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Abstract. X-ray photoelectron spectroscopy (XPS) is a powerful tool for surface and interface analysis, providing 

the elemental composition of surfaces and the local chemical environment of adsorbed species. Conventional XPS 

experiments have been limited to ultrahigh vacuum (UHV) conditions due to a short mean free path of electrons in a 

gas phase. The recent advances in instrumentation coupled with third-generation synchrotron radiation sources 

enables in-situ XPS measurements at pressures above 5 Torr. In this review, we describe the basic design of the 

ambient pressure XPS setup that combines differential pumping with an electrostatic focusing. We present examples 

of the application of in-situ XPS to studies of water adsorption on the surface of metals and oxides including Cu(110), 

Cu(111), TiO2(110) under environmental conditions of water vapor pressure. On all these surfaces we observe a 

general trend where hydroxyl groups form first, followed by molecular water adsorption. The importance of surface 

OH groups and their hydrogen bonding to water molecules in water adsorption on surfaces is discussed in detail. 
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1. Introduction 

 

Water adsorption on solid surfaces is ubiquitous in nature and technology, which makes the study of water at the 

vapor-solid or liquid-solid interfaces highly interdisciplinary. Interfacial water is a topic of research in a 

surprisingly wide range of scientific fields including heterogeneous catalysis [1-3], environmental science [4, 5], 

atmospheric chemistry [6, 7], electrochemistry [8-10], corrosion chemistry [11], and biology [12, 13]. The presence 

of water on surfaces has a significant influence on the mechanisms and kinetics of surface chemical processes. 

Adsorbed water molecules on surfaces can be a participant or spectator in surface chemical reactions. For example, 

water is a reactant or product in many heterogeneous catalytic reactions such as water-gas shift (CO + H2O � CO2 

+ H2) reaction or water formation reaction from oxygen and hydrogen on a platinum surface [1,  2]; traces of H2O 

can promote a CO oxidation reaction on Pt(111) [14] and on Au nanoparticles supported on TiO2 [15]. All surfaces 

of importance to environmental problems are covered by water with thicknesses ranging from a few Å (e.g., water 

vapor on aerosol particle surfaces in the upper troposphere) to infinite thickness (e.g., particles in bulk solution). 

Surprisingly, the growth of water on most surfaces – metallic, oxide, biological and mineral – is still poorly 

understood. 

The interaction of water with solid surfaces has been extensively studied using surface science techniques in 

ultra-high vacuum (UHV) and at low temperatures, which has provided detailed information on the water/solid 

interface at a molecular level [16-18]. Yet most processes of interest in real systems take place at ambient or higher 

pressures and elevated temperatures. There is a fundamental question as to whether the information obtained at 

ideal conditions (UHV and low temperatures) can be extrapolated to realistic conditions (ambient pressures and 

high temperatures). The surface structure and surface chemical compositions in equilibrium with ambient pressure 

vapor can be very different from those in UHV. In addition, chemical reactions with high activation barrier can be 

kinetically hindered at low temperatures. These important issues are often referred to as the "pressure gap" and 

"temperature gap", respectively. Therefore, in order to obtain molecular-level insight into surface chemical 

reactions involving water, it is essential to investigate the adsorbed state and structure of water molecules on 

surfaces in-situ under the reaction conditions. 

X-ray photoelectron spectroscopy (XPS) is a powerful experimental tool for surface science studies due to its 

high surface and chemical sensitivity. XPS provides information on the elemental compositions and the local 

chemical environment around a specific atomic site on surfaces [19-21]. The application of XPS to studies of 

surfaces at elevated (Torr) pressures is not straightforward due to elastic and inelastic scattering of the emitted 

photoelectrons by gas molecules. Conventional XPS experiments have thus been limited to UHV conditions.  

In the present review, we first discuss how we overcome the obstacles in in-situ XPS by describing the 

synchrotron-based ambient pressure XPS system at the Molecular Environmental Science (MES) beamline at the 

Advanced Light Source (ALS) in Berkeley that combines differential pumping with an electrostatic focusing. We 

then present examples of the application of ambient pressure XPS to the study of water adsorption on metal and 

metal oxide surfaces under ambient conditions. The examples of in-situ XPS studies presented in this review are 

based on our recent experimental results on water adsorption on two different Cu surfaces of (110) and (111) 
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orientations [22-24] and the TiO2(110) surface [25]. We will also give an outlook of future applications of in-situ 

XPS to water on surfaces. 

 

2. Experimental 

 

In order to perform in-situ XPS under ambient pressure vapor, one needs to reduce the attenuation of the 

photoelectron signal due to scattering with gas phase molecules. The attenuation of the photoelectron signal in a gas 

environment is proportional to exp(-zσp/kT), with σ as the electron scattering cross section, and where z represents 

the distance that the electrons travel through a volume at pressure p. The path length of the electrons through a gas 

has to be minimized. The sample surface is thus placed close to a differentially-pumped aperture, behind which the 

pressure drops by several orders of magnitude. This general approach has been used, beginning with Hans Siegbahn 

and coworkers’ early designs in the 1970’s [26-28], in all high-pressure XPS instruments that have been designed to 

date [29-37]. 

Ambient pressure XPS setups also have to take into account that the X-ray source (synchrotron or X-ray anode) 

and the electron analyzer have to be kept under high vacuum. The X-ray source is usually separated from the 

ambient pressure region either by differential pumping or by use of X-ray transparent windows, e.g. aluminum or 

silicon nitride membranes. The electron analyzer is kept under high vacuum using differential pumping between the 

sample cell and the analyzer.  For typical aperture dimension in the range of 0.1 – 10 mm2, typical pressure 

differentials across apertures vary from 10-4 – 10-2, respectively, depending on pumping speed and the type of gas 

pumped. To achieve ultrahigh vacuum in the analyzer part of the chamber for pressures in the Torr range in the 

sample cell, several differential pumping stages are required. Depending on the aperture sizes and their relative 

spacing, the solid angle for collection of electrons is reduced. The smaller the apertures and the farther they are 

spaced apart, the more efficient is the differential pumping. However, the inverse holds for the count rate as a 

function of aperture size and spacing. Traditionally, the effective pressure limit in ambient pressure XPS has 

therefore been about 1 Torr. The recent development of ambient pressure XPS instruments that use a 

differentially-pumped electrostatic lens system has overcome this limitation. In these instruments, the electrons are 

focused onto the apertures by electrostatic lenses that are located in the differential pumping stages [35]. These 

systems can operate at pressures above 5 Torr (the vapor pressure of water at the triple point is 4.6 Torr) [35].  

There are three instruments based on this principle currently in operation, all at third-generation synchrotron 

facilities (ALS beamline 9.3.2 [35]; ALS beamline 11.0.2 [36]; BESSY [37]). 

The experiments described here were performed at beamline 11.0.2 at the ALS in Berkeley. This beamline uses 

photons from an elliptically polarizing undulator with a 5 cm period [38] and provides photons in the energy range 

from 75 to 2150 eV using a SX700 style plane-grating monochromator [39, 40], which is equipped with two 

gratings (150 and 1200 lines/mm). The Kirkpatrick-Baez (KB) mirrors (horizontal and vertical) are able to focus 

the spot in the experimental chambers down to below 20x20 µm2. This is an advantage for ambient pressure XPS 

experiments since the entrance aperture of the differential pumping system can be kept small (i.e., provide a high 

pressure differential between the ambient pressure chamber and the first differentially-pumped stage) without 
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losing signal. 

A schematic of the ambient pressure XPS spectrometer at ALS beamline 11.0.2 is shown in figure 1. The key part 

of the spectrometer is the differentially-pumped electrostatic lens system that separates the ambient pressure 

chamber from the hemispherical electron analyzer (Phoibos 150, Specs). Incident X-rays from the beamline are 

admitted to the ambient pressure chamber through a silicon nitride window (thickness 100 nm, active window area 

1x1 mm2). The sample is placed at a distance of ~0.5 mm from the entrance aperture (diameter 0.3 mm) to the 

differentially pumped lens system. Electrons and gas molecules escape through this aperture into the 

differentially-pumped lens system. The electrons are focused in the first differential pumping stage onto a second 

aperture (diameter 2 mm), and in the second differential stage onto a third aperture, also with a 2 mm diameter, 

before entering a final lens stage and being eventually focused onto the entrance slit of the hemispherical analyzer. 

The pressure differential between the ambient pressure chamber and the hemisphere is about 8 orders of magnitude.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A schematic of the ambient pressure XPS spectrometer at ALS beamline 11.0.2 

 

For the investigation of samples in a controlled humidity atmosphere up to the condensation point of water, the 

sample surface has to be the coldest point in the chamber. We have developed a transferable sample holder cooled 

by a two-stage Peltier element, which is isolated from the chamber atmosphere. This sample holder, combined with 

a stand-alone chiller for temperature control of the sample holder docking station which acts as a heat sink for the 

hot side of the Peltier element, allows control of the sample temperature from 220 to 350 K. For 

surface-science-type experiments, a button heater combined with liquid nitrogen cooling provides the temperature 

range from 100 to 1000 K. Besides the ambient pressure chamber, the ambient pressure XPS endstation has a 

preparation chamber which is equipped with a sputter gun, low-energy electron diffraction (LEED) and an 

evaporator for thin film deposition. A load-lock chamber allows fast exchange of samples. The base pressure in the 

ambient pressure and preparation chamber is 2x10-10 Torr. 
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Here we briefly describe the experimental procedures used in the present study of water adsorption on metals and 

oxides. Further experimental details are found elsewhere [22-25]. The sample surfaces of Cu(110), Cu(111), and 

TiO2(110) were prepared in UHV by standard sputtering and annealing procedures as described in Ref. [22-25]. A 

monolayer (ML) is defined as one molecule per unit cell, i.e., 1.08x1015/cm2 for Cu(110), 1.77x1015/cm2 for 

Cu(111), and 5.2x1014/cm2 for TiO2(110), respectively. 

Quantification of surface species under ambient pressure vapor is challenging because the intensity of a 

photoelectron peak is attenuated by gas-phase molecules. It should be noted that both gas-phase attenuation and 

transmission of electrons through the lens optics are energy-dependent. In order to obtain the coverage of 

O-containing species on Cu surfaces, we take the ratio of the O 1s and Cu 3p XPS peaks that are measured with 

identical electron kinetic energies to cancel out the gas-phase attenuation and lens transmission function. Then we 

calibrate it against the O 1s/Cu 3p ratio for the p(2×1)-O/Cu(110) (θ=0.5 ML) prepared in UHV [41, 42]. The 

coverage of O-containing species on TiO2(110) at ambient conditions is obtained from the comparison of the 

absolute intensity on TiO2(110) with that of a know coverage on Cu(110) [25].  

The amount of adventitious carbon contamination on sample surfaces is negligible under UHV conditions.  

However, experiments under Torr pressure of water vapor cause an increased rate of contamination accumulation 

on surfaces. This is due to the fact that the chamber volume is virtually without pumping during ambient pressure 

experiments (the valve to the turbo pump needs to stay closed at ambient pressures). Sources for contaminations on 

the surfaces are displacement of contaminants by water at the chamber wall or the water source itself (prepared by 

3 cycles of freeze-pump-thaw). We have monitored the C 1s region at all times in our experiments and have 

specified the amount of C contaminations simply by using the C 1s to O 1s XPS ratio measured on the CxOy-species 

with known x:y ratio. Contamination is minimized when the experiments are performed rapidly after exposure of 

the surfaces to water vapor, with frequent sample cleaning cycles between water exposure experiments. 

 

3. Results 

 

3.1 Water on metals 

3.1.1 Introduction 

Here we shall briefly sum up the information on the adsorbed states of water on Cu(110) and (111) surfaces 

obtained in previous UHV studies. On the closed-packed Cu(111) surface, water is adsorbed molecularly intact and 

desorbs around 160 K without dissociation [43, 44]. On the corrugated Cu(110) surface, molecular adsorption is 

observed at low temperatures below 150 K. Above 150 K, however, thermally-induced water dissociation is 

observed on Cu(110) [45]. The intact water monolayer desorbs around 170 K in kinetic competition with 

dissociation, forming mixed H2O:OH phases [45]. The mixed H2O:OH phases on Cu(110) under UHV conditions 

can be generated thermally, by X-ray and electron-induced damage, by coadsorption of H2O with small amounts of 

atomic O, or by reacting adsorbed atomic O with atomic H, see e.g. Refs[45-53]. These mixed phases show a 

varying and complex temperature programmed desorption (TPD) profile depending on sample preparation and 

heating rate [48, 52, 53]. The main features in TPD from the mixed phases are H2O (m/e = 18) desorption peaks at 
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about 200, 235 and 290 K [48, 52]. The 200 K and 235 K peaks are assigned to H2O desorption from mixed 

H2O:OH phases [48, 52]. Above 235 K, only a pure OH phase exists on the surface [48-52, 54]. This phase 

decomposes near 290 K via an OH recombination reaction (OHads + OHads � H2Ogas + Oads) [48], where water 

desorbs with leaving behind an atomic O coverage half that of the initial OH coverage in the pure OH phase. 

We will show the connection between the adsorbed states of water on two different Cu surfaces of (110) and (111) 

orientations under elevated water pressures and temperatures (p(H2O)= 1 Torr, T= 268 – 518 K), using ambient 

pressure XPS, with UHV studies. One essential question is whether the results at low pressures and temperatures 

can be extrapolated to ambient conditions. 

 

3.1.2 Water chemistry on Cu(110) at near ambient conditions 

First we show in-situ O 1s XPS spectrum on Cu (110) measured in 1 Torr water vapor at 295 K (figure 2). In the O 

1s XPS spectrum, two spectral features are observed. A strong and sharp peak at 535.75 eV binding energy (BE) is 

attributed to gas phase water molecules within the excitation volume in front of the entrance aperture. A broad peak 

with two maxima at 534 – 530 eV BE originates from H2O and OH species adsorbed on the Cu(110) surface, as 

discussed below. Thus the surface signal is shifted to lower binding energies by 2 – 5 eV as compared to the gas 

phase signal. The large chemical shift due to the final state effects [21] allows a clear distinction between the gas 

phase and the surface contributions. Hereafter we only show the contributions from surface species for clarity. 

 

Figure 2. O 1s XPS spectrum on Cu(110) in 1 Torr water vapor at 295 K. 

 

Next we show how the chemical composition on the Cu(110) surface changes as a function of temperature under 

near ambient pressure water vapor. Figure 3 shows O 1s XPS spectra measured on Cu(110) in the presence of 1 Torr 

water vapor at the temperature range of 275 – 518 K. The O 1s XPS features observed under 1 Torr H2O are 

compared with those reported in earlier UHV studies at low temperatures. This leads to the assignment of XPS 

peaks observed at near ambient conditions to specific surface species. 
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Figure 3. O 1s XPS spectra measured on Cu(110) in the presence of 1 Torr water vapor at sample 

temperatures of 275 – 518 K: (a) 275 K, (b) 301 K, (c) 323 K, (d) 348 K, (e) 378 K, (f) 428 K, (g) 453 K, (h) 

483 K, (i) 498 K and (j) 518 K. The gas phase water peak is observed around 536 eV (not shown). The 

marked spectral features for “OH(+H2O)” and “OHpure” are for OH species H-bonding with H2O or not, 

respectively. The dots are the experimental data and the thin solid line is the result from a least-square 

peak-fitting procedure. The incident photon energy was 735 eV. 

 

At the lowest temperature of 275 K (figure 3a), two broad peaks are observed around 532.8 and 531.0 eV. These 

energies are in good agreement with previously observed O 1s XPS BEs of H2O and OH in the mixed H2O:OH 

phases on Cu(110) under UHV and low temperature conditions [45, 50, 54, 55]. Therefore the O 1s peaks around 

532.8 and 531.0 eV are assigned to H2O and OH, respectively. As the sample temperature increases, the O 1s XPS 

peak of adsorbed water decreases in intensity and shifts to higher BE by ~0.4 eV at temperatures between 323 K 

(figure 3c) and 348 K (figure 3d). Molecular water is present on the Cu(110) surface in 1 Torr H2O up to 428 K 

(figure 3f). After desorption of molecular water at temperatures above 428 K (figure 3g-j), only one peak due to OH 
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species is observed in the O 1s XPS spectra. The binding energy of this OH species is ~0.5 eV lower than that of OH 

species observed when water is present on the surface at lower temperatures. The intensity of the O 1s XPS peak for 

OH species further decreases with an increase in temperature (figure 3f-j). 

In order to obtain quantitative insights into the water chemistry on Cu(110) at near ambient conditions, the partial 

coverage of surface species is derived by a least-square peak fitting procedure on O 1s XPS spectra. The O 1s XPS 

spectra presented in figure 3 are well fitted with four components at 532.90, 532.55, 530.95, and 530.45 eV [23]. 

The first two components (at 532.90 and 532.55 eV BE) and the latter two (at 530.95, and 530.45 eV BE) are 

attributed to H2O and OH, respectively, as discussed below; the different binding energies of the same chemical 

species (H2O or OH) reflect the different molecular environments of H2O or OH on the metal surface. To show the 

change in molecular environments of H2O or OH on the Cu(110) surface, the total coverage of H2O (i.e., 532.90 and 

532.55 eV) and the coverages of two different OH components on Cu(110) under 1 Torr water vapor are plotted as 

a function of temperature (figure 4). 

 

Figure 4. Partial coverages for surface species on Cu(110) in the O 1s XPS spectra presented in figure 3 

recorded at 1 Torr partial pressure of H2O and sample temperatures of 275 – 518 K. Note the identical 

coverage of “H2O” (crosses) and “OH(+H2O)” (open circles) at 348 K. The nomenclature used for the OH 

species, “OH(+H2O)” and “OHpure” (filled circles), are for OH species H-bonding with H2O or not, 

respectively. 

 

At lower temperatures between 275 and 323 K, the Cu(110) surface is covered to a saturation (i.e., 1 ML) with the 

mixed H2O and OH layer where the ratio of H2O to OH is 2:11[footnote_1]. When the sample temperature increases 

to 348 K, the coverage of water decreases and the H2O:OH ratio is decreased from 2:1 to 1:1. Upon transition of the 

                                                      
1 [footnote_1] At the lowest temperature of 275 K and p(H2O)= 1 Torr (figure 3a), the H2O:OH ratio is slightly 
larger than 2:1 (see figure 4). This may indicate the presence of small quantities of H2O on top of the 2:1 H2O:OH 
phase. 
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surface phase from a 2:1 to a 1:1 H2O:OH mixed phase, the binding energy of H2O shifts from 532.55 eV to 532.90 

eV. We thus conclude that there exist two different H2O:OH mixed phases which exhibit a large chemical shift of 

~0.4 eV in the O 1s XPS peak of adsorbed water; one is with a 2:1 H2O:OH ratio (H2O BE: 532.55 eV) and the other 

is with a 1:1 H2O:OH ratio (H2O BE: 532.95 eV). Note that the binding energy of OH species stays close to 530.95 

eV in the surface phase transition from a 2:1 to a 1:1 H2O:OH mixed phase. With a further increase in temperature, 

the coverage of water continues to decrease while the H2O:OH ratio remains close to 1:1. Molecular water is 

observed on the surface in the 1:1 H2O:OH phase up to 428 K under 1 Torr H2O, corresponding to a relative 

humidity (RH) as low as 2.5 × 10-2 %. The RH is defined as p/pv(T)×100, where pv is the equilibrium vapor pressure 

of bulk water or ice at the corresponding temperature. When the sample temperature reaches to 378 K, a new 

spectral feature appears at 530.45 eV as a shoulder in the lower binding energy side of OH peak. This new peak 

becomes the only distinct spectral feature observed in the temperature range 453 – 518 K, where no molecular water 

is adsorbed on the surface. We thus assign this new feature to the OH species that are not H-bonded with water 

molecules. Hereafter, we refer to the OH species that are H-bonded to water (530.95 eV BE) as “OH(+H2O)” and 

the OH species that are not H-bonded to water (530.45 eV BE) as “OHpure”. Note that both “OH(+H2O)” and 

“OHpure” species coexist on the surface at temperatures between 378 and 428 K. The total coverage of OH (i.e., 

“OH(+H2O)” and “OHpure”) decreases with an increase in temperature above 378 K.  

In previous UHV studies at low temperatures [45, 50, 54, 55], the binding energies of H2O and OH were reported 

as follows: 530.3 – 530.6 eV for the pure OH species (“OHpure”), 530.8 – 531.0 eV for the OH species that are 

H-bonded to water (“OH(+H2O)”), and 532.4 – 532.9 eV for water molecules that are H-bonded to OH (“H2O 

(+OH)”). These binding energies in UHV at low temperatures are in excellent agreement with those of H2O and OH 

observed at near ambient conditions in the present study; 530.45 eV for “OHpure”, 530.95 eV for “OH(+H2O)”, 

532.90 and 532.55 eV for “H2O(+OH)”.  

To summarize, three different phases were observed on the Cu(110) surface under 1 Torr water vapor in the 

temperature range 275 – 518 K: A 2:1 H2O:OH mixed phase, a 1:1 H2O:OH mixed phase, and a pure OH phase, in 

increasing order of stability.  

 

3.1.3 Comparison with the previous UHV studies at low temperatures 

We have gained quantitative insights into the surface phases on Cu(110) under equilibrium with water vapor of near 

ambient pressure at elevated temperatures. We have found that there is a close correspondence in XPS binding 

energies of surface species between our results at near ambient conditions and the previous UHV studies at low 

temperatures. This indicates that the local chemical environments of H2O and OH species are very similar at near 

ambient conditions and in UHV at low temperatures. Here we further discuss the similarities and differences 

between our results at near ambient conditions and the previous UHV studies at low temperatures, particularly 

regarding the surface phases, and their relative stability. 

First we compare the surface phases and their relative stability at near ambient conditions with those in the 

previous UHV studies at low temperatures. At near ambient conditions, we observe three different phases on 

Cu(110) in the following order of stability; 2:1 H2O:OH < 1:1 H2O:OH < OHpure. The previous UHV studies 
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reported the following surface phases in increasing order of stability; intact H2O < 2:1 H2O:OH <1:1 H2O:OH < 

OHpure < O [48, 52]. Therefore, the order of stability of three phases observed at near ambient conditions, 2:1 

H2O:OH <1:1 H2O:OH < OHpure, is fully consistent with that observed in UHV at low temperatures. 

In contrast to UHV conditions, no statistically significant amount of atomic O is observed under 1 Torr H2O in the 

temperature range 275 – 518 K. This can be understood by the fact that the O formation via OHpure + OHpure � 

H2Ogas + Oads is fast above 290 K in UHV [48-50, 55], while the reverse reaction H2Ogas + Oads � OHpure + OHpure is 

very facile for the O coverages below 0.15 ML even at 150 K [48-50, 55]. At near ambient conditions, therefore, the 

reaction equilibrium between OH and O is strongly shifted towards the OH side due to the presence of water vapor. 

Indeed, only atomic O is observed on the Cu(110) surface at low water partial pressures ≤ 1 × 10-4 Torr and 

temperatures above 300 K (not shown). 

As for OH species, we find the maximum coverage of adsorbed OH to be 0.42 ML (see figure 3d and figure 4), 

but most frequently it saturates between 0.33 – 0.35 ML in the mixed H2O:OH phases. These values are higher than 

the previously reported OH saturation coverage of 0.25 ML, which was generated by H2O + O coadsorption on 

Cu(110) at low temperatures in UHV [48, 55]. Note that the high coverage of OH at near ambient conditions 

remains on the surface in vacuum after evacuation of water vapor if the sample temperature is below 290 K, where 

an OH recombination reaction becomes facile. The difference in the saturation coverage of OH may originate from 

the difference in the formation route of OH, i.e., thermally-induced water dissociation or preadsorbed oxygen 

mediated water dissociation. 

So far we have established the close correlation between our results at near ambient conditions and the earlier 

UHV studies at low temperatures in terms of XPS binding energies of surface chemical species, the surface phases, 

and their order of stability. Next we will check if the surface phases observed at near ambient conditions can be 

explained using the kinetic information available from the previous UHV studies. Here we focus on the 1:1 

H2O:OH phase on Cu(110) observed at 428 K in 1 Torr water vapor (figure 3f), with a low water coverage of 0.04 

ML. 

At thermodynamic equilibrium, the rate of adsorption is equal to the rate of desorption. The rate of desorption for 

0.04 ML H2O in the 1:1 H2O:OH phase on Cu(110) at 428 K and p(H2O)= 1 Torr is evaluated based on the kinetic 

information available in UHV. In UHV, the H2O desorption from the 1:1 H2O:OH phase on Cu(110) is observed at 

235 K and exhibit almost no coverage dependence, which validates the assumption of first-order desorption kinetics 

[48, 52, 53]. The desorption barrier for H2O in the 1:1 H2O:OH phase is thus calculated to be 0.69 ± 0.045 eV, using 

the TPD data [48] and the experimentally determined range for the pre-exponential factor (υ) for H2O of 1015±1 s-1 

[56-59]. On the basis of this desorption barrier, we obtained a H2O desorption rate of 0.97 – 8.3 × 105 ML s-1 as 

calculated from the first-order Polanyi-Wigner equation [60]. On the other hand, the rate of adsorption is expressed 

as a product of an impingement rate and a sticking probability. The impingement rate under 1 Torr water vapor is 

calculated to be 4.3 × 105 ML s-1 [61]. In consequence, the desorption rate of H2O obtained above matches well with 

the rate of adsorption resulting from the sticking probability close to unity. Equally good agreement is reached for 

the data at T = 378 K and p(H2O)= 1 Torr (figure 3e). 

The presence of OH groups on the surface is essential to explain the amount of adsorbed water at near ambient 
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conditions. Here we estimate the hypothetical desorption rates for 0.04 ML H2O on Cu(110) observed at 428 K and 

p(H2O)= 1 Torr if we assume that these water molecules exist in the form of monomers or clusters where water 

molecules are in 2-dimensional H-bonding network. The adsorption energy, i.e. the desorption barrier, of water 

monomers on Cu(110) has been calculated to be 0.375 eV [62]. The hypothetical desorption rate for 0.04 ML H2O 

monomers on Cu(110) at 428 K is calculated using the first-order Polanyi-Wigner equation to be 1.5 × 109 ± 1 ML s-1. 

In the case of water monolayer on Cu(110), the desorption barrier is experimentally determined to be ~0.52 eV [45], 

corresponding to a desorption rate of 3.0 × 107 ± 1 ML s-1. The desorption rate of water in 2-dimensional H-bonding 

network is thus largely decreased as compared with that of water monomers due to an attractive H2O-H2O 

H-bonding interaction. However, the desorption rates derived from the desorption barriers for water monomer and 

water monolayer are significantly higher than the impingement rate under 1 Torr water vapor. In the absence of 

surface OH groups, therefore, we would not expect to observe any water by ambient pressure XPS (detection limit 

~0.01 ML) on the Cu(110) surface. The surface OH groups act as anchoring and clustering sites for H2O, slowing 

down the water desorption rate (i.e., increasing its surface residence time) drastically. 

From the comparisons between our results at near ambient conditions and the previous UHV studies at low 

temperatures, we find a very good agreement in the local chemical environments (XPS binding energies), H2O:OH 

ratios, and relative stability of the observed phases on the Cu(110) surface. The adsorption-desorption equilibrium 

kinetic consideration shows that the kinetic information obtained at UHV and low temperatures conditions is well 

extrapolated to the present conditions of elevated pressures and temperatures. Furthermore, it shows that surface 

OH groups play an essential role in water adsorption on the metal surface through strong hydrogen bonds that 

stabilize water molecules. The importance of surface OH groups in water adsorption is further demonstrated below 

by a clear cut example on the Cu(111) surface.  

 

3.1.4 Water adsorption on Cu(111) at near ambient conditions 

Here we show that the Cu(111) surface exhibits a very different wetting behavior than the Cu(110) surface at near 

ambient conditions. Figure 5 shows O 1s XPS spectra measured on Cu(110) and Cu(111) in the presence of 1 Torr 

water vapor at 295 K, corresponding to 5.0 % RH. The Cu(110) surface is covered with a saturated monolayer of the 

mixed H2O and OH phase, as also shown in figure 2 and figure 3. In contrast, the Cu(111) surface remains clean and 

adsorbate-free under the identical condition. No adsorbate is observed on Cu(111) under 1 Torr H2O vapor in the 

temperature range from 333 to 268 K, corresponding to the RH range from 0.67 to 32 % [22]. The Cu(111) surface 

is thus much more hydrophobic than the Cu(110) surface. 
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Figure 5. O 1s XPS spectra measured in the presence of 1 Torr water vapor on two different Cu surfaces at 

295 K (a relative humidity of 5.0 %): Cu(110) and Cu(111). The partial coverages of OH and H2O on 

Cu(110) in 1 Torr H2O at 295 K are 0.34 and 0.68 ML, respectively. The gas phase water peak is observed 

around 536 eV (not shown). The incident photon energy was 735 eV. 

 

The different wettability on two Cu surfaces, (110) and (111), stems from a difference in the activation barrier for 

the OH formation (i.e., water dissociation). The lower dissociation barrier on Cu(110) than Cu(111) is demonstrated 

by the present experiments at near ambient conditions from the fact that OH species are present on Cu(110), but not 

on Cu(111) (see figure 5). It is also supported by previous UHV studies showing that thermally-induced water 

dissociation occurs on Cu(110) [45, 49, 50, 52], but not on Cu(111) [43, 44]. The absence of OH groups on Cu(111) 

in the present experiments (p(H2O)= 1 Torr, T= 268 – 333 K) indicates kinetic limitations of water dissociation on 

Cu(111) under these conditions. The dissociation barrier in the low coverage limit has been determined 

experimentally from kinetic measurements of the water-gas shift reaction on Cu(110) and Cu(111) to be ~0.87 eV 

[63] and ~1.17 eV [64], respectively. These values are in good agreement with the calculated dissociation barriers 

of water monomers on Cu surfaces using density functional theory (DFT) calculations [65].  

The difference in dissociation barriers of water on the two Cu surfaces is explained by the linear 

Brønsted-Evans-Polanyi (BEP) relationship [66, 67] between activation energies and enthalpy changes for 

dissociative adsorption [68-70]: a larger thermodynamical driving force (∆H) leads to a lower activation barrier for 

similar reactions. The water dissociation reaction is exothermic (∆H< 0) on Cu(110) [62], but thermoneutral (∆H= 

0) on Cu(111) [71, 72]. Hence the different wetting properties of Cu(110) and Cu(111) surfaces manifest the 

essential role of surface OH groups in water adsorption on metals surfaces. 

 

3.1.5 Water adsorption on the oxygen precovered Cu(111) 

It is well known that preadsorbed oxygen on metal surfaces can induce water dissociation [16, 17]. Figure 6 shows 

O 1s XPS spectra for a partially oxygen-covered Cu(111) surface measured in UHV and in the presence of 1 Torr 

water vapor at 295 K. The preadsorbed atomic O (θ= 0.12) on Cu(111) reacts with 1 Torr water vapor (H2O + O → 



Ev
al

ua
tio

n 
Ed

iti
on

 o
f a

ct
iv

eP
DF 

So
ftw

ar
e.

Vi
si

t w
w

w
.a

ct
iv

eP
DF.

co
m

 fo
r m

or
e 

de
ta

ils
.

 13 

2OH) to form a mixed OH and H2O layer. The hydrophilicity of the Cu(111) surface is thus generated by the 

formation of OH groups that stabilize water molecules through strong hydrogen bonds, similar to what we observe 

on the Cu(110) surface. 

 

Figure 6. O 1s XPS spectra for a partially oxygen-covered Cu(111) surface (θo= 0.12) measured in ultrahigh 

vacuum (UHV) and in the presence of 1 Torr water vapor at 295 K (5.0 % RH). The partial coverages of OH and 

H2O on Cu(111) in 1 Torr H2O at 295 K are 0.26 and 0.17 ML, respectively. The gas phase water peak is 

observed around 536 eV (not shown). The incident photon energy was 735 eV. 

 

3.2 Water on oxides 

 

3.2.1 Introduction 

Titanium dioxide, especially rutile (110) surface, is one of the most extensively studied oxide surfaces [17, 73, 74]. 

The particular interest in water chemistry on TiO2 surfaces has been stimulated by their important properties such as 

the photochemical production of hydrogen from water and the photo-induced hydrophilicity [75, 76].  

The interaction of water with TiO2(110) has been extensively studied in UHV. It has been shown that water 

chemistry on TiO2(110) is largely influenced by the presence of oxygen vacancies in the rows of bridging oxygen 

atoms [17, 73, 74]. The dissociation of water molecules at bridging oxygen vacancy sites has been directly imaged 

by scanning tunneling microscopy (STM) and atomic force microscopy (AFM) in UHV [77-82]. On the defect-free 

perfect TiO2(110) surface, in contrast, many experimental studies in UHV suggest that water does not dissociate [17, 

74, 77, 78]; different theoretical calculations predict both dissociative (at least at low coverages) [83-86] and 

molecular adsorption [87-89] on the defect-free surface. The current disagreement between experiments and 

theoretical calculations may be due to the existence of high activation barriers that hinder dissociation and 

molecular rearrangement [86], raising the question of whether thermodynamic equilibrium is reached in low 

temperature UHV studies. In addition, oxygen vacancy defects playing an important role in water dissociation on 

TiO2(110) may be healed and absent under ambient conditions. Therefore, despite its great importance, information 

on the adsorbed water layer on the TiO2(110) surface under realistic ambient conditions is scarce. Simple questions 

such as the amount of adsorbed water in equilibrium with vapor and the structure of the first water layer in contact 
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with the surface, including the possibility of dissociation into OH and H groups remain largely unanswered. 

Therefore the nature of adsorption sites for water on TiO2(110) and whether water dissociation is required for water 

adsorption is still elusive under ambient conditions. To answer these questions, we have studied the adsorption of 

water on the TiO2(110) surface under near ambient conditions of pressure and temperature (p(H2O)≤ 1.5 Torr, T= 

265 – 800 K), using ambient pressure XPS. 

 

3.2.2 Water chemistry on TiO2(110) at near ambient conditions 

First we characterize the clean TiO2(110) surface in vacuum using XPS. We have found that a small amount of 

O-vacancy defects are always present on the clean TiO2(110) surface after surface preparation, even after cooling in 

O2. These O-vacancy defects are revealed with characteristic features in the Ti 2p and O 1s regions as well as in the 

valence band [74, 90]. Figure 7 shows (a) Ti 2p3/2 and (b) O 1s XPS spectra for the defective TiO2(110) surface that 

was prepared by Ar+ sputtering, annealing to 900 – 950 K in vacuum. In the Ti 2p region, a shoulder feature is 

observed at the lower binding-energy side of the Ti4+ 2p3/2 peak due to the reduced Ti species (Ti3+ and/or Ti2+) [90, 

91]. In the O 1s region, a small component is observed at about 1 eV higher binding energy than the lattice oxygen 

peak at 530.5 eV. This is assigned to O atoms next to vacancy sites because this feature is not observed on the 

stoichiometric surfaces. In addition, a defect state appears in the band gap at about 1 eV below the conduction band 

(not shown), which is attributed to the occupied 3d states of Ti3+ [92, 93]. The defect concentration is determined by 

the Ti3+/Ti4+ ratio under consideration of the electron mean free path and analyzer geometry, as described in Ref. 

[90]. The TiO2(110) surfaces presented in figure 7a and b have defect concentrations of 0.156 ML and 0.125 ML, 

respectively. 

 

Figure 7. (a) Ti 2p3/2 XPS spectra of defective TiO2(110) before water exposure (solid line) and after 

introduction of 10-4 Torr H2O at 420 K (dashed line). The defective TiO2(110) surface is prepared by Ar+ 

sputtering, followed by annealing to 950 K in vacuum. The incident photon energy was 630 eV. (b) O 1s XPS 

spectra of defective TiO2(110) measured at 900 K in vacuum (top curve) and measured after cooling down to 

295 K in a residual gas atmosphere (mainly water) of 10-8 Torr (bottom curve). The incident photon energy 

was 690 eV. 

After the defective TiO2(110) is exposed to 10-4 Torr water (see figure 7a), the Ti3+,2+ shoulder in the Ti 2p3/2 peak 
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is readily quenched except for a very small residual amount (< 0.03 ML), which we attribute to bulk defects [74]. 

Concurrent with the change in Ti 2p, in the O 1s region a new peak appears at ~1.3 eV higher binding energy than 

the lattice oxygen peak. This new feature is assigned to OH groups at bridging sites [94, 95]. In figure 7b, the 

coverage of OH saturates at around 0.25 ML. The OH coverage of 0.25 ML is indeed expected from the initial 

defect concentration of 0.125 ML, if each water molecule dissociates into an OH group that fills the vacancy 

(Vbridge), and a H atom that forms an identical species by binding to another bridging O site (Obridge): H2O + Vbridge + 

Obridge = 2OHbridge. For defect concentrations lower than 0.125 ML, the final OH coverage is also lower, but always 

twice the defect concentration. The following experiments were performed on a surface with an initial defect 

concentration of 0.125 ML. 

Next we investigate the hydroxylation and water adsorption on the TiO2(110) surface under near ambient 

conditions of pressure and temperate. Figure 8 shows O 1s XPS difference spectra on TiO2(110) recorded at four 

different sample temperatures in a constant pressure of 0.4 Torr H2O vapor (isobar). The XPS spectra in the isobar 

were obtained with decreasing sample temperature. To show the changes in O 1s XPS spectra clearly, the difference 

spectrum is obtained by subtracting the XPS spectrum measured in UHV before water exposure from each XPS 

spectrum at different sample temperatures after normalization with the lattice oxygen peak.  

 

Figure 8. O 1s XPS difference spectra on TiO2(110) recorded in the presence of 0.4 Torr water vapor at 

sample temperatures of 810, 470, 350, 278 K. The difference spectra are obtained by subtracting the XPS 

spectrum measured in UHV before water exposure from each XPS spectrum at different sample temperatures 

in 0.4 Torr H2O after normalization with the lattice oxygen peak. The gas-phase water peak observed around 

536 eV in the raw O 1s XPS spectra is cancelled out by subtraction of the fitting line for the well-separated 

gas phase peak. The dots are the experimental data after the subtraction procedures explained above and the 

thin solid line is the result from a least-square peak-fitting procedure. The incident photon energy was 690 

eV. 

As seen in figure 8, the OH feature already saturates at 810 K in 0.4 Torr H2O. As the sample temperature 
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decreases, a second peak appears at ~3.5 eV higher binding energy with respect to the lattice oxygen peak. This 

peak can be attributed to either hydroxyl [94] or molecular water [96] at Ti4+ sites between bridging O rows. As 

shown in figure 7b and further evidenced by the experimental results below, the saturation coverage of OH is twice 

the initial coverage of oxygen vacancies. This indicates that water dissociation on TiO2(110) occurs only at 

O-vacancy defects and does not proceed at the fivefold coordinated Ti4+ sites. We thus attribute this feature to 

molecular water adsorbed on the fivefold coordinated Ti4+ sites. With a further decrease in temperature, the 

coverage of adsorbed water increases with its O 1s XPS peak shifting to lower binding energies by ~0.5 eV. 

Figure 9a shows the coverages of OH and H2O obtained from the same isobar experiment that provided the data in 

figure 8. The OH coverage is constant at 0.25 ML over the temperature range from 800 K to 275 K, which is twice 

the initial defect concentration of 0.125 ML. Water adsorbs on the hydroxylated surface until its coverage equals 

that of the OH groups. Above a water coverage of 0.25 ML, water coverage increases more rapidly. Between 0.25 

ML and 2 ML water coverage, the O 1s XPS peak of adsorbed water shifts towards lower binding energies by ~0.5 

eV, with most of the shift taking place below 1 ML (see figure 8). 

 

 

Figure 9. Uptake curves of OH and H2O on TiO2(110) obtained from (a) isobar (p= 0.4 Torr) with decreasing 

sample temperature and (b) isotherm (T= 298 K) with increasing water pressure. (c) The same data are 

plotted as a function of relative humidity. Filled symbols are for isobar and open symbols are for isotherm. 

Both results collapse into the same curve, demonstrating that the surface and gas phase are in thermodynamic 

equilibrium. Dashed and solid lines are inserted as a visual aid. 

Qualitatively similar results are obtained from isotherms, as shown by the room temperature data set in figure 9b. 
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Both isobar and isotherm uptake curves collapse into one when the data are plotted as a function of relative 

humidity (RH), as shown in figure 9c. This confirms a thermodynamic equilibrium between vapor and surface in 

the present experiments. A point that is worth considering is that in the isobar experiments the sample temperature 

is changing while that of the vapor remains constant at room temperature. The temperature used to compute the 

relative humidity is that of the sample. The error in having two different temperatures is however very small, due to 

the fact that the surface temperature is in the exponential of the desorption rate, while that of the gas is in the form 

T-0.5 in the expression for the impingement rate with the surface. 

 

Figure 10. (a) Coverage of OH and H2O on TiO2(110) obtained from different isobars (10-2 to 1.5 Torr) as a 

function of relative humidity. Small dots are data obtained with the heater sample holder and large dots with 

the Peltier sample holder. (b) Enlarged view of the low relative humidity region (data from three different 

isobars: filled dots, 0.01 Torr; open dots, 0.4 Torr; open squares, 1 Torr). The temperature scale at the top 

corresponds to the 0.4 Torr isobar. Notice the change of the x-axis from linear to logarithmic in the two plots. 

There is a plateau at 0.25 ML in (b), when the coverage of water equals that of OH. 

 

Figure 10a shows the uptake curves of OH and H2O over a wide range of relative humidity. Details of the OH and 

H2O coverages at low relative humidity are shown in the enlarged plot of figure 10b, which summarizes the results 

of three different experimental isobars. Similar to what we observed in figure 9, at the very low relative humidities 

from 5x10-5 % to 3.5x10-3 %, the coverage of adsorbed water increases to be equal to the initial OH coverage (0.25 

ML), where the uptake curve shows an inflexion followed by a small plateau. Another kink is observed around 0.75 

ML. The coverage of water increases rapidly between 0 and 25 % RH, with inflections at approximately 12 and 
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25 % RH, which correspond to 2 ML and 3 ML, respectively. Between 25 and ~60 % RH water coverage changed 

slowly, and then increased rapidly when approaching 100 % RH. Note that the coverage of OH species remains 

constant at twice the initial defect concentration (0.25 ML) at all RHs.  

To summarize, water adsorption on the TiO2(110) surface occurs in distinct steps. First, water molecules 

dissociate at O-vacancies in bridge sites, producing a stoichiometric amount of OH bridge groups equal to twice the 

initial vacancy concentration: H2O + Vbridge + Obridge = 2OHbridge This step takes place even at very low relative 

humidities. These OHbridge groups act as nucleation sites that anchor water molecules to form strongly bound 

OH-H2O complexes. The OH-H2O complexes continue to act as nucleation centers for further water adsorption. 

The wetting properties of TiO2(110) are thus driven by moderate amounts (<0.25 ML) of strongly attractive OH 

sites that nucleate water molecules. 

 

4. Discussion 

 

The present results on the adsorption of water on Cu(110), Cu(111), and TiO2(110) at near ambient conditions 

demonstrate that the presence of surface OH groups plays an essential role in wetting properties of surfaces. Here 

we compare the hydroxylation and water adsorption on these surfaces, and discuss the stability of H2O-OH 

complex and its generality on other surfaces. 

We observe a general behavior in the adsorption of water on the surfaces studied here at near ambient conditions; 

hydroxylation precedes water adsorption. We find a difference in the coverage of OH and the onset of water 

adsorption on these surfaces. The onset of water adsorption is defined as the point where adsorbed molecular water 

roughly equal to 0.1 monolayer can be detected by XPS. The coverage of OH on TiO2(110) saturates at twice the 

initial defect concentration, since the hydroxylation on TiO2(110) occurs only at O-vacancy defects. On the Cu(110) 

surface, OH groups are formed on the terrace and its coverage saturates around 0.33 ML. On the Cu(111) surface, 

hydroxylation is kinetically hindered under the present conditions except for the oxygen preadsorbed surface. The 

onsets of water adsorption on Cu(110) and TiO2(110) are ~2.5x10-2 % and ~1x10-5 % RH, respectively. Water 

adsorption is not observed on the clean Cu(111) surface up to 32 % RH.  

We believe that the stability of H2O-OH complexes is a general phenomenon on metal and oxide surfaces. Indeed, 

previous UHV studies have shown that the mixed H2O:OH layers on metal surfaces exhibit distinct water 

desorption states in the 200-240 K range, well above those from molecularly intact layers in the 160 – 180 K range 

[16, 17]. Examples include a full range of metal substrates such as Cu(110) [48, 52], Ag(110) [97], Ni(110) [98], 

Pt(111) [99], Ru(0001) [100, 101], Rh(111) [102], and Pd(111) [103]. On Cu(110), for instance, the peak 

desorption temperatures of water in the mixed H2O:OH layer are 200 and 235 K in UHV [48, 52], which are higher 

than the desorption temperature of 175 K in the molecularly intact water layer [45, 48, 52]. The H2O desorption at 

235 K from the 1:1 H2O:OH phase on Cu(110) leads to the desorption barrier (i.e., the adsorption energy) of 0.18 ± 

0.01 eV (for υ = 1015±1 s-1) higher than that from the molecularly intact layer on Cu(110) (Tdes = 175 K) [48]. The 

H2O desorption process requires breaking bonds to the Cu substrate as well as to neighboring adsorbates (H2O or 

OH). The larger desorption barrier (adsorption energy) in the mixed H2O:OH layer originates from the H2O-OH 
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H-bonds that is ~0.18 eV stronger than the H2O- H2O H-bonds. This is quantitatively in good agreement with a 

recent theoretical work on the Pt(111) surface where the H2O-OH H-bond strength is ~0.2 eV stronger than the 

H2O-H2O H-bond [104, 105]. 

In the case of TiO2(110), previous TPD studies have reported the desorption feature of water at about 270 K , 

which is ascribed to water molecules in the first monolayer [96, 106-108]. These water molecules in the first layer 

on TiO2(110) may be stabilized by the H-bonds with OH groups at defects sites, which could be present in various 

amounts depending on the surface preparation. The adsorption energy (desorption barrier) for the first monolayer 

water on TiO2(110) (270 K) is larger than that for water in the 1:1 H2O:OH phase on Cu(110) (235K). This is 

consistent with the earlier onset of water adsorption on TiO2(110) than Cu(110). 

Here we discuss the interaction between OH and H2O on metal and oxide surfaces in terms of their Brønsted acid 

and base character. The nature of the H-bonds between OH and H2O is predominantly electrostatic [109]. For 

instance, OH- ions in solution have a formal negative charge, which makes it a strong H-bond acceptor but a weak 

H-bond donor towards H2O (i.e., Brønsted base). This strong H2O(donor)-OH(acceptor) nature results in the O-O 

bond length asymmetry of long OH donating H-bonds and short OH accepting H-bonds [110]. In addition, OH 

species adsorbed on metal surfaces generally carry a partial negative charge, which depends delicately on the 

interaction with the substrate [105, 111-113]. Therefore, as analogous to OH- in solution, OH species adsorbed on 

metal surfaces is of Brønsted base character. The strong H2O-OH H-bond at metal surfaces is thus the 

H2O(donor)-OH(acceptor) bond, while the reverse situation yields a very weak bond. This is consistent with 

theoretical results on donor-acceptor properties of OH species towards H2O on Pt(111) [104, 105, 113] and Rh(111) 

[114]. In contrast, the bridging OH groups on the TiO2(110) surface have been argued to be of Brønsted acid 

character [115]. Recent AFM study on the TiO2(110) surface has shown that the bridging OH groups formed at 

defect sites are positively charged using a charged AFM tip [79]. Therefore, the strong H2O-OH H-bond on the 

TiO2(110) surface should be the OH(donor)- H2O(acceptor) bond, which is the reverse of the H2O-OH H-bond on 

metal surfaces. 

These considerations show that the formation of OH groups plays an important role in water adsorption (wetting) 

on surfaces. The stabilization of H2O with the surface OH groups originates from the H2O-OH H-bonding 

interaction that is stronger than the H2O- H2O H-bonding interaction. The different wettability of solid surfaces 

originates from the difference in the kinetic barrier for OH formation and the number and nature of OH groups on 

the surface. 

 

5. Summary and future outlook 

 

Ambient pressure XPS was applied to the study of water adsorption on the surface of metals and metal oxides 

including Cu(110), Cu(111), TiO2(110) under pressures and temperatures near those of the ambient conditions. The 

synchrotron-based ambient pressure XPS setup, combining differential pumping and electrostatic focusing, enables 

in situ XPS measurements at pressures above 5 Torr. We have obtained quantitative insight into the molecularly 

intact and dissociative adsorption of water on metal and oxide surfaces under adsorption-desorption equilibrium 
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conditions at near ambient water partial pressures.  

We have found that surface OH groups play an essential role in water adsorption (wetting) on solid surfaces. On 

all the surfaces studied here, water adsorption takes place on the hydroxylated surface. Surface OH groups act as 

anchoring sites for adsorbed water molecules through H2O-OH H-bonding that is stronger than the H2O- H2O 

H-bonding. The difference in the kinetic barrier for OH formation and the number and nature of OH groups on 

surfaces results in the different wettability of surfaces. For instance, the Cu(111) surface is much more hydrophobic 

than the Cu(110) surface at near ambient conditions. This can be explained by a higher activation barrier for water 

dissociation on Cu(111) than on Cu(110). We have shown that the Cu(111) surface becomes hydrophilic by the 

formation of OH groups induced by preadsorbed oxygen. On the TiO2(110) surface, the OH formation occurs only 

at O-vacancy defects and thus its coverage is limited to twice the initial vacancy concentration. The acid or base 

character of the OH species in the OH-H2O complex is different on Cu and on TiO2(110); OH groups on Cu(110) 

and Cu(111) are of Brønsted base character, but OH groups on TiO2(110) are of Brønsted acid character. The 

difference in the number and nature of OH groups on surfaces would be responsible for the difference in the onset of 

water adsorption on surfaces. From the detailed comparison of water chemistry on Cu(110) between at near ambient 

conditions and in UHV at low temperatures, we have found a very good agreement in the local chemical 

environments (XPS binding energies), H2O:OH ratios, and stability order of surface phases on Cu(110). Futhermore, 

analysis of the adsorption-desorption equilibrium of the surface phase observed at near ambient conditions shows 

that the kinetic information obtained in UHV at low temperature is well extrapolated to conditions of ambient 

pressures and temperatures.  

Here we briefly mention those areas which, in our opinion, will present exciting scientific opportunities for future 

in-situ XPS work.  

First of all, it is highly desirable to extend the present in-situ XPS study of water adsorption on surfaces to not 

only other metals and oxides but also ionic solids, semiconductors, biological materials. The chemical-specific 

quantification of surface compositions by in-situ XPS allows us to correlate water adsorption with the presence of 

surface OH groups. This will deepen our understanding how the kinetic barrier for OH formation and the number 

and nature of OH groups on surfaces affect water adsorption, and will provide further evidence of the general 

importance of surface OH groups in water adsorption on solid surfaces. 

One of the most important areas for in-situ XPS studies is to investigate surface chemical reactions involving 

water under the reaction conditions. In heterogeneous catalysis, it is often found that the presence of water on 

surfaces significantly alter the selectivity and activity of catalytic reactions [1, 2, 14, 15]. Since the H-bonding 

interactions between water (and/or OH) and other molecules adsorbed on surfaces largely affect surface chemical 

kinetics, it is important to have a general understanding of how H-bonding influences various activation barriers for 

elementary steps of surface chemical reactions. 

An important and complementary technique to XPS is X-ray absorption spectroscopy (XAS), which can be 

performed easily using the same experimental setup. We have recently demonstrated that O K-edge XAS spectra 

contains information on the structure of water in the bulk liquid phase [116], and when adsorbed as a monolayer on 

metal surfaces in UHV [47, 117]. These studies show that O K-edge XAS is very sensitive to H-bonding 
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environments of water molecules. However, the structure of thin film water in equilibrium with ambient pressure 

water vapor is still largely unknown and only recently some initial results are being obtained [118]. The 

fundamental questions that can be addressed by in-situ XAS include the structure of the thin water film and its 

evolution as a function of film thickness, role of the substrate, and the important question of how many layers are 

required for water to reach its bulk structure. 

It is noteworthy that the structure of water molecules on surfaces could be different between UHV and low 

temperature conditions and the more real life conditions of pressure (a few Torr) and temperature (near 0 oC). In a 

water monolayer on metal surfaces, for example, water molecules are connected by H-bonds to form a hexagonal 

honeycomb structure where half of the water molecules are adsorbed in an oxygen-down configuration and the 

other half take a configuration of pointing a free (i.e., non H-bonded) OH either to a vacuum (“H-up”) or to a metal 

surface (“H-down”). The recent UHV studies at low temperatures (<140 K) have provided the detailed insights into 

the branching of water between “H-up” and “H-down” configurations on several metal surfaces; water is adsorbed 

predominantly in the “H-down” configuration on Pt(111) [117, 119] and on Ru(0001) [100, 120-122], while the 

mixed “H-up” and “H-down” configurations are found for water monolayer on Cu(110) (H-down: H-up = ~2:1) 

[47] and on Rh(111) (H-down: H-up = ~1.3:1) [123]. The DFT calculations show a small energy difference in the 

order of 0~40 meV between “H-up” and “H-down” configurations [72, 124]. Indeed, the energy difference is 

experimentally estimated to be as small as 3~5 meV in the mixed configuration phases on Cu(110) and Rh(111) [47, 

123]. In addition, the kinetic barrier to flip the water configuration between “H-up” and “H-down” has been 

reported to be as low as 76 meV on Pt(111) [124] and 55 meV on Ru(0001) [125]. Therefore, the population ratio 

between “H-up” and “H-down” species at realistic conditions (ambient pressures and elevated temperatures) is 

expected to be very different from that at ideal conditions (UHV and low temperatures). 
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