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High-pressure freezing is the preferred method to prepare thick biological 

specimens for ultrastructural studies. However, the advantages obtained by this 

method often prove unattainable for samples that are difficult to handle during the 

freezing and substitution protocols. Delicate and sparse samples are difficult to 

manipulate and maintain intact throughout the sequence of freezing, infiltration, 

embedding, and final orientation for sectioning and subsequent TEM imaging. An 

established approach to surmount these difficulties is the use of cellulose 

microdialysis tubing to transport the sample. With an inner diameter of 200 

micrometers, the tubing protects small and fragile samples within the thickness 

constraints of high-pressure freezing, and the tube ends can be sealed to avoid 

loss of sample. Importantly, the transparency of the tubing allows optical study of 

the specimen at different steps in the process. Here, we describe the use of a 

micromanipulator and microinjection apparatus to handle and position delicate 

specimens within the tubing. We report two biologically significant examples that 



benefit from this approach, 3D cultures of mammary epithelial cells and cochlear 

outer hair cells. We illustrate the potential for correlative light and electron 

microscopy as well as electron tomography.  



INTRODUCTION 

In preparation for ultrastructural analysis by TEM, high-pressure freezing  

is the preferred method for cryofixation of biological specimens that are thicker 

than 10 µm, but thinner than 300 µm (Müller & Moor, 1984; Gilkey & Staehelin, 

1986; Moor, 1987; Dahl & Staehelin,1989). However, at a practical depth of 100-

200 µm, the size limitation imposed by the metal planchette for sample loading 

may introduce requirements not encountered in more conventional methods that 

rely on aldehyde fixation protocols. Tissues that are normally handled in larger 

pieces may become friable when dissected at this size, making it difficult to load 

the specimen and maintain their integrity throughout processing. Smaller 

specimens such as single cell suspensions can be spun down to a pellet for 

easier handling, but centrifugation is undesirable for some specimens due to their 

delicate nature. Another significant problem in sample preparation is that the 

specimen may be too sparse to yield a pellet of significant size. Problems 

associated with loss of small samples and sample fragility propagate through 

subsequent processing in freeze substitution and resin embedment, which 

require multiple solution exchanges and manual handling. Further, many 

experiments, such as those involving correlative light and electron microscopy of 

the same specimen, require precise tracking and orientation of specific regions 

within a sample. This information is often difficult to preserve with existing 

processing methods. 

 Cellulose microdialysis tubing has proven useful in the preparation of cell 

suspensions and small samples such as Caenorhabditis elegans embryos 



(Hohenberg et al., 1994; Müller-Reichert et al., 2003). In addition to facilitating 

handling during subsequent processing steps, the cellulose tubing has the added 

benefit of being transparent in the light microscope. Previous implementations of 

this approach have relied on either capillary action or the use of a pipette to load 

the sample into the tubing for further processing (Müller-Reichert et al. 2007). 

The volume enclosed by 1-2 millimeter segments of tubing is well below a 

microliter; at such small displacements, sparse and/or delicate samples may 

require a greater degree of precision in specimen manipulation than that 

provided by previous methods.  

Here we describe the use of a micromanipulator and microaspiration setup 

to allow accurate and predictable positioning of such samples within dialysis 

tubing.  We discuss results from two samples which benefit from this technique: 

(1) 3D cultures of mouse mammary organoids used as a model system to study 

breast tissue biology in health and disease (Barcellos-Hoff et al., 1989; Aggeler 

et al., 1991), and (2) guinea pig outer hair cells (OHCs), which are isolated in a 

sensory epithelium that is 1-2 cell layers thick and are vital to mammalian hearing 

(Brownell et al., 1985; Kachar et al., 1986; He et al., 2006; Spector et. al., 2006). 

 

MATERIALS AND METHODS 

 An overview of this method is illustrated in the flow diagram of Figure 1. 

Steps that are required for TEM are listed in the right column, while 

corresponding opportunities for light microscopy for process evaluation or 



correlative studies are shown to the left. In addition to the general aspiration 

approach, details specific to our example specimens are given below.  

 

Micromanipulation and microaspiration 

Figure 2 shows the assembled configuration including stereoscope, 

micromanipulator, and microaspiration system. A Sutter Xenoworks Analog 

Microinjector (Sutter Inst. Co., CA, USA) with a 100 µL Hamilton syringe was 

used for aspiration and positioning of specimens within the Spectrapor dialysis 

tubing (Spectrum Labs, CA, USA). Short segments of tubing were joined to a 1 

mm outer diameter glass capillary with 0.5 mm inner diameter using nail polish; 

this capillary was then mated to the micropipette holder of the microinjector. 

Mineral oil was used as the hydraulic fluid throughout the system up to the 

junction with the capillary. A Siskiyou MX110 4-axis manual micromanipulator 

(Siskiyou, Inc., OR, USA) attached to a magnetic base was used for fine 

positioning of the cellulose tubing.  

 

Making and using the crimping tool 

A well-crafted tool for crimping the microdialysis tubing is essential for 

success (Müller-Reichert et al. 2007). The tip was cut off of a number 11 scalpel 

blade, leaving a blunt edge about 1mm in width. Using a whetstone or grinding 

wheel, the tip was shaped to have a double bevel of about 45 degrees from each 

side (Fig. 2b-c). The burr on the cutting edge was removed by a few strokes on a 

fine whetstone. It is important to avoid making the cutting edge too sharp or it will 



just cut the tubing and not crimp it. While cutting, tubing was always submerged 

in a fluid such as 20% bovine serum albumin (BSA, w/v) or 1-hexadecene to 

avoid rapid drying out of the specimen. We preferred to cut in a polypropylene 

plastic petri dish due to its compliance, though other plastics may work as well. A 

simple rocking motion in the direction parallel to the cutting edge sufficed to cut 

and crimp the tubing. To test the crimping ability of the blades, microdialysis 

tubing was loaded with a dye such as toluidine blue and cut in 1-hexadecene.  

 

Preparation of samples  

a.  Mouse organoids 

The procedure to isolate and culture primary mouse mammary gland epithelial 

organoids in 3D has been described in detail previously (Simian et al., 2001). 

Prior to design of the microaspirator we tried growing the organoids inside the 

cellulose tubes in order to best maintain the integrity of extracellular matrix 

material. We plated the mammary organoids in Matrigel in wells containing 

sterilized segments of the tubing. However, by growing the organoids inside the 

tubes, their number and density could not be easily adjusted, leading to sparsely 

populated tubes (data not shown). The resulting low density of organoids in tubes 

is not practical for labor intense, high throughput optical pre-screening of the 

typically heterogeneous 3D cultures to select suitable candidates for subsequent 

ultrastructural analysis. Also, diffusion of high molecular weight components from 

the growth media, such as transferrin (ca. 80 kDa) and prolactin (ca. 24 kDa), is 

restricted to the open ends of the 1 mm length of tube, as the tubes have a 



molecular weight cut-off of 13-18 kDa. As a solution to this problem, a 

suspension of mouse mammary organoids grown in Matrigel was prepared for 

aspiration using the method described here. 

Organoids were grown for 10 days inside Matrigel (BD Biosciences, 

Bedford, MA, USA) in DMEM/F12 supplemented with insulin/ transferrin/sodium 

selenite (Sigma), and penicillin/streptomycin (UCSF Cell Culture Facility, San 

Francisco, USA). Functional differentiation was induced by addition of the 

lactogenic hormones prolactin (3μg/mL; Sigma) and hydrocortisone (1μg/mL; 

Sigma) to the cell culture media. The organoids in Matrigel were rinsed with 1mL 

of cold PBS-EDTA with a protease inhibitor cocktail (Calbiochem, San Diego, 

CA, USA) and pipetted with a wide bore pipette to gently tease the Matrigel 

apart. The solution was transferred to a 15mL conical tube on ice and shaken for 

1.5 hours on ice at 4°C.  The organoids were gently spun at 1000 rpm for 10 

minutes at 4°C and then resuspended in PBS for microaspiration.   

 

b. Guinea pig outer hair cells 

Hartley albino guinea pigs were anesthetized by isofluorane and 

decapitated with a guillotine. The temporal bones were removed and the organ of 

Corti was exposed by dissection in Invitrogen Medium 199 containing Hanks’ 

salts (Invitrogen Corp., CA, USA). Strips of the sensory epithelium were 

transferred using a 200 µL pipette and placed in a 35 mm MatTek dish (MatTek 

Corp, MA, USA); enzymatic digestion was avoided to preserve long strips of 



tissue. Strips containing OHCs were then identified by stereoscope and selected 

for further manipulating/handling using the microaspirator. 

 

Loading specimens into the microdialysis tubing 

Using the device in Figure 2, samples were selected under magnification 

from their original buffer, transferred to cryoprotectant if desired, and then re-

aspirated. Once the sample was positioned in the tube, the distal end of the tube 

was closed using the crimping tool. The proximal end was then cut free and 

crimped. 

For a dialysis tube with an inner diameter of 200 µm, a 1 mm long 

segment will enclose a volume of approximately 30-35 nL. With a displacement 

of 100 nL per full turn of the fine control knob, we found that a 100 µL Hamilton 

syringe provided adequate precision for positioning of the sample within the tube. 

In spatial resolution, the Siskiyou MX110 micromanipulator gives a precision of 

approximately 10 µm for each independent axis. This level of control proved 

invaluable for selecting and manipulating specific samples from dilute solutions, 

along with maximizing occupied space in the tubing during the crimping process. 

Sample exchanges from native buffer to cryoprotectant were also done on each 

individual sample using the device. This controlled the time of specimen 

exposure to the cryoprotectant, and also allowed for tracking of the sample prior 

to freezing.  

 

High-pressure freezing and freeze substitution (HPF/FS) 



Prior to freezing, the tubes are cut and crimped to 1 –1.5 mm lengths so 

that they fit into the aluminum hats used as freezing platforms. A filler material is 

added to prevent trapped air around the specimen. It is also important that this 

filler serve as a cryoprotectant, providing good heat conduction and discouraging 

the formation of crystalline ice. Non-penetrating fillers with low osmotic activity, 

such as gelatin, BSA, and dextran, are recommended, but in some cases we 

have used 10% glycerol successfully, especially when working with aldehyde 

pre-fixed specimens. Glycerol has the advantage of serving as a cryoprotectant 

with lower viscosity than BSA and dextran fillers, but it should be noted that 

possible artifacts associated with using glycerol are well documented (Gilkey and 

Staehelin, 1986). Aware of the pitfalls, we have used 10% glycerol as a filler in 

structural studies of cell junctions that have cytoskeletal attachments in prefixed 

biological material where potential extraction of cytoplasm and membrane 

artifacts are not detrimental to the object of interest.  

Specimens were aspirated into tubes in cryoprotectant made with either 

10% glycerol (v/v) or 20% BSA (w/v) in their original buffer. Tubes were placed in 

200 µm deep aluminum planchettes, the remaining space in the planchette was 

filled with cryoprotectant, and the specimens were cryo-immobilized using a BAL-

TEC HPM-010 high-pressure freezer (BAL-TEC, Inc., Carlsbad, CA; Müller & 

Moor, 1984; Gilkey & Staehelin, 1986; Moor, 1987; Dahl & Staehelin, 1989). 

Samples were then freeze-substituted in 1% osmium tetroxide and 0.1% uranyl 

acetate in acetone using a Leica AFS (Leica Microsystems, Vienna, Austria) 

following a previously described protocol (McDonald, 2007). In some samples, 1-



2% water was added to enhance membrane contrast (Walther and Ziegler, 

2002). Following freeze substitution, specimens were washed with several rinses 

of pure acetone before being infiltrated in either Durcupan ACM (Electron 

Microscopy Sciences, PA, USA) or an Epon-Araldite mixture (McDonald & 

Müller-Reichert, 2002). The tubes were flat-embedded between two slides using 

two layers of parafilm as a spacer (Müller-Reichert et al., 2003).   

 

Staining tubes with safranin-O 

Microdialysis tubing can be difficult to see during the infiltration and 

embedding solution changes. To prevent sample loss during specimen 

processing we experimented with cellulose binding dyes on cryo-immobilized and 

freeze-substituted tubes. Histologic stains for cellulose are one way to visualize 

the transparent tubes, aiding in detection of the specimen during acetone 

dehydration and graded series of resin exchanges. The cationic stain safranin-O 

appears brilliant red in the lignified cellulose of plant cell walls. Accordingly, we 

successfully employed safranin-O (Gurr, 1971), staining the tubes bright red 

when added in trace amounts (a couple of grains per ml) during acetone rinses 

before resin embedding. In cases where the high-pressure freezing filler is cross-

linked during freeze substitution, e.g. with dextran or BSA, it is not necessary to 

color the tubes because the entire contents of the freezing planchette can be 

treated as one piece.  

 

Light microscopy for sample processing 



For loading and manipulation of cellulose tubing prior to freezing, an 

Olympus SZX12 stereoscope was used (Olympus America, Inc., PA, USA) with 

epi- and trans-illumination provided by a pair of Fostec 150W lamps (Olympus). 

Flat embedded specimens were also screened using the SZX12, which provided 

up to 144x effective zoom. After orientation and mounting, 500 nm thick sections 

were cut and stained with toluidine blue.  

 

Staining for light microscopy 

Immunofluorescence was performed on organoids isolated from Matrigel.  

Samples were fixed in 50:50 methanol:acetone for 10 min at -20°C.  Samples 

were blocked in PBS + 5% goat serum + 1:100 dilution of F(ab)2 (Jackson Lab, 

Bar Harbor, USA) for one hour. Samples were then incubated in a FITC-

conjugated ZO-1 antibody (Zymed, USA) that recognizes the tight junction 

protein ZO-1 at 1:100 dilution overnight at 4°C. Samples were washed and 

stained for nuclei with Hoechst 33258 and imaged using epifluorescence on a 

Zeiss Axiovert 200 inverted microscope (Carl Zeiss Microimaging, Inc., NY, 

USA). OHCs in tubes were fixed in 4% paraformaldehyde in PBS, permeabilized 

in 0.1% Triton X-100 in PBS, stained for actin with Alexa Fluor 555 phalloidin 

(Invitrogen), and subsequently imaged using a Zeiss LSM 410 confocal 

microscope (Zeiss). Figure 3a-b shows mouse organoids visualized before 

cryofixation with phase contrast optical microscopy (Fig. 3a) and indirect 

visualization of ZO-1 using fluorescence (Fig. 3b). Figure 3 c-d shows low and 



high magnification views of mouse organoids embedded in Epon-Araldite resin in 

the cellulose tubing prior to sectioning and transmission electron microscopy.    

 

Transmission electron microscopy 

70-100 nm thin sections were collected on formvar coated slot grids and 

post-stained with 2% uranyl acetate in 70% methanol followed by either 

Reynold’s or Sato’s lead citrate (Sato, 1968). Sections were imaged on either an 

FEI Tecnai 12 TEM (FEI, Eindhoven, Netherlands) on Kodak 4489 film or a 

Phillips CM200 TEM (FEI) with a Tietz TemCam-F214 CCD camera (TVIPS 

GmbH, Martinsried, Germany). Images were processed using ImageJ (Abramoff 

et al., 2004).  

 

Electron tomography 

Tilt series of 150 nm sections were collected at 1° increments through a 

range of +/- 70° using EMMENU 3.0 software (TVIPS) on a Phillips CM200 TEM 

(FEI) equipped with a Fischione Advanced Tomography Holder (E. A. Fischione 

Instruments, Inc., PA, USA) and a Tietz TEMCam-F214 CCD camera (TVIPS). 

Series were aligned with 5 nm gold fiducials and reconstructed using the IMOD 

software package (Kremer et al., 1996). Post-processing and segmentation of 

the resulting volume density maps was done using a combination of IMOD and 

the UCSF Chimera package (Pettersen et al., 2004). 



RESULTS AND DISCUSSION 

Mammary epithelial 3D cultures 

Primary cultures of mouse mammary epithelial cells or organoids retain 

their tissue-specific functions when grown in laminin-rich extracellular matrix 

(lrECM) gel. Here we grew mouse mammary organoids in Matrigel, a laminin-rich 

basement membrane gel produced by the Engelbreth-Holm-Swarm murine tumor 

(Kleinman et al., 1986). These 3D cultures retain the functional features of the 

mouse mammary gland in vivo and even synthesize milk proteins when induced 

by addition of lactogenic hormones (Barcellos-Hoff et al., 1989; Aggeler et al., 

1991). 

Upon high-pressure freezing and freeze substitution the mouse mammary 

organoids show excellent preservation, as can be seen in Figures 4a-f. The 

organoids are composed of an outer layer of myoepithelial cells (Fig. 4b: MyEp) 

and an inner layer of epithelial cells that enclose a lumen (Fig. 4b: LuEp). 

Secretory activity is manifest by numerous secretory granules - presumably 

vesicles with milk proteins - along with lipid inclusions that are round, smooth, 

free of ice crystal formation, and devoid of infiltration artifacts (Figure 4c). 

Notably, the materials secreted into the lumen are not aggregated, but instead 

appear as a homogeneous distribution of density as expected for well-preserved 

specimens. The lumen is sealed by tight junctions, shown in Fig. 4d. As 

previously documented by ultrastructural evaluation of 3D cultured mammary 

epithelia by conventional means, the nuclear profile is irregular with numerous 

cytoplasmic invaginations (Barcellos-Hoff et al., 1989; Underwood et al., 2006). 



The nuclear architecture is well preserved, clearly showing nucleoli and nuclear 

pores, and discrimination of densely stained heterochromatin from less dense 

DNA is possible (Fig 4c, Fig. 4e). Tissue specific differentiation of the organoids 

is evident in the increase of well-developed rough endoplasmatic reticulum 

corresponding to the lactogenic hormone-induced production of milk protein and 

fatty acids (Fig. 4f). 

It is now widely appreciated that simulation of the physiological 3D 

microenvironment in cell cultures is essential to the maintenance of cellular 

function and meaningful conclusions from in vitro model systems. This 

requirement has been shown extensively in the study of both rodent and human 

cell lines that model many aspects of the mammary gland and breast cancer 

(Bissell et al., 2005). As illustrated here, when evaluating phenotypically crucial 

features of 3D cell cultures such as epithelial microvilli formation and cell junction 

architecture, ultrastructure remains a critical tool not currently replaceable by 

optical methods.  

As evident from the electron micrographs, this preparation protocol and 

subsequent cryo-immobilization does not disrupt the acinar architecture of the 

organoids (Fig. 4a-b).  Even the intrinsic basal lamina that is secreted by the 

organoid upon cultivation in lrECM is intact and attached by hemidesmosomes to 

the isolated organoid (Fig. 4b). We propose this method of microaspiration prior 

to cryo-immobilization for high-throughput ultrastructural evaluation of organoids. 

In fact, this method is practical for handling any type of isolated 3D cultures that 

are fragile and difficult to detect by eye during processing.  



 

Outer hair cells 

For this material the use of microdialysis tubing and the micromanipulator 

alleviated several barriers during sample preparation, which had proved 

intractable by other methods. The objective was faithful preservation of the OHC 

lateral wall by HPF/FS, which includes both internal membrane and cytoskeletal 

components within 50 nm of the lateral plasma membrane. Because of the 

inevitable variability in cell health within the dissected epithelium and osmotic 

sensitivity of the OHCs, it was necessary to test large populations of OHCs under 

a variety of conditions. The ability to observe and evaluate each sample from the 

dissecting dish, through the freezing and substitution process, and during flat 

embedment for orientation, allowed the efficient screening of large numbers of 

OHCs in each experiment to select the best preserved cells for subsequent 

ultrastructural and electron tomographic analysis. OHCs are under turgor 

pressure and exquisitely sensitive to changes in osmolarity (Chertoff et al. 1994). 

When using a 10% v/v solution of glycerol in buffer as a cryo-protectant, the 

effective osmolarity of the solution often resulted in the collapse of the 

extracisternal space (ECS) lying between the plasma membrane and the closely 

approximated lamellae, known as the subsurface cisternae (data not shown). 

Using the microaspirator, we were able to systematically screen a variety of cryo-

protectants; Figure 5 shows results obtained using 20% w/v bovine serum 

albumin (BSA), which has much lower effective osmolarity than glycerol. The 



cytoplasm of the OHC ECS is intact rather than collapsed, and its associated 

cytoskeletal components are well preserved.    

The lack of internal membrane contrast frequently observed in freeze-

substituted samples was also a problem with the subsurface cisternae (SSC). 

Variation of the freeze substitution medium such as the addition of water 

(Walther & Ziegler, 2002) resulted in improved SSC contrast compared to the 

standard medium; we found that 2% water gave sufficient contrast for our 

studies. The tomography results shown in panels d-f of Figure 5 illustrate the 

fidelity that we were able to achieve by varying cryo-protectant and freeze-

substitution parameters. To our knowledge, this is the first successful 

preservation of the main features of the OHC lateral wall (SSC and the 

cytoskeletal components of the ECS) by high-pressure freezing and freeze 

substitution.  

 

Application of microaspiration and microdialysis tubing in correlative light and 

electron microscopy studies  

An exciting prospect in modern microscopy is the ability to correlate 

results from light microscopy and TEM on the same high-pressure frozen 

specimen (Biel et al., 2003; Pelletier et al., 2006; Müller-Reichert et al., 2007). 

The ability to preserve both recombinant and synthetic fluorophores through 

high-pressure freezing, freeze substitution, and resin embedment (Luby-Phelps 

et. al., 2003; Biel et. al., 2003; Hardie et. al., 2004; Krisp et al., 2006) along with 

development of photo-conversion techniques (Gaietta et al., 2002; Grabenbauer 



et al., 2005) broadens this potential to augment pre-existing live cell fluorescence 

studies with direct ultrastructural correlation.  Further extension from 2D to 3D 

data is available through the use of confocal LM at sub-micrometer resolution, 

and TEM tomography at nanometer resolution (Frey et al., 2006). Microaspiration 

into cellulose dialysis tubing provides a unique route to facilitate tracking of 

specific samples among different imaging modalities. To illustrate this potential, 

the panel in Figure 5 proceeds through a series of figures in progressively 

smaller scale, from a low-magnification 2D overview of an entire embedded tube 

containing an OHC strip at approximately 10 µm resolution to a 3D electron 

tomogram of the OHC lateral wall that based on objective criteria (Cardone et al., 

2005) displays a resolution of 3-4 nm (Triffo et al., manuscript in preparation). For 

many samples, this method will provide a reliable route to bridging this resolution 

gap under controlled, identical specimen treatment. 

 

Other useful applications and advantages 

Another important feature of the dialysis tubing is its permeability to low 

molecular weight solutes, which allowed us to carry out all steps “in-tube” for the 

fluorescence labeling sequence that led to the confocal image of Figure 5b, from 

Triton X-100 permeabilization to labeling with AlexaFluor555-phalloidin. The 

permeability of the dialysis tubing should also allow “in-tube physiology” studies, 

where pharmacologic stimuli meeting this size requirement could be applied and 

be effective on the specimen up until the commencement of freezing. This would 

be a particularly interesting application for transient stimuli whose effects may be 



subtle in magnitude and begin to dissipate immediately upon removal. As an 

example application which we are pursuing, acetylcholine, a neurotransmitter 

that modulates OHC motility and is believed in part to affect cytoskeletal 

remodeling (Frolenkov, 2006), can be applied just prior to freezing, allowing 

ultrastructural analysis without aldehyde fixation. Such studies would be difficult 

to carry out for unprotected samples, as trauma during mechanical handling may 

cause artifacts that would confound the effects of the pharmacological agent. 

Because this aspiration approach permits the use of dilute specimens, we 

were able to avoid procedures such as high-speed centrifugation into a dense 

solution or pellet, which was undesirable for our samples. Along with providing 

protection for the sample, the tubing increased the effective size of the 

specimens, making it easier to track the specimen during processing. This also 

resulted in minimal material loss when considering all steps in the process, from 

initial selection prior to freezing up through flat embedding in resin.  

 

Summary 

The improved resolution and insight provided by electron tomographic 3D 

reconstruction of cells and tissues and its correlation to optical studies, combined 

with cryo-immobilization during sample preparation, provides an added 

dimension to cellular electron microscopy (Frey et al., 2006). As cell biologists 

delve deeper into the molecular processes driving life by both identifying the 

individual players and their relational networks, the ability to correlate 

fluorescence microscopy and ultrastructural in-situ 3D analysis of molecular 



machines at molecular resolution will become increasingly important. We believe 

that our microaspiration approach can contribute to this important goal. 
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FIGURE LEGEND 

Figure 1. Flow diagram of the generalized protocol. Optional light microscopy 

(LM) steps are highlighted in gray. 

 

Figure 2. Overview of micromanipulator and microaspiration setup. a. The 

micromanipulator is at left (red arrow), and microinjector used for aspiration at 

right (red arrowhead). Flexible hydraulic tubing joins the Hamilton syringe of the 

injector to the micropipette holder attached to the manipulator. Inset depicts 

close-up of the region in the red box, illustrating the cellulose tubing (white arrow) 

mounted to the glass capillary (white arrowhead) held by the micropipette holder 

of the microinjector. b-c. Side (b) and top-down (c) views of the crimping tool 

fashioned from a scalpel blade, showing the 45° bevel at the tip.  

 

Figure 3. Microaspiration of mouse organoids isolated from Matrigel 3D 

cultures. a. Phase contrast optical microscopy of mouse organoid grown in 

Matrigel. b. Fluorescence imaging of immunostaining for ZO-1 (green) and 

nuclear DAPI (blue) in mouse organoids. c. Resin embedded organoids in 

crimped tube, and d. close up of organoids in tube. Scale bars: (a) 10 µm; (b) 25 

µm; (c) 200 µm; and (d) 50 µm.  

 

Figure 4. Ultrastructural evaluation of mouse mammary organoid grown in 

3D Matrigel cultures. a. Overview of the organoid and close up in b. showing 

the two cell types: the luminal epithelial (LuEp) cells embraced by myoepithelial 



cells (MyEp). Lumen is annotated Lu. Arrowhead indicates basement membrane. 

c. Vesicles and lipid inclusions (V) are round and well preserved in cryofixed 

organoids. Nuclear (N) morphology is well preserved and in this view two nucleoli 

are shown (Nu). d. Tight junctions (arrowhead) form a seal around the lumen 

(Lu). Also shown is an adjacent adherens junction (arrow). Microvilli are depicted 

(Mv). Mitochondria (asterisk) and intracellular vesicles are well preserved. e. and 

f. Concomitant with induced milk protein expression in hormone induced 3D 

cultures of organoids, the rough endoplasmatic reticulum is prominent 

(arrowheads). Scale bars: (a) 10 µm; (b) 2 µm; (c,e-f) 1 µm; (d) 500 nm. 

 

Figure 5. Multiscale imaging of OHCs. a. Low magnification overview of organ 

of Corti strip containing OHCs in tube after HPF/FS and flat embedding. b. An 

optical section from an LSM confocal stack shows three intact rows of OHCs 

using AlexaFluor555-phalloidin to stain actin. c. A TEM image of an axial cross-

section from the middle of an OHC; arrowheads indicate mitochondria. The 

orientation of the section is indicated by the dashed line in the inset cartoon of 

the cylindrical OHC at top right, with apical hair bundle (HB) and nucleus (N) 

depicted. Dark staining outside the cell is the BSA used as filler and cryo-

protectant; the nucleus is at the basal pole of this cell, and thus not seen in this 

micrograph. d-f. Tomography of the region indicated by the box in (c). In the 

projection image (d) and selected mid-tomogram slice (e), the adjacent cell has 

been masked out in gray for clarity. Arrowheads in (e) indicate individual 

ribosomes; internal membranes are clearly visible along with cytoskeletal detail. 



In (f), the plasma membrane (PM, red) and first two cisterns of SSC (blue and 

yellow) are rendered on top of a single slice from the tomogram, showing the 

curvature and continuity of the SSC in relation to the PM. Scale bars: (a) 200 µm; 

(b) 50 µm; (c) 2 µm; (d-f) 100 nm.
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