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Exp6-polar thermodynamics of dense supercritical water
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Abstract

We introduce a simple polar fluid model for the thermodynamics of dense supercritical water

based on a Buckingham (exp-6) core and point dipole representation of the water molecule. The

proposed exp6-polar thermodynamics, based on ideas originally applied to dipolar hard spheres,

performs very well when tested against molecular dynamics simulations. Comparisons of the model

predictions with experimental data available for supercritical water yield excellent agreement for

the shock Hugoniot, isotherms and sound speeds, and are also quite good for the self-diffusion

constant and relative dielectric constant. We expect the present approach to be also useful for

other small polar molecules and their mixtures.
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The properties of water remain a source of much interest and fascination for scientists and

non-scientists alike [1]. This is certainly due in part to its crucial role in the development

and evolution of biological, i.e. live, systems, but understanding the behavior of water at a

fundamental level is also of major importance to geoscience, environmental sciences, plane-

tary modeling and numerous industrial applications. For many of the latter circumstances

the relevant thermodynamic regimes include pressures and temperatures much higher than

ordinarily encountered. Examples of such “extreme” states of water can be found in prob-

lems ranging from the physics and chemistry of the giant planets [2], dynamics of the Earth’s

mantle [3] and origin of the Earth’s hydrocarbons [4], to supercritical water oxidation tech-

nologies [5]. The breadth of the experimental research efforts covering the equilibrium (and

more recently nonequilibrium [6]) properties of water at high pressures and temperatures

is too large to be detailed here. On the theoretical side simulations based on a variety of

models [7] continue to provide important insights into the behavior of water under a wide

range of thermodynamic conditions, while empirical equations of state [8, 9] help guide both

practical applications and modeling efforts. In the last decade molecular dynamics simula-

tions based on the density functional theory (DFT) have also contributed significantly to

our understanding of water[10, 11]. Nevertheless, classical empirical models of water re-

main very successful in capturing its behavior under a broad spectrum of conditions. These

models, which usually assume a rigid geometry, point charges and no polarizability [12, 15]

remain much studied [17] due to their effectiveness and versatility; enhanced variants of this

basic motif have also been considered [16]. Despite their simplicity such representations

of the water molecule are still too complicated to be efficiently analyzed with the tools of

statistical mechanics. As a result, water equations of state are usually not based on the mi-

croscopics of the water molecule, but typically are highly parametrized fits of experimental

results, simulation results or both. Previous efforts to construct equations of state that more

directly account for the molecular properties of water have sometimes relied on spherical

averaging, leading to temperature dependent potentials [18], or representations of the asso-

ciative character of the water molecule based on multiple species [19]. Unfortunately polar

interactions are not amenable to useful spherical approximations [20], while multi-species

models, although practical, are rather ad hoc.

In the present paper we wish to narrow the disconnect between the molecular properties

of water and its fluid thermodynamics, particularly in the supercritical region, and therefore
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to facilitate accurate and fast equation of state predictions for water (and ultimately water

mixtures) in an extensive domain of pressures and temperatures. Even though our model is

necessarily limited in its scope - it does not account for example for the dissociation observed

in highly compressed water - we expect it to be useful up to significantly high pressures and

temperatures, roughly bounded by 15GPa and 2000K.

To this end we propose a representation of the water molecule consisting of a Buckingham

exp-6 core and a central point dipole. This is certainly a much simplified picture, but one

that we believe preserves the molecular features that are likely to be most important at

supercritical conditions. This representation is in fact not very different than typical water

models such as SPC [12] and its later versions, which assume van der Waals type interactions

between the oxygens and place partial charges on both the oxygen and the point hydrogens,

thereby yielding the expected dipole moment. Our description preserves the polar character

of the water molecule and its effect on long distance interactions, as well as some, but

clearly not all the short range electrostatic correlations. After all, hydrogen bonding in

water leads to the formation of a tetrahedral network which cannot be reproduced by point

dipole interactions alone. Nevertheless, at high densities and temperatures the short range

repulsive interactions are known to play the dominant role, e.g. in typical simple liquids, and

despite its complexity water appears to be no exception [21, 22]. Therefore, in a significant

domain of supercritical conditions the electrostatic interactions in water can likely be treated

as perturbations acting on the structure determined by the strong oxygen-oxygen repulsions,

and the point dipole description is then the simplest approximation. Our view of supercritical

water is thus that of a simple polar fluid, similar with the fluids originally considered by

Stell and coworkers [23, 24]. Their analysis of the quintessential simple polar fluid - dipolar

hard spheres - showed that its thermodynamics is very well described by a perturbation

theory that uses the hard spheres fluid as a reference, particularly when employing a Padé

approximant summation of the perturbation series. Additional approximations also yield an

analytical description of the thermodynamics of the polar fluid with a Lennard-Jones core

[23, 25, 26], i.e. Stockmayer fluid, employed for example in [27].

Our water model on the other hand uses an exp-6 core,

u(r) = ε

[

Ae
−α r

r0 − B
(r0

r

)6
]

(1)

A = 6eα/(α−6), B = α/(α−6), which is known to be effective in the modeling of hot, dense
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non-polar fluids [28]. This potential has also been shown to be superior to the Lennard-Jones

one as a representation of the the oxygen-oxygen interaction in water [15]. Our approach to

the thermodynamics of this system is detailed below.

Let f = F/NkBT be the excess reduced Helmholtz free energy. Then, treating the

dipole-dipole interaction as a perturbation, f can be expanded in powers of µ2 (µ - dipole

moment):

f = f0 + f2 + f3 + ... = f0 + ∆fd (2)

where f0 corresponds to the reference exp-6 fluid and f1 vanishes [24].

For the calculation of f0 we employ the Mansoori-Canfield variational method [29] as

augmented by Ross [30]:

f0(ρ, T ) ≤ fhs(η) + 12ηβ

∫

∞

1

s2ghs(s; η)u(σs)ds + ∆fRoss(η) (3)

, where η = πρσ3/6, fhs(η) and ghs(s; η) are the excess free energy and pair-correlation

function of the hard spheres system, respectively, and ∆fRoss(η) is the Ross correction.

f0(ρ, T ) is then determined by the minimum of the right-hand side with respect to the hard

sphere diameter σ, attained for a value σ0.

Following Stell et al. [24] we would now like to calculate the polar contribution ∆fd by

using a Padé summation of the dipole perturbation series, ∆fd = f2/(1 − f3/f2). Unfor-

tunately the determination of f2 and f3 requires the 2-particle and 3-particle correlation

functions of the reference system [24], which are unavailable. To make further progress we

use therefore the hard spheres fluid with diameter σ0 as a reference, instead of the exp-6

fluid. This allows us to employ the analytical representations available for the hard spheres

system. Explicitly, we use

f2 == −
ρ∗β2

dI
hs
6

(ρ∗)

6
(4a)

f3 =
ρ∗2β3

dI
hs
ddd(ρ

∗)

54
(4b)

, where ρ∗ = ρσ3
0
, βd = µ2/kBTσ3

0
, and Ihs

6
, Ihs

ddd are pair and triple integrals of the dipole

perturbation with the hard sphere fluid distribution functions, which have been accurately

parameterized in [31].

Equations 2 − 4 then yield the full thermodynamics of the proposed exp6-polar water

model, and we wish to test its predictions using molecular dynamics simulations. Accord-

ingly, we performed such simulations using 500 to 1372 molecules in the NV T ensemble, at
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temperatures T = 720K, 1400K, and 2000K, and densities up to 1.8g/cc. The electrostatic

interactions were handled using the Ewald summation technique with conducting boundary

conditions. The potential parameters used were ε/kB = 222.3K, r0 = 3.535Å, α = 11.47 and

dipole moment µ = 2.188D. (Mass was m = 18m0 and moment of inertia I = 1.25m0Å
2;

m0 - atomic mass unit.) The length of the runs was 50 − 100ns.

The calculated thermodynamic quantities included the standard ones, e.g. pressure and

energy, as well as the self-diffusion coefficient D and relative dielectric constant εr of the

system. D was calculated using the familiar velocity autocorrelation relation:

D = lim
t→∞

1

3

∫ t

0

〈vi(0) · vi(τ)〉dτ (5)

with no tail corrections. The dielectric constant is related by linear response theory to the

fluctuations of the dipole moment of the system, M =
∑

i µi [32]. For conducting boundary

conditions the result is

εr = 1 +
4π

3

〈M2〉

V kBT
(6)

, which can also be written as εr = 1+3yg, with y = 4πρµ2/9kBT a dimensionless parameter

and g = 〈M2〉/Nµ2 the Kirkwood correlation factor. Such fluctuations-based estimates

typically require very long runs to achieve reasonable accuracy, which is the reason our

simulations extended well into the tens of nanoseconds duration.

To make theoretical predictions for D we turn to entropy scaling ideas [33–36], connecting

the self-diffusion constant (and in particular its variation relative to the low density limit

[35, 36]) to the excess entropy of the system. Since results for the diffusion constant at low

densities are not available for the present exp6-polar system (or the dipolar hard spheres),

we simply calculate D for the reference exp-6 fluid using the variational effective hard sphere

diameter σ0 [35, 36]:
D

DBχ
= exp (γse/kB) (7)

DB is the low density (Boltzmann) diffusion coefficient, χ is the contact value of the hard

spheres pair correlation function, se is the excess entropy and γ = 0.8 a numerical constant.

For the dielectric constant we employ the dipolar hard spheres perturbation theory of Tani

et al. [37]

εr = 1 + 3y + 3y2 + 3y3

[

9Idd∆(ρ∗)

16π2
− 1

]

(8)

again using the effective hard sphere diameter σ0.
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The simulation results are compared with theoretical predictions in Figs. 1 and 2. Ob-

viously as far as equation of state calculations are concerned the agreement between simu-

lations and theoretical predictions - Eqs. 2-4 - is very good for the energy, and even better

for the pressure. Moreover, the predictions for D and εr also appear to agree very well with

simulations. The larger deviations observed for the dielectric constant at low temperatures

and high densities are likely due to the system approaching freezing. The very good quality

of the agreement between the diffusion coefficient calculated in the simulations and the en-

tropy scaling result is somewhat surprising, since the prediction, as noted before, is actually

for the reference exp-6 system, i.e. without the dipole. This suggests therefore that at the

thermodynamic conditions of interest here the effect of the point dipole on self-diffusion is

rather small and that “caging” effects remain dominant.

Since the testing of the proposed thermodynamics has been successful, we would like

to compare it now with available experimental data for supercritical water. Predicting

thermodynamic properties in this regime has been our clearly stated goal. Nevertheless,

although beyond the scope of our present undertaking, we start with a comparison between

the experimentally determined structure of water and that found in the MD simulations.

We show in Fig. 3 the structure factor at T = 723K and P = 0.1GPa, as measured in

Ref. [38], and the MD result at T = 720K and P = 0.13GPa. The agreement is essentially

only qualitative, as expected for the model employed here and the low temperature and

pressure involved. Better agreement is however possible and likely at higher densities and

temperatures, where the role of hydrogen bonding should further decrease.

In Fig. 4 we show comparisons of the model predictions with the water shock Hugoniot

[39], isotherms of Withers et al. [40], and sound speed data of Abramson and Brown [41],

all indicating excellent agreement. Moreover, the model estimates for the critical density

and temperature of water are ρc ' 0.32g/cc and Tc ' 710K, which compare at least as well

as other models (e.g. for SPC water ρc ' 0.27g/cc and Tc ' 594K) with the experimental

values - ρexp
c = 0.322g/cc, T exp

c = 647.1K. The comparison with available self-diffusion and

dielectric constant data - Fig. 5, is not as accurate as for the equation of state, but the

predictions remain very meaningful.

In conclusion, we introduced a new model for the thermodynamics of dense supercritical

water based on a Buckingham (exp-6) core and point dipole representation of the water

molecule. The present paradigm reproduces very well equation of state type experimental

6



data available, including Hugoniot, isotherms and sounds speeds, and in addition produces

very satisfactory predictions for the self-diffusion constant and relative dielectric constant.

This approach should prove useful for other small polar molecules as well, e.g. NH3, HF ,

HCl etc., and can be easily generalized to polar-nonpolar mixtures. As a result, it should be

particularly useful for complex chemical equilibrium calculations, such as the ones performed

in Ref. [4] or those typically encountered in planetary or detonation modeling.

This work was performed under the auspices of the U. S. Department of Energy by

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
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[5] H. Weingärtner, E.U. Franck, Angew. Chem. Int. Ed. 44, 2672 (2005).

[6] M. Bastea, S. Bastea, J.E. Reaugh, D.B. Reisman, Phys. Rev. B 75, 172104 (2007).

[7] See, e.g., B. Guillot, J. Mol. Liq. 101, 219 (2002).

[8] K.S. Pitzer, S. M. Sterner, J. Chem. Phys. 101, 3111 (1994).

[9] W. Wagner, A. Prub, J. Phys. Chem. Ref. Data 31, 387 (2002).

[10] N. Goldman, L.E. Fried, I.F.W. Kuo, C.J. Mundy, Phys. Rev. Lett. 94, 217801 (2005).

[11] E. Schwegler, G. Galli, F. Gygi, R.Q. Hood, Phys. Rev. Lett. 87, 265501 (2001).

[12] F.H. Stillinger, A. Rahman, J. Chem. Phys. 60, 1545 (1974).

[13] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impley, M.L. Klein, 79, 926 (1983).

[14] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987).

[15] J.R. Errington, A.Z. Panagiotopoulos, J. Phys. Chem. B 102, 7470 (1998).

[16] B. Guillot, Y. Guissani, J. Chem. Phys. 114, 6720 (2001).

[17] J.L.F. Abascal, C. Vega, Phys. Rev. Lett. 98, 237801 (2007).

[18] F.H. Ree, J. Chem. Phys. 76, 6287 (1982).

[19] L.E. Fried, W.M. Howard, J. Chem. Phys. 110, 12023 (1999).

7



[20] D. MacGowan, D.B. Nicolaides, J.L. Lebowitz, and C.-K. Choi, Mol. Phys. 58, 131 (1986).
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FIG. 1: Comparison of simulation results (symbols) and predicted thermodynamics (lines) (rela-

tions 2 - 4 in the text); T = 720K (circles), 1400K (diamonds), and 2000K (squares).
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FIG. 2: Comparison of simulation results (symbols) and theoretical predictions (lines) (relation 7

for self-diffusion constant D and 8 for relative dieletric constant εr); T = 720K (circles), 1400K

(diamonds), and 2000K (squares).
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FIG. 3: Experimental strucure factor of water at T = 723K and P = 0.1GPa [38] (symbols) and

MD simulations result at T = 720K and P = 0.13GPa (line).
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FIG. 4: Comparison of experimental results (symbols) and proposed water thermodynamics (rela-

tions 2 - 4 with ε/kB = 222.3K, r0 = 3.535Å, α = 11.47, µ = 2.188D). Water Hugoniot (circles) -

Ref. [39], T = 983K and 1373K isotherms (triangles) - Ref. [40], sound speed at T = 673K (inset

- diamonds) - Ref. [41].
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self-diffusion constant D and 8 for εr). Self-diffusion constant D at T = 973K (squares) - Ref.

[42], and relative dieletric constant εr at T = 773K - Ref. [43].
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