 (after 2025) 
2005 - 2022 
2006 2010 2014 
2007 2008 2009 

 
 

We are left with two relevant questions: 

• Why were the forecasts so greatly in error? 

• What drove the very rapid increase in China’s energy-related carbon dioxide 

emissions in the period after 2001? 

This review will seek to answer these questions in four sections.  The next section 

describes the data on China’s energy-related carbon emissions within a global context.  

The third section evaluates China carbon-emissions forecasts from leading international 

and Chinese organizations.  The fourth section looks at recent China carbon emissions 

drivers to understand the roots of forecast errors.  Section five examines current and 
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historical emissions reduction policies, and the conclusion will discuss implications from 

this review.  

2. CHINA’S CARBON EMISSIONS IN A GLOBAL CONTEXT 

2.1. Global Carbon Emissions Trends 

Atmospheric carbon dioxide (CO2) is the largest human contributor to human-induced 

climate change.  Global average atmospheric CO2 concentrations have risen from 280 

ppm at the start of the industrial revolution in the 1700s to 381 ppm in 2006.  This 

increase can be traced to fossil fuel combustion, land use change, cement production, and 

declining efficiency among CO2 sinks (4).  In order to have a clearly-defined basis of 

comparison and analysis, this article focuses on carbon dioxide emissions from 

commercial fossil fuel combustion—i.e., emissions from biomass combustion are not 

included.    

 

Between 2000 and 2006 global carbon emissions have grown more quickly than expected 

due to increasing energy intensity of GDP and carbon intensity of energy.  In fact, carbon 

emissions growth rates since 2000 have exceeded the most fossil-fuel intensive 

Intergovernmental Panel on Climate Change emissions scenario developed in the late 

1990s (5).  As shown in Figure 2 below, 55% of the growth of global emissions between 

2000 and 2006 was a result of increased emissions in China.   

 

The International Energy Agency in its recent World Energy Outlook 2007 projects that 

under current policies the world’s energy needs will be 50 percent higher in 2030.  The 

IEA also forecasts that, for its reference case, 42 percent of incremental global energy-
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related CO2 emissions from 2005 to 2030 will be from China.  For the high growth and 

alternative policy (low growth) scenarios, IEA shows incremental emissions from China 

to be 49 and 52 percent respectively of total global emissions.  A goal of this paper is to 

gain a sense of the likelihood of these numbers. 

2.2. Review of China annual, cumulative, and per-capita emissions data 

China’s share of global annual CO2 emissions surged from 1% in 1950 to 20% (6 billion 

tonnes of carbon dioxide emissions) in 2006 (6).   

 

Figure 2: Annual energy-related carbon emissions, 1950-2006 
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Source: Historical 1950-2003 US and global emissions data from Oak Ridge National Laboratory, 
Carbon Dioxide Information Analysis Center; 2004-2006 US data from BP via Global Carbon 
Project. China 1950-2006 emissions data are derived from revised total energy consumption data 
published in the 2007 China Statistical Yearbook using revised 1996 IPCC carbon coefficients by 
LBNL. 

 

China’s annual energy-related carbon dioxide emissions doubled between 1993 and 2006.  

The average annual rate of emissions growth doubled from 5% between 1980 and 1995 to 

10% between 2000 and 2006.   
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Figure 3: Global, Chinese, and American Per-capita Energy-Related CO2 Emissions, 

1950-2004 
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Source: China emissions are derived from revised total energy consumption data published in the 
2007 China Statistical Yearbook using revised 1996 IPCC carbon emission coefficients by LBNL; 
China population data from NBS and US Census (for 1950-51); global and American emissions 
data from Oak Ridge National Laboratory, Carbon Dioxide Information Analysis Center; global 
and American population data from US Census. 

 

Figure 3 shows that China’s annual per-capita emissions from commercial fossil fuel 

combustion grew from 0.15 tonnes per person in 1950 to 4.17 tonnes CO2 in 2004.  

However, Chinese per-capita carbon dioxide emissions remained below average global 

emissions (4.35 tonnes in 2004), and less than 20% of American emissions in 2004 

(20.65 tonnes per person). 
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Figure 4: Cumulative Energy-Related CO2 Emissions, 1950-2006 
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Source: Historical 1800-1980 US emissions data from Oak Ridge National Laboratory, Carbon 
Dioxide Information Analysis Center; 1980-2006 US data from US EIA 2006 AER. China 1902-
1949 emissions data from Oak Ridge National Laboratory, Carbon Dioxide Information Analysis 
Center; 1950-2006 emissions data are derived from revised total energy consumption data 
published in the 2007 China Statistical Yearbook using revised 1996 IPCC carbon coefficients by 
LBNL.  Pre-1902 China emissions data unavailable, but generally considered to be negligible.   

 

Figure 4 shows cumulative energy-related carbon dioxide emissions for the United States 

and China.  China’s cumulative energy-related carbon emissions reached 101 billion 

tonnes of carbon dioxide in 2006, a level reached by the United States in 1955.  While 

China’s population is more than four times larger than the United States, it is responsible 

for less than one third the cumulative carbon emissions. 

 

2.3. Estimates of China’s historical carbon emissions 

China’s National Bureau of Statistics (NBS) publishes extensive historical data on 

economic, demographic, physical, and social indicators dating back to the founding of the 

current republic in 1949.  However, the NBS does not publish data on China’s carbon 

emissions, per se.  On the basis of NBS energy data, the International Energy Agency 
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(IEA), the Oak Ridge National Laboratory (ORNL) and the Lawrence Berkeley National 

Laboratory (LBNL) have published varying estimates of China’s historical energy-related 

carbon emissions.  Figure 5 shows estimates of China’s annual energy-related carbon 

emissions from LBNL, IEA, and ORNL.   

 

Figure 5: China Historical Carbon Dioxide Emissions Estimates, 1980-2006 
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Sources: IEA, Carbon Emissions from Fossil Fuel Combustion 2007 (post-1997 estimates include 
Hong Kong); ORNL, Carbon Dioxide Information Analysis Center; LBNL, emissions are derived 
from revised total energy consumption data published in the 2007 China Statistical Yearbook 
using revised 1996 IPCC carbon emission coefficients. 

 

ORNL and LBNL estimates of carbon dioxide emissions are very close to one another 

and higher than those of the IEA.  One possible explanation for the variance is that LBNL 

and ORNL use NBS data which were retrospectively revised in the 2005 China Energy 

Statistical Yearbook.  Indigenous coal production in 2000, for example, was upwardly 

revised by 30% in subsequent NBS publications.  The LBNL series also includes 

declining emissions for 1997 and 1998, in spite of continued GDP growth during that 

period.  Subsequent NBS revisions have shown that this decline was of a shorter duration 

than reported in the initial data.  The anomalous dip in energy use was primarily due to 
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government-mandated reductions of coal consumption among the least efficient heavy 

industrial enterprises (7). 

 

3. EMISSIONS FORECAST ASSESSMENTS 

For this analysis we use World Energy Outlook (International Energy Agency), the 

International Energy Outlook (U.S. Department of Energy) and three highly respected 

sources in China.   

3.1. International Forecasts 

Table 2 shows the WEO forecasts (by IEA) released in 1994 to 2007 and the IEO 

forecasts (by the Energy Information Administration of the U.S. Department of Energy) 

issued in 1995 to 2007.  The degree of variation in the forecasts over a short period of 

time is noteworthy.  For example, the WEO shows 2010 forecasts declining from 5322 

Mt CO2 (WEO 1998) to 4155 Mt CO2 (WEO 2002), or a 22% decrease 12 and 8 years 

out.  The 2010 forecast increased from 4386 Mt CO2 (WEO 2004) to 6867 Mt CO2 

(WEO 2007), or a 56% increase in a three year period for a forecast 3 to 6 years out! 

 

WEO shows greater changes in forecast results for longer time horizons.  Over a period 

of 3 years, forecasted 2030 emissions grew from 6,718 Mt CO2 (WEO 2002) to 11,448 

Mt CO2 (WEO 2007), an increase of 70%. 

 

IEO shows similar year to year variability in forecasts, although in some cases less 

pronounced.  In particular, 2030 results do not show large variations because 2030 IEO 

forecasts were done in only two years, 2006 and 2007. 
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It is fair to note that some of the differences in the forecasts are due to changes in the 

baseline energy data, which are not attributable to the model.   

 

Table 2: China Carbon Emissions Forecasts and Average Annual Growth Rates (Mt 

CO2)  

  
Forecast 2010 2020 2030 

2005-2010 
AAGR 

Total 
AAGR 

WEO 1994       4,986   ----   ----  3.5% 3.9% 

WEO 1995       5,101   ----   ----  3.4% 3.9% 

WEO 1996       5,062   ----   ----  3.5% 3.9% 

WEO 1998       5,322        7,081   ----  3.1% 3.4% 

WEO 2000       4,822        6,426   ----  2.9% 3.1% 

WEO 2002       4,155        5,393        6,718  2.9% 2.7% 

WEO 2004       4,386        5,708        7,144  3.4% 2.8% 

WEO 2006       6,392        8,638      10,425  4.9% 3.1% 

IEA 

WEO 2007       6,867        9,571      11,448  6.1% 3.3% 

IEO 1995       4,536   ----   ----  2.7% 3.4% 

IEO 1996       5,361   ----   ----  4.0% 4.1% 

IEO 1997       5,584   ----   ----  3.9% 4.1% 

IEO 1998       5,430        8,580   ----  4.3% 4.4% 

IEO 1999       5,100        7,447   ----  4.0% 3.9% 

IEO 2000       5,342        7,667   ----  4.2% 4.1% 

IEO 2001       4,147        6,171   ----  4.9% 3.6% 

IEO 2002       4,132        6,204   ----  5.0% 4.5% 

IEO 2003       4,066        5,771   ----  4.5% 3.5% 

IEO 2004       4,063        5,693   ----  3.0% 3.3% 

IEO 2005       5,536        7,373   ----  5.9% 4.0% 

IEO 2006       5,857        8,159      10,716  6.9% 4.2% 

EIA 

IEO 2007       6,497        8,795      11,239  5.4% 3.4% 

Note: “Total AAGR” shows average annual growth rates for entire forecast period, e.g. average 
annual growth between 2000 and 2025 for the IEO 2003. 

 

Figure 6 presents the IEA forecasts in graphical form.  Forecasts for the two most recent 

years show the highest forecasts.   However, forecasts for the two prior years show the 

lowest forecasts.  The older forecasts fall in the middle.   
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Figure 6: Historical and Forecast China Carbon Emissions (WEO), 1990-2030 

-

2,000

4,000

6,000

8,000

10,000

12,000

1990 2000 2010 2020 2030

M
t 

C
O

2

WEO 1994

WEO 1995

WEO 1996

WEO 1998

WEO 2000

WEO 2002

WEO 2004

WEO 2006

WEO 2007

Historical (LBNL)

WEO 2007

WEO 2002

WEO 1998

 

Note: forecasts are displayed as linearly continuous on the basis of published periodic data.   

 

Figure 7 presents similar results for the EIA forecasts.  Again, the latest forecasts show 

the highest demand growth.  Because China’s energy demand grew faster than any of the 

forecasts – and the EIA forecasts are the highest of the forecasts – EIA tended to obtain 

results that are closer to actual energy demand in China.  However, even for EIA, the 

estimates are much lower than actual for almost all years.  In 2004, the EIA projected a 

CO2 emissions level in 2020 that was lower than actual emissions in 2006. 

 

 



 15 

Figure 7: Historical and Forecast China Carbon Emissions (IEO), 1990-2030 
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Note: forecasts are displayed as linearly continuous on the basis of published periodic data. 

 

3.2. Chinese Forecasts 

The interesting issue arises of whether the Chinese have done a better job at projecting 

their emissions than foreigners.  Figure 8 shows three published forecasts in China at the 

time they were made.  They were performed respectively by a team at Tsinghua 

University as part of the U.S. Country Studies exercise; at the Energy Research Institute 

as input into the Chinese national planning exercise; and at the Development Research 

Center (with technical assistance from the Energy Research Institute) as the 

underpinnings of national energy strategy for China (abbreviated as RNECSPC) (8, 9, 10). 
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Figure 8: Historical and Forecast China Carbon Emissions, 1990-2030 (Error! 

Bookmark not defined., Error! Bookmark not defined., Error! Bookmark not defined.) 
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Note: forecasts are displayed as linearly continuous on the basis of published periodic or future 
single-point data. 

 

There is consistency among these results.  They show similar average annual growth rates 

and the 1990 and 2000 baseline CO2 numbers are close to each other.  Unfortunately, all 

of them miss the dramatic increase in CO2 emissions from 2002 to 2005 (and thereafter) 

as did the IEA and EAI forecasts that were done before 2006.   

 

Table 3: China Carbon Emissions Forecasts (Mt CO2) 

 Forecast Organization 2010 2020 2030 

2000-2020 

AAGR 

China Country Study (1999) 4,840 6,051 7,263 3.0% 

China Energy Strategy (2004) 4,525 6,292 ---- 3.9% 

ERI (2006) 5,059 6,763 8,467 3.6% 
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The carbon emissions forecast that has come closest to recent Chinese outcomes was 

jointly performed by the China Energy Research Institute (ERI) and the Dutch National 

Institute for Public Health and the Environment (RIVM) in 2003.  Rather than creating 

their own forecast, the ERI-RIVM team used a simulation model to extract Chinese 

national-level emissions profiles from selected IPCC global SRES scenarios (11).  Within 

van Vuuren et al.’s analysis the A1f SRES scenario of high growth with extended fossil 

fuel usage came closest, though it was also exceeded by China’s unexpectedly high 

emissions growth. 

4. CHINA EMISSIONS DRIVERS: ROOTS OF FORECAST ERROR 

Energy-related carbon dioxide emissions do not consistently correlate with aggregate 

GDP or population growth.  Figure 9 illustrates the separate growth trajectories of 

China’s GDP, energy-related carbon emissions, and population relative to 1980 levels.  

Whereas GDP increased ten-fold and population grew by one third, energy-related carbon 

emissions quadrupled between 1980 and 2006. 
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Figure 9: China GDP, CO2 Emissions, and Population Growth, 1980-2006 
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Source: LBNL, emissions are derived from revised total energy consumption data published in 
the 2007 China Statistical Yearbook using revised 1996 IPCC carbon emission coefficients; 
population and GDP data published by NBS (2007). 

 

Between 2000 and 2006 China’s unexpectedly high carbon emissions were driven by 

market reforms, urbanization, coal dependence, and increased international trade.  This 

section examines the role of each of these four variables in explaining China’s carbon 

emissions growth.   

4.1. Economic Reform and Carbon Intensity of GDP 

Market reforms have altered China’s economic structure, energy use, and carbon 

emissions.  The gradual elimination of state-directed capital allocation allows investment 

to cluster in profit-maximizing sectors, thereby stimulating economic growth and energy 

usage.  However, whereas forecasters predicted that “reductions in energy and carbon 

intensities will occur regardless of capital market reforms and privatization,” China’s 

carbon and energy intensity of GDP increased between 2002 and 2005 (12).  Figure 10 
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shows the anomalous bounce of China’s carbon intensity of GDP after more than twenty 

years of steady decline.   

Figure 10: Carbon Intensity of China's GDP Growth, 1980-2006 
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Note: Figure 10 is calculated according to LBNL China emissions data and NBS revised GDP 
data deflated to year 2000 RMB values. 

 

In order to differentiate efficiency and structural drivers of energy and carbon intensity 

change, the Laspeyres decomposition method has been used to quantify aggregate effects.  

This method indicates that declines of energy and carbon intensity of GDP during the 

1980’s and 1990’s were largely due to improved industrial efficiency (13, 14).  However, 

energy efficiency improvements were overtaken by structural shifts to heavy industry 

such as cement and steel production between 2002 and 2005 (15).  Heavy 

industrialization is a common explanation for the above-one carbon elasticity of GDP 

illustrated in Figure 11.    
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Figure 11: Carbon Elasticity of GDP Growth, 1981-2006 
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Source: NBS revised deflated GDP data; LBNL emissions data. 

 

4.2. Urbanization: Construction, Residential Consumption, and Electrification 

Since 1978, institutional reforms, demographic shifts to smaller families, and increased 

receipts of foreign direct investment have stimulated rural-urban migration.  On the 

institutional front, designation of all housing as “market” on July 1, 1998 and abolition of 

the work-unit-based household registration system removed previous barriers to rapid 

urbanization.  Between 2000 and 2006 China’s urban population expanded by 26%, from 

459 to 577 million urban residents (16).  Urbanization has contributed to energy-related 

carbon emissions growth through increased building and infrastructure construction, 

higher residential energy consumption, and surging electricity demand.  

 

High economic growth and urbanization have fuelled a frenzied construction boom such 

that China now accounts for half of all new building area on earth (17).  Cement industry 
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growth is an emblematic example of China’s urbanization-fuelled heavy industrialization.  

In order to sustain the construction of more than a billion square meters of completed 

floor space per year since 2001, China’s cement production more than doubled from 597 

million tons in 2000 to 1.24 billion tons in 2006 (18).  Due to the prevalence of small-

scale production plants and low-efficiency technology such as vertical shaft kilns, 

China’s cement industry is 8% more carbon-intensive than the global average (19).  The 

rapid growth of China’s cement and construction industries has also challenged the 

government’s ability to effectively monitor and enforce efficiency and environmental 

quality regulations.   

 

Residential energy consumption is driven by low-quality construction and improved 

living standards.  According to one knowledgeable source, Chinese residential building 

heating energy consumption per unit area is twice as high as residential buildings in 

developed nations of similar climates (20).  Residential and commercial efficiency 

improvements are offset by growing demand for higher levels of energy services as living 

standards rise, including more space heating and cooling, brighter lights, more hot water, 

and more office equipment (21).  Indeed, annual per capita commercial energy 

consumption of households has grown by more than 7% annually since 2000, from 126 to 

195 kg coal equivalent in 2006 (22).  

  

Residential energy services require electricity—annual household per capita electricity 

consumption grew by more than 11% per year between 2000 and 2006 (23).  Thermal 

electricity generation capacity increased from 74% to 78% of total generation capacity 
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between 2000 and 2006.  Within China’s thermal electricity generation, coal-fired plants 

accounted for more than 95% in 2005, followed by petroleum-fueled plants with 3% total 

thermal capacity (24).  In 2003, the energy efficiency of China’s fossil-fired power 

generation was 6% less than average efficiency among countries of comparable size and 

development (25).  Through increased thermal electricity generation and heavy 

industrialization, China’s urbanization has accelerated the growth of energy-related 

carbon dioxide emissions. 

4.3. Fuel Mix and Energy Supply 

China’s fossil fuel reserves are completely dominated by coal.  Estimates of recoverable 

coal reserves vary between 115 and 333 billion tons of raw coal (26).  Figure 12 

illustrates the distribution of China’s fossil fuel reserve base according to NBS data 

published in 2007 (27).  Perhaps as a result of coal’s prevalence in China, the ratio of 

total primary energy supply to total final energy consumption is higher in China than 

other less-coal-dependent countries (28).    
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Figure 12: China Fossil Fuel Reserve Base, 2006 
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Source: NBS, 2007. 

 

Coal is China’s most carbon-intensive primary energy source.  According to the IPCC, 

coal generates an average 95 tonnes of CO2 emissions per terajoule of energy, compared 

to 73 t CO2/TJ for oil and 56 t CO2/TJ of natural gas (29).  The coal share of China’s 

energy-related carbon emissions increased from 78% to 80% between 2000 and 2006.  

China’s increasing reliance on coal is further illustrated in the rising carbon intensity of 

energy production between 2001 and 2006 (Figure 13).   
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Figure 13: Carbon Intensity of Energy Production, 1980-2006 
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Note: LBNL China emissions are derived from revised total energy consumption data published 
in the 2007 China Statistical Yearbook using revised 1996 IPCC carbon emission coefficients; 
energy production data from NBS 2007. 

 

4.4. Trade 

The opening and reform of China’s economy has resulted in rapid growth of external 

trade.  From 1995 to 2001, the value of China’s total imports and exports grew at an 

average annual growth rate of 10%.  Since joining the World Trade Organization, the 

average annual growth of China’s trade jumped up to 28% between 2001 and 2006 

(Figure 14).  On aggregate terms, the value of China’s trade surplus expanded from $17 

billion in 1995 to $178 billion in 2006.  While these figures illustrate the rapid growth of 

international trade with China, there is not a simple relationship between the value of 

trade, economic growth, domestic energy usage, and carbon emissions. 
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Figure 14: China Global Trade by Value (current dollars), 1995-2006 
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Source: China Customs Bureau. 

 

By converting export revenue data to value-added terms, economists have estimated that 

10% of China’s GDP can be traced to exports (30, 31).  The dollar value of exports has 

also been used to estimate the carbon embodiment of Chinese exports (32).  On the basis 

of carbon intensities and trade data, the IEA has estimated that the energy-related CO2 

emissions embedded in China’s domestic production for exports accounted for 34% of 

total emissions in 2004 (33).  This estimate does not include the net carbon effects of 

international trade, because it does not count the CO2 embedded in imports.  Using 

weighted average carbon intensity of countries from which China imports goods, the 

estimate of CO2 China’s net exports might be reduced to somewhat more than half of the 

34% figure (Ke J. 2008. personal communication).  If these estimates hold up – and they 

are very preliminary at present – they suggest that a substantial fraction of China’s CO2 
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emissions can be attributed to consumption in other countries of products manufactured 

in China.   Further research on this topic is needed, especially as economic trade data are 

not a good basis for understanding energy consumption and carbon emissions effects.   

 

Aside from aggregate economic-based studies, input-output and ecological footprint-

types of analysis have also been used to examine the energy and CO2 embodiment of 

international trade (34).  Using input-output-oriented analysis, the Tyndall Center has 

produced a first-order estimate of energy-related CO2 emissions embedded in China’s net 

exports amounting to 23% of total emissions in 2004 (35).  Because this estimate does 

not count exports in terms of value added, in order to be comparable to GDP estimates, it 

may represent an overestimate of the contribution of net exports to China’s CO2 

emissions.   Ecological footprint analysis provides a macro, resource-oriented view of 

total trade—including goods and fuels—for which carbon emissions effects are not 

isolated or specifically analyzed (36).  Among these methodologies the frequency of 

outsourcing—trade in intermediate goods, rather than final products—and unclear 

boundaries among industrial sectors in China make it difficult to reliably calculate 

embedded energy and carbon of trade.   

 

While it is difficult to generate reliable estimates of Chinese carbon embodiments, the 

rapid growth of trade in highly carbon-intensive goods and commodities points to a larger 

question of emissions accounting.  Under the current producer-oriented system of carbon 

emissions accounting, there is an inherent conflict between national CO2 emissions 

targets and the aim of improving foreign trade balances (37).  Switching to a 
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consumption-oriented carbon accounting methodology would change national incentives 

and carbon-emissions estimates (38).  This is an area of continuing research, but for the 

time being it is clear that international trade is playing a significant role in China’s 

energy-related carbon dioxide emissions. 

 

Whereas GDP and population growth are often used to forecast energy-related carbon 

emissions, this review shows that recent trends can be traced to structural change in the 

Chinese economy with increasing output of energy-intensive industry, ongoing 

urbanization, increased carbon intensity of energy usage, and rapidly expanding 

international trade.  None of these factors alone account for carbon emissions growth; 

rather their separate influences underscore the complexity of historical and forecasted 

energy-related carbon emissions in China. 

5. ENERGY EFFICIENCY POLICIES LEADING TO REDUCED GROWTH OF 

EMISSIONS 

5.1. Historical Period: 1980-2000 and Before (39, 40, 41, 42)  

In the early days of the Peoples Republic, industry was modeled after the Soviet approach.  

This meant that energy was priced very low, so that it was available especially to support 

the development of heavy industry.   The result was that energy demand grew 

substantially faster than economic growth, in some years twice as fast. 

 

In a trend not matched by any other country at a similar stage of industrialization, the 

carbon intensity of China’s economy fell rapidly from 1980 to 2001.  China’s actual 

energy-related carbon emissions in 2001 were 3.43 billion tons CO2.  If year 2001 
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economic output had been produced at the intensity prevailing in 1980 –at which point 

major reforms in energy and economic policy were enacted– carbon emissions would 

have been 10.75 billion tons carbon dioxide.   

 

One cannot be certain how much of this decline in intensity was due to policies, but it had 

to be a great deal.  In 1980, the government of China called for GNP to quadruple from 

1980 to 2000 while energy demand only doubled.  Thus, the declining E/GNP ratio was a 

goal of a government that had substantial control over its economy. 

 

In 1981, the first year of the Sixth 5-Year Plan, China increased state investment in 

energy conservation from essentially zero to 10% of all energy-related investment.  To 

carry out these investments, the China Energy Conservation Investment Corporation was 

created, with local offices throughout China.   

 

A national network of energy conservation technology service centers was set up, with 

trained personnel to assist industry in energy efficiency.  The first was created in 1983.  

By 1995, there were more than 200 of these centers throughout the nation employing 

7,000 staff.  

 

A third area was energy management in industry.  This included requirements for energy 

monitoring, establishment of energy efficiency requirements for equipment, and the 

imposition of energy quotas.  The latter, while possible under a controlled economy, was 

eventually dismantled in the middle and late 1990s.  
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5.2. Eleventh Five-Year Plan Energy Intensity Reduction Targets 

We have observed that in 2001 – 2005, energy demand in China grew faster than GDP 

which itself was growing at a very rapid rate.  This has led to a serious situation in China, 

with very high levels of investment going to power plants (and not to other uses) and 

contributing to major concerns about China’s environment.  The country has found itself 

at a place similar to where it was in the late 1970s.  It has responded in a similar way.  

The highest levels of the Chinese government have called for a 20% reduction in energy 

intensity between 2005 and 2010.  This came first from the Politburo, then the State 

Council, and finally from the National Peoples Congress.  This has been followed by a 

flurry of activity in which officials at all levels were informed that their advancement 

depended on meeting these goals (Zhou, DD. 2006. personal communication ).  The 

National Development and Reform Commission has become deeply engaged in energy 

efficiency again (albeit with very small staff), and investment funds for energy efficiency 

now flow from central and provincial governments.   

 

But there are significant differences between 1980 and today.  China has moved a good 

deal of the way to a market economy.  The top 1,000 Program (explained further in 

Section 5.3) is in many ways an effort to reinstitute the old energy quota system for 

industry.   This may be possible for state-owned enterprises; it is much harder to envision 

for private companies.   China’s energy data system has been allowed to deteriorate, and 

it will need to be very good if energy performance is graded and the grades matter.  

Achieving reductions in energy (and CO2) growth also requires a shift from highly 
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energy-intensive to less energy-intensive industry.  There was once a time when the 

government of China could make that happen; that time is no longer.  And, perhaps most 

importantly, making money matters to many people in present-day China; policies that 

conflict with that goal are particularly difficult to put into practice. 

 

In spite of these difficulties, the Chinese government is determined to advance its goal of 

declining energy intensity.  While there is some debate on the efficacy of intensity targets 

in achieving emissions reductions targets, one does not wish to underestimate the ability 

of the government to achieve large goals through governmental programs or simply 

through exhortation at work and play (43). 

5.3. Top-1,000 Enterprise Program 

As a major part of its energy intensity reduction program, China has initiated a new 

industrial energy efficiency program.  The program takes advantage of the fact that the 

1,000 largest energy-using enterprises in China accounted for 33% of national and 47% 

of industrial energy usage in 2004 (44).  Activities under this program include 

benchmarking, energy audits, development of energy saving action plans, information 

and training workshops, and annual reporting of energy consumption. Supporting 

programs and policies, such as facility audits, assessments, benchmarking, monitoring, 

information dissemination, and financial incentives all play an important role in assisting 

the participants in understanding and managing their energy use and GHG emissions in 

order to meet the target goals. The goal of the Top-1,000 Energy-Consuming Enterprises 

program is to realize savings of 100 Mtce (2.8 Quads, 2.9 EJ) (45).   
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The industries included in the Top-1,000 Energy-Consuming Enterprise program are 

large-scale, financially independent enterprises in nine major energy consuming 

industries: iron and steel, petroleum and petrochemicals, chemicals, electric power 

generation, non-ferrous metals, coal mining, construction materials, textiles, and pulp and 

paper. 

 

The Top-1,000 Enterprise Program is based partially on energy efficiency pilot projects 

with two iron and steel enterprises -- Jinan Iron and Steel (Jigang) and Laiwu Iron and 

Steel (Laigang) -- in Shandong Province initiated in 2003.  This program was in turn 

modeled after international voluntary agreement programs.  The pilot was considered a 

success due to the achievement of the targets along with the knowledge gained related to 

establishing targets, energy management within the company, making energy-efficiency 

investments, and establishing energy efficiency policies at the provincial level (46).    

 

Parts of the new program seem much like the approaches of the 1980s and 1990s, in 

which the government was very active in setting energy consumption targets for industry.  

However, an important difference now is the relatively softer role of the government, 

which has less authority and ability to enforce requirements than it had in the past.  At the 

same time, the government has used encouragement (in the form of low interest loans) 

and pressure (in the form of evaluations in which responsible individuals will be assessed 

on an annual basis regarding achievement of energy intensity goals).  As an example, 

China’s National Development and Reform Commission (NDRC) signed an agreement 

with the Beijing Municipal Government covering ten enterprises within Beijing’s 
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jurisdiction. The Beijing Municipal Government, in turn, signed energy-efficiency target 

contracts that include energy saving amounts with each of the ten enterprises.  

 

In 2006, the energy consumption per unit of GDP declined 1.23% compared with 2005 

(47).  Although the annual target of 4% reduction in energy intensity was not reached, 

this is the first drop in this metric since it began to increase in 2002.  Since the Top-1,000 

program and other efforts to reduce energy intensity 20% were just launched in early- to 

mid-2006, it is expected that their impact will increase over time in pursuit of the 4% per 

year energy intensity reduction goal. In fact, NDRC recently reported that the steel 

industry – which is the sector with the largest number of enterprises and highest total 

energy consumption in the Top-1,000 program – experienced a decrease in overall energy 

consumption of 8.8% between 2005 and 2006 and unit energy consumption for producing 

one ton of steel declined 7.1% (48). 

5.4. Appliance Standards 

China’s modern standards and labeling programs have been in effect for less than a 

decade, but the impact is already beginning to be felt in terms of energy savings.  In a 

rapidly growing economy like China’s, energy savings serve more to bring down the rate 

of demand growth rather than to reduce consumption.  Nonetheless, these efficiency 

programs have resulted in a lower amount of emissions of CO2, NOx, SOx and particulate 

matter than would have otherwise occurred if the programs had not been developed.  

Moreover, they have saved Chinese consumers a lot of money. 
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In total, the programs currently in place are expected to save a cumulative 1143 TWh by 

2020, or 9% of the cumulative consumption of residential electricity to that year. In 2020 

alone, annual savings are expected to be equivalent to 11% of residential electricity use. 

In average generation terms, this is equivalent to 27 1-GW coal fired plants that would 

have required around 75 million tonnes of coal to operate.  In comparison, savings from 

the US appliance standards program is expected to save 10% of residential electricity 

consumption in 2020.  Given the dominance of coal-fired electricity generation in China, 

appliance standards and labeling programs also help to mitigate air-pollution problems. 

Between 2000 and 2020, improved efficiency among electric appliances and gas water 

heaters will reduce carbon emissions by more than 1.1 billion tons carbon dioxide.  

Figure 15 illustrates annual carbon dioxide emission reductions from China’s electric-

appliance and gas water heater programs.  These reductions are calculated assuming 

thermal marginal power generation and future improvements in generation efficiency, as 

well as diminishing losses in electricity transmission and distribution (49). 
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Figure 15: Annual Appliance-Related Carbon Emissions Reductions, 2000-2020 
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Source: Fridley, et al. 2007. 

 

6. CONCLUSIONS 

None of the major forecasts were able to pick up the dramatic increase in energy-related 

CO2 emissions in China from 2002 to the present.  (The three-year increase was 

equivalent to the increase projected to take place over a period of fifteen or more years!)  

The largest cause of this increase in CO2 emissions in China is the growth in total output 

of energy-intensive goods.  Although there are no reliable times series data – and even 

point estimates are uncertain – the carbon embodied in trade from China may have played 

an important role.  Other factors of importance: rate of energy efficiency improvement, 

the carbon intensity of fuel, and the pace of urbanization.  In a longer time horizon, the 

growth of the commercial transportation sectors can be expected to play an important role.  
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The carbon embodied in trade from China could also be important, although research of 

the magnitude of this effect to date is inconclusive. 

 

Most of the models reviewed in this paper use GDP as the primary driver of energy 

demand in China.  They have other drivers including stock turnover, equipment 

saturation, and urbanization.  But the leading models internationally (IEA), in China, and 

in the United States (EIA) all failed to predict the major change in energy demand trends 

after 2001 in China which appear to be the most significant of all trend lines for  overall 

global energy demand since before the OPEC oil embargo (and likely much longer, see 

Figure 2) . 

 

We believe that it would have been difficult for any model to have picked this up in 2000 

or earlier.  The period 2001-2005 has seen an enormous growth of heavy industry in 

China.  This in turn is the result of the demand for such products as iron and steel and 

concrete for construction of buildings, roads, and other infrastructure.  China is at a place 

in its development when it can afford to build this infrastructure, when the government 

restrictions are largely removed, and when a newly open market economy permits 

individuals and companies to gain substantial profits from these opportunities. 

 

All of this suggests that predicting China’s growth in energy demand and related carbon 

dioxide emissions will be precarious in the coming decades.  We identify two major 

unknowns that, in our view, will play a major role in the outcome.  The first is policy.  

The goal of 20% intensity reduction over five years will not be a one-time goal.  China 
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can be expected to pursue such policies into the indefinite future.  Some of the intensity 

reduction (as we have seen) can be achieved with energy efficiency.  Some of it will 

require structural change to a mix of less energy-intensive industries.  The second major 

unknown goes deeper into drivers of demand.  At what point will China have enough 

building space for its people – or at least enough for construction activity to diminish?  

When will there be enough roadways, rail lines, automobiles, buses, trains, trucks (and in 

what mix) to support personal and freight transport?   

 

All of this – along with the factors in the first paragraph of this section – needs to be 

overlaid onto the projected economic growth of China to gain an understanding of the 

major drivers of CO2 emissions in China. 

 

In light of the difficulties that have emerged for those forecasting CO2 emissions in 

China, it is not surprising that China would be especially loath to submit to a fixed target.  

Their own CO2 forecasts have failed to capture the dramatic growth of CO2 emissions in 

the past five years.  Those from outside China have been inadequate to the task.  The 

forecasts for industrialized countries on the other hand have been much more robust. 

 

How does this relate to the most recent IEA projections that, in the base case, China is 

expected to account for 42% of incremental global energy-related CO2 emissions – and 

about 50% in both higher and lower scenarios?  The problem with these emissions 

forecasts, in the view of the authors, is that they assume the China will follow the world 

and have a base (low or high) growth case if the rest of the world follows these respective 
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cases.  As we have seen, policy in China will play an important role in future emissions.  

It is entirely possible for China to cut the growth rate of emissions (relative to GDP) 

while other countries do not.  Unfortunately, it is impossible to predict such an outcome 

with any degree of confidence, as the degree to which China can tame its burgeoning 

energy demand is not at all clear. 

 

Considering the energy sources available to China, very heavy reliance on coal can be 

expected for decades.  This in spite of the desire that China has often expressed to 

diversify energy sources away from coal.  CO2 emissions could, however, be affected 

dramatically if carbon capture and storage becomes affordable (with a carbon tax) or if 

significant breakthroughs in renewable or nuclear power costs occur.  The authors do not 

expect either to occur in the coming decades in a magnitude that will impact overall 

energy-related CO2 emissions from China. 

 

SUMMARY POINTS 

1. China’s growth in carbon dioxide emissions since 2002 has confounded the 

expectations of the world.  During this period, energy use grew much faster than 

GDP.  More than half of all increased carbon dioxide emissions globally between 

2000 and 2006 came from China. 

2. This dramatic increase in emissions from China is in direct contrast to the period 

between 1980 and 2000, where China was able to limit emissions to about 40% of 

the growth of GDP. 
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3. Thus, GDP growth has not been a reliable indicator of carbon emissions growth in 

China. 

4. The major models applied internationally and in China missed the dramatic 

changes in the emissions in China, as did most analysts studying the issue.  Total 

CO2 emissions forecasts for China in 2010 increased by more than 50% between 

the 2004 and 2007 forecasts of the International Energy Agency and the U.S. 

Energy Information Administration.  (The Chinese forecasts completed before 

2004 were comparably low.) 

5. The major factor in the dramatic energy demand growth that the models did not 

capture is the huge increase in the output of heavy industry in China.  This 

confounded the expectations of Chinese policy makers as well as international 

observers. 

6. None of the models captures the effect of policies on energy demand (and thus 

CO2 emissions) growth in China.  Policies had a dominant effect in the period 

1980-2000; the Chinese government expects policies to play a major role in 

constraining demand growth in the future. 

7. China’s per capita emissions of energy-related carbon dioxide were less than 20% 

of the United States’ per capita levels.  With its population of 1.3 billion people, 

China is far from its peak in total emissions. 

8. With coal as the major energy source, and no alternative likely to play a dominant 

role in replacing coal, increasing energy demand means disproportionately 

increasing CO2 emissions. 
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FUTURE ISSUES 

1. For short-term modeling, it is critical to understand the factors that have led to the 

rapid growth of heavy industry in spite of the government support for light 

industry.   This is a very complex area for research to which little attention has 

been devoted.  

2. Comprehensive, physically-based energy-intensity analysis must be performed to 

understand the role of trade and export-oriented industries in China’s emissions 

growth. 

3. For personal transportation, it will be important to understand the degree to which 

congestion may (or may not) limit the use of automobiles, as well as the 

aggressiveness (or lack thereof) of government in providing public transit 

alternatives. 

4. The role of increasing urbanization will have considerable influence on China’s 

CO2 emissions.  Research is needed to understand the implications of different 

patterns of urban growth on energy and carbon dioxide emissions. 

5. In the longer term, the saturation of energy-using equipment, efficiency of the 

equipment, lifestyles of the Chinese, and the overall needs for infrastructure 

(buildings, highways, rail, etc.), and population will establish energy demand.  

Research is needed to understand the types of Chinese social and economic 

organization consistent with different values of these determinants of energy 

demand.  

6. Research is needed to understand the opportunities to reduce CO2 emissions 

through alternatives to coal as a source of energy supply in the longer term. 
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ABBREVIATIONS, ACRONYMS, and DEFINITIONS 

Carbon elasticity: the ratio of energy-related carbon emissions growth to GDP growth. 

Carbon intensity: the amount of energy-related carbon emissions per unit GDP. 

Energy intensity: the amount of energy consumed per unit GDP. 

IPCC: Intergovernmental Panel for Climate Change; panel set up by the United Nations 

in 1988 to review scientific information on climate change. 

Laspeyres decomposition: a method of index decomposition analysis used to quantify 

structural and efficiency effects in changes of energy intensity of GDP. The modified 

equation is expressed as follows, 

Et = QtI(t-1) + Qt∑Si
0 ∆Ii + Qt ∑∆si Ii

0 + Qt ∑∆si ∆Ii
0 

where 

 Et  = energy actually consumed by industrial sector (in Mtce) in year t 

 Qt  = GDP or Value-Added (in 2000 yuan) 

  Ii = intensity of energy use in the ith sector in year t 

  Si = the ith sector’s share of GDP 

   i = reference number for sector 

  T  = the time period. 

RNECSPC: Research on National Energy Comprehensive Strategy and Policy of China 

[in Chinese]; energy strategy document jointly formulated by the China Development 

Research Center and the Energy Research Institute published in 2004. 

SRES: Special Report on Emissions Scenarios; published by the IPCC in 2000.  
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