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Abstract

In many applications of age- and size-structured population models, there is an interest in obtaining

good approximations of total population numbers rather than of their densities. Therefore, it is reasonable

in such cases to solve numerically not the PDE model equations themselves, but rather their integral

equivalents. For this purpose quadrature formulae are used in place of the integrals. Since quadratures

can be designed with any order of accuracy, one can obtain numerical approximations of the solutions

with very fast convergence. In this paper we present a general framework and a specific example of

a fourth-order method based on composite Newton-Cotes quadratures for a size-structured population

model.
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1 Introduction

Age- and size-structured models have evolved from the simple, unstructured ones that date

back to Malthus’s model of the late XVIIIth century that consisted of just a single ordinary

differential equation. Modern models may involve several interacting populations (predator-

prey models, species competing for resources, etc.) and/or internal structures of a single

population through discrete (e.g. epidemic class, gender, race) or continuous variables (e.g.

age, size, duration of infection).

When solved numerically, such systems can require considerable time and memory as they

usually consist of combinations of ordinary and partial differential equations and integral

equations that depend on several independent variables.

The published numerical methods for the approximation of the solutions to these models

fall into one of three categories: methods based on the explicit analytic form of the solution

by integration along characteristics, finite difference methods of characteristics, and finite

difference methods for first order hyperbolic equations. All of these address the problem

of approximating the age or size density of the population directly (solution of a partial

differential equation) rather than the total population size and total birth rate, for example.

For a very thorough review of published numerical methods for these models we refer the

reader to [2].

An excellent source for a summary description of published methods for size-structured

equations and some of their main features is [1].

Just to mention a few of the methods published, when the model is linear, i.e. linear

µ, β, [12] uses spline functions and trapezoidal rule; [4] describes a numerical scheme based

on Runge-Kutta methods along the characteristics. For nonlinear equations [5] provides a
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continuation of the previous paper [4] that generalizes the method described therein using

Runge-Kutta methods on the characteristics coupled with iterations to resolve the nonlin-

earities.

The third-order explicit method for nonlinear size-structured equations, presented in [13]

is based on a combination of a discretization along the characteristics of the equation for u

and a discretization of a differential equation for P .

However, when performing numerical simulations, we are often not so interested in the

values of the density functions as in the values of the total population number or the size

of certain age- or size-classes. Therefore, in such instances it is reasonable to solve numer-

ically not the partial differential equations themselves, but rather their integral equivalent

formulation. For this purpose, numerical methods that use quadrature formulae in place

of the integrals can be designed. Since quadratures can be computed with any order of

accuracy when the integrand is a smooth function, in such cases we can obtain numerical

approximations of the solutions to the integral model equations with fast convergence. More-

over, integral equation methods frequently require less regularity of the solution than partial

differential equation methods do. The main purpose of the present work is to describe nu-

merical methods based on integral equations that model age- and size-structured population

dynamics.
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2 The Model Partial Differential Equations and Their Integral

Equivalent

The classical size-structured model we shall consider has the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut + g(x)ux = −µ(x, P (t))u(x, t)

u(0, t) = B(t) =

∫ A

0

β(x, P (t))u(x, t)dx

u(x, 0) = φ(x),

(2.1)

where t ∈ [0, T ], x ∈ [0, A]. The dependent variable u(x, t) is the size-density of the popu-

lation at time t, while P (t) =
∫ A

0
u(x, t)dx represents the size of the whole population; g(x)

is called the growth function and is assumed that g(x) > 0, x ∈ [0, 1). Some authors assume

that g(x) → 0 as x → A to ensure that individuals do not grow infinitely. We shall not

impose this requirement but, in the case when it is satisfied, we shall assume that the initial

distribution has compact support [0, a∗] ⊂ [0, A)—that is, if g(A) = 0, then φ(x) = 0 for

a∗ ≤ x < A.

For simplicity and with no loss of generality, we assume that A = 1.

For the purpose of our analysis, we shall assume that all coefficients in (2.1), β, µ, and g

possess sufficiently many derivatives in all their variables.

We remark that in the case g(x) ≡ 1, the resulting model is the usual age-structured one

due to McKendrick and von Foerster [14],[16] in its nonlinear form studied by Gurtin and

MacCamy [10].

The growth function g(x) describes the rate of change of size in time, so that the char-

acteristic curves in the xt-plane starting at points on the boundary of the first quadrant, Γ,
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satisfy the equation

dx

dt
= g(x), (2.2)

with initial condition

(x0, t0) ∈ Γ = Γ1 ∪ Γ2,

Γ1 = {x = 0, t ≥ 0}, Γ2 = {x ≥ 0, t = 0}.
(2.3)

Obviously, the solution of (2.2) is

t− t0 =

∫ x

x0

1

g(x)
dx. (2.4)

Let θ(x; x0, t0) = t = t0 +
∫ x

x0

1
g(s)

ds, and note that this is an increasing function. Let

χ(t; x0, t0) = θ−1(t; x0, t0) denote the inverse function of θ. We now have that both repre-

sentations

C(x0, t0) =
{
t = θ(x; x0, t0), x ∈ [0, 1)

}
=

{
x = χ(t; x0, t0), t ∈ [0, T )

}

describe the characteristic curve starting at (x0, t0) ∈ Γ. The characteristic C(0, 0) has a

special significance. It separates the set of charateristic curves starting on Γ1 from those

starting on Γ2. To simplify our notation, denote σ(t) = χ(t; 0, 0), i.e. C(0, 0) =
{
x =

σ(t), t ∈ [0, T )
}

.

Denote by S the rectangle in which the solution of (2.1) is sought,

S =
{
(x, t) : x ∈ [0, A), t ∈ [0, T ]

}
.

Proposition 2.1. To each pair (x, t) ∈ S, there corresponds a unique pair (x0, t0) ∈ Γ, such

that (x, t) ∈ C(x0, t0) and such that if x ≤ σ(t), then (x0, t0) ∈ Γ1 and if x > σ(t), then

(x0, t0) ∈ Γ2.

Proof. It is obvious that if such a pair (x0, t0) ∈ Γ exists, it is unique.
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a) If t−∫ x

0
1

g(s)
ds ≥ 0, i.e. if x ≤ σ(t), then x0(x, t) = 0, t0(x, t) = t−∫ x

0
1

g(s)
ds = θ(0; x, t),

satisfies (2.4). Obviously, (x0, t0) ∈ Γ1.

b) If t−∫ x

0
1

g(s)
ds < 0, i.e. if x > σ(t), then we check that x0(x, t) = χ(0; x, t), t0(x, t) = 0

satisfy (2.4) i.e. (x0, t0) ∈ Γ2.

Proposition 2.2. The solution of (2.1) can be written as

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

B
(
θ(0; x, t)

)
e−

∫ t
θ(0;x,t)

µ(χ(τ ;0,θ(0;x,t)),P (τ)) dτ , if x < χ(t; 0, 0),

φ
(
χ(0; x, t)

)
e−

∫ t
0

µ(χ(τ ;χ(0;x,t),0),P (τ))dτ , if x > χ(t; 0, 0).

(2.5)

Proof. The technique of integration along characteristics is used.

Let (x, t) ∈ S. We take x0 = x0(x, t), t0 = t0(x, t) as the unique pair (x0, t0) ∈ Γ

that lies on the characteristic curve through (x, t). Then u(x, t) = u(χ(t; x0, t0), t). Let

ω(t) = u(χ(t; x0, t0), t). Then ω(t) obeys the first-order equation

ω′(t) = ux(χ(t; x0, t0), t) g(χ(t; x0, t0))+ut(χ(t; x0, t0), t) = −µ(
χ(t; x0, t0), P (t)

)
ω(t), (2.6)

which can be solved ”implicitly” due to the presence of P (t) in the right-hand side of (2.6).

According to Proposition 2.1,

ω(t0) = u(x0, t0) =

⎧⎪⎪⎨
⎪⎪⎩

B(t0) = B(θ(0; x, t)), if (x0, t0) ∈ Γ1,

φ(x0) = φ(χ(0; x, t)), if (x0, t0) ∈ Γ2.

(2.7)

Integrating the ODE (2.6) and using the initial condition (2.7), we obtain (2.5).

Equation (2.5) is a generalization of a similar integral form in the case of age-structured

systems [11], when g ≡ 1 that has not been derived in detail previously.
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Note that equation (2.5) can be written in the concise form

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

UB(θ(0; x, t), t), if x < χ(t; 0, 0),

Uφ(χ(0; x, t), t), if x > χ(t; 0, 0),

(2.8)

where

UB(z, t) = B(z)e−
∫ t

z
µ(χ(τ ;0,z),P (τ))dτ ,

Uφ(z, t) = φ(z)e−
∫ t
0

µ(χ(τ ;z,0),P (τ))dτ .

(2.9)

Now we can derive a system of integral equations in P and B, respectively by integrating

(2.8) and β times this equation, in the variable x, x ∈ [0, 1]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (t) =

∫ σ(t)

0

UB

(
θ(0; s, t), t

)
ds+

∫ 1

σ(t)

Uφ

(
χ(0; s, t), t

)
ds,

B(t) =

∫ σ(t)

0

β
(
s, P (t)

)UB

(
θ(0; s, t), t

)
ds+

∫ 1

σ(t)

β
(
s, P (t)

)Uφ

(
χ(0; s, t), t

)
ds.

(2.10)

Let us introduce the following variables:

w = θ(0; s, t) = t+

∫ 0

s

1

g(q)
dq

in the first integral of each equation in (2.10), and

v = χ(0; s, t)

in the second integral of each equation in (2.10). Note that the range of w is from t to 0,

and that of v from 0 to χ(0; 1, t).

Obviously, dw = − ds
g(s)

and s = χ(t; 0, w), i.e. ds = −g(χ(t; 0, w))dw. Also, for a given fixed

t, since t =
∫ s

v
1

g(q)
dq and s = χ(t; v, 0), we have ds = g(χ(t;v,0))

g(v)
dv.
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Thus, the integral equations (2.10) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (t) =

∫ t

0

UB(w, t)g(χ(t; 0, w)) dw+

∫ χ(0;1,t)

0

Uφ(v, t)
g(χ(t; v, 0))

g(v)
dv,

B(t) =

∫ t

0

β(χ(t; 0, w), P (t))UB(w, t)g(χ(t; 0, w)) dw+

∫ χ(0;1,t)

0

β(χ(t; v, 0), P (t))Uφ(v, t)
g(χ(t; v, 0))

g(v)
dv.

(2.11)

Now, let us substitute (2.9) back into (2.11) to obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (t) =

∫ t

0

B(w)e−
∫ t
w

µ(χ(τ ;0,w),P (τ)) dτg(χ(t; 0, w)) dw+

∫ χ(0;1,t)

0

φ(v)e−
∫ t
0

µ(χ(τ ;v,0),P (τ)) dτ g(χ(t; v, 0))

g(v)
dv,

B(t) =

∫ t

0

β(χ(t; 0, w), P (t))B(w)e−
∫ t
w µ(χ(τ ;0,w),P (τ)) dτg(χ(t; 0, w)) dw+

∫ χ(0;1,t)

0

β(χ(t; v, 0), P (t))φ(v)e−
∫ t
0 µ(χ(τ ;v,0),P (τ)) dτ g(χ(t; v, 0))

g(v)
dv.

(2.12)

The value of χ(0; 1, t) is well defined if g(1) �= 0. Otherwise, we assume that χ(0; 1, t) = 1

and that φ(1) = 0 as was mentioned in the beginning of this section. This last assumption

ensures the convergence of the second integrals in each equation of (2.12).

Therefore, if u(x, t) is a solution to the size-structured problem (2.1), then P (t) and B(t)

satisfy (2.12). Conversely, if P (t) and B(t) are solutions of (2.12), then it is easy to check

that u(x, t) given by (2.5) is a solution to (2.1). The existence of a unique solution of (2.1)

or, equivalently, (2.12), is established, for example, in [3], [9].

Selecting N ∈ N to represent the number of time steps we want to take, our idea is to

approximate P (t) and B(t) for t = ti = ih, 0 ≤ i ≤ N , with a given step-size h so that

NH ≥ T . When the coefficients of the system are sufficiently smooth, this can be done with

an order of accuracy s as high as desired, provided that the right quadrature formulae are
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chosen, that the ordinary differential equation for the characteristic curves is solved with

the same accuracy, and that one takes care of choosing with this same accuracy the initial

values P (ti), B(ti), 0 ≤ i ≤ k, where the value of k depends on the order of accuracy s

(more details will be given in Section 4).

3 The Case of Linear Death Rates

If µ is a function of size only, i.e. µ = µ(x) (the birth rate β may still be nonlinear),

the numerical approximation problem becomes considerably easier. In such a case (2.12)

becomes a system of Volterra integral equations of the second kind and of the form⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X(t) =

∫ t

0

Y (w)K(w, t) dw+ V (t),

Y (t) =

∫ t

0

Y (w)κ
(
w, t,X(t)

)
K(w, t) dw + U(t, X(t)),

(3.1)

where K(w, t) = g(χ(t; 0, w))e−
∫ t
w

µ(χ(τ ;0,w))dτ , κ(w, t, P ) = β(χ(t; 0, w), P ) and V and U are

the second integrals in the two equations of (2.12).

We shall outline now a method to find an approximate solution of a system of the type

(3.1) with global error of the order O(h4). In principle, similar algorithms with higher order

of accuracy can be formulated following the same ideas if quadrature rules of higher accuracy

are used.

3.1 Some Composite Quadrature Rules

The Newton-Cotes quadrature rules we shall use are of closed and of open type. The former

use the values of the integrand function at the end-points of the interval of integration, the

latter do not. Suppose that the integral

∫ b

a

f(τ) dτ is to be approximated by splitting the
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interval [a, b] = [tp, tp+r] into r subintervals of equal length h = b−a
r

. The r + 1 endpoints of

those subintervals, tp+j = a + jh, 0 ≤ j ≤ r, are called the integration nodes.

Definition 4.1: A family of quadrature formulas h
∑r

j=0 q
r
jf(tp+j) has order s if for all

sufficiently smooth f the approximation error Eh(f) =

∣∣∣∣∣
∫ b

a

f(t) dt− h

r∑
j=0

qr
jf(tp+j)

∣∣∣∣∣ satisfies

Eh(f) = O(hs) as h→ 0. We denote

Qs
h[f ; p, r] = h

r∑
j=0

qr
jf(tp+j). (3.2)

The numbers s and r are not arbitrary, there is a minimum value for r, so that the desired

order of accuracy can be attained. For example, if s = 5, the value of r can be 2, 3, 4 or 5.

Namely, for r = 2, this is Simpson’s rule (closed formula),

Q5
h[f ; p, 2] =

h

3
[f(tp) + 4f(tp+1) + f(tp+2] =

∫ tp+2

tp

f(x) dx+
1

90
f (4)(ξ)h5. (3.3)

If r = 3, this is the closed formula

Q5
h[f ; p, 3] =

3h

8
[f(tp) + 3f(tp+1) + 3f(tp+2) + f(tp+3)] =

∫ tp+3

tp

f(x) dx+
3

80
f (4)(ξ)h5.

(3.4)

For r = 4, this is the open formula

Q5
h[f ; p, 4] =

4h

3
[2f(tp+1) − f(tp+2) + 2f(tp+3)] =

∫ tp+4

tp

f(x) dx− 28

90
f (4)(ξ)h5 (3.5)

Finally, if r = 5, we have the open formula

Q5
h[f ; p, 5] =

5h

24
[11f(tp+1) + f(tp+2) + f(tp+3) + 11f(tp+4)]

=

∫ tp+5

tp

f(x) dx− 95

144
f (4)(ξ)h5

(3.6)
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If r > 5, the order of accuracy is higher than 5. If s = 7, then r can be 4, 5, 6 or 7, i.e.

given s, r = s− 3, s− 2, s− 1, s; see [8].

Note that the remainder term that gives the accuracy of each formula is of the form

Cf (k)(ξ)hs, for some ξ ∈ (a, b) and has a smaller constant C for closed-type formulae than

for the comparable open-type ones.

Composite Newton-Cotes quadrature rules are formed by splitting the interval of integra-

tion [0, tj] into j subintervals of equal length h, then representing j as a sum j = r1 + ...+ rσ

and using on each interval of length rlh a quadrature formula with rl + 1 integration nodes.

Given that closed-type formulae introduce smaller errors than corresponding open-type

ones, we want to use a composite quadrature formula formed of just one open-type formula

applied on the last subinterval and only closed-type formulae on the other subintervals, all

quadratures having the same accuracy O(hs).

3.2 A Newton-Cotes Numerical Method with Local Error O(h5)

Let us consider the system (3.1) for (x, t) ∈ S. Assume that for each x and w,X(·), Y (·), K(x, ·),

κ(x, ·, w) ∈ C4(0, T ). Let h = 1
M

be a given step-size. Denote ti = ih,X(ti) = Xi, Y (ti) = Yi,

for 0 ≤ i ≤ N, where Nh ≥ T . Also, denote wl = lh,K(wl, ti) = K l
i , κ(wl, ti, Xi) = κl

i.

Consider a fixed time t = tn, n ≥ 6. We shall use a quadrature formula with 5 nodes

(open type) on the interval [tn−4, tn] and composite quadratures, each with 3 or 4 nodes

(closed type) on the interval [0, tn−4] to approximate the integrals in (3.1). It is easy to see

that if n ≥ 6, combinations of closed formulae with 3 or 4 nodes can be used to construct

composite rules with accuracy O(h5). On the other hand, for n = 5 a composite formula

that includes one open type rule (with 5 nodes) is not possible with accuracy O(h5). We
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insist on using an open-type rule on the final subinterval because in this way the calculation

of the approximate solutions of (3.1) is explicit. To formulate an explicit method, we need to

approximate the unknowns Xi, Yi, 0 ≤ i ≤ 5, with accuracy O(h5) using a procedure called

initialization that is described in Section 3.4.

For now we shall assume that Xi and Yi, 0 ≤ i ≤ 5, are known with accuracy O(h5). Let

X̃i, Ỹi, 0 ≤ i ≤ 5, be approximate values such that

max
0≤i≤5

{
|Xi − X̃i|, |Yi − Ỹi|

}
< C1h

5. (3.7)

Since K(x, t), V (t) are known functions, independent of X and Y , K(lh, ih) and V (ih) can

be approximated with fifth-order accuracy:

max
0≤i≤l≤N

{∣∣∣K(lh, ih) − K̃ l
i

∣∣∣ , ∣∣∣V (ih) − Ṽi

∣∣∣ , }
< C2h

5. (3.8)

Also, whenever X̃i, 0 ≤ l ≤ i is known, κ(lh, ih, X̃i) and U(ih, X̃i) can be approximated as

κ̃l
i[X̃i] and Ũi with

∣∣∣κ(lh, ih, X̃i) − κ̃l
i[X̃i]

∣∣∣ < C2h
5; |U(ih, X̃i) − Ũi| < C2h

5. (3.9)

Since κ(w, t, P ) = β
(
χ(t; 0, w), P

)
, it suffices to obtain a fifth-order approximation of χ(t; 0, w)

and this can be accomplished, for example, using the fifth-order Runge-Kutta method for

the ODE that defines χ,

dχ(t; 0, w)

g
(
χ(t; 0, w)

) = −dw.

Xi, Yi, X̃i, Ỹi, Ṽi, Ui, Ũi are discrete functions defined on I = {0, 1, ..., N}. Also, for each

fixed i, and variable l such that 0 ≤ l ≤ i, K l
i , K̃

l
i , κ

l
i, κ̃

l
i[X̃i] are discrete functions defined on

I = {0, 1, ..., N}.

Let us define a quadrature rule for such functions in a similar way as (3.2). If f̃ is a
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discrete function defined on I, then

Q5[f̃ ; p, r] = h

r∑
j=0

qr
j f̃p+j, , (3.10)

where p+ r ≤ N and qr
j are the same as in (3.3)–(3.5).

We proceed now to define our numerical method by finding approximations X̃i, of Xi and

Ỹi of Yi, 6 ≤ i ≤ N , in the following way:

X̃i = Q5[Ỹ K̃i; i− 4; 4] +

Li∑
q=1

Q5

[
Ỹ K̃i;

q−1∑
p=1

mp;mq

]
+ Ṽi, (3.11)

where mq takes the values 2 or 3 and
∑Li

q=1mq = (i− 4).

We use this value to calculate

Ỹi = Q5
[
Ỹ κ̃i[X̃i]K̃i; i− 4; 4

]
+

Li∑
q=1

Q5

[
Ỹ κ̃i[X̃i]K̃i;

q−1∑
p=1

mp;mq

]
+ Ũi. (3.12)

Also, from (3.1) we can write:

Xi = Q5[Y Ki; i− 4, 4] +

Li∑
q=1

Q5[Y Ki;

q−1∑
p=1

mp, mq] + Vi + E1
i (h), (3.13)

Yi = Q5[Y κi[Xi]Ki, i− 4; 4] +

Li∑
q=1

Q5[Y κi[Xi]Ki;

q−1∑
p=1

mp, mq] + Ui + E2
i (h). (3.14)

E1
i , E

2
i are the errors from replacing the integrals in (3.1) with quadratures. Since the

local error when replacing an integral on an interval with length 2h or 3h or 4h is O(h5),

then

|E1
i (h)| ≤ C3h

4, |E2
i (h)| ≤ C3h

4.

One can define many composite formulae of the type (3.11)–(3.12) since even if the rep-

resentation of n were a unique combination of multiples of 2 and 3 that led to quadrature
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rules with 3 or 4 nodes respectively, these rules could be applied in different orders. This is

the reason we define the following method.

Method of formation of composite rules:

1. Given n ≥ 6, we find uniquely m, l ∈ N0 such that n−4 = 2m+3l: l = n mod(2), m =

n−4−3l
2

− l.

2. We then form the composite rule

m∑
i=1

Q5[f ; (i− 1)2, 2] +

l∑
i=1

Q5[f ; 2m+ (i− 1)3, 3] + Q5[f ;n− 4, 4],

i.e. the 3-node quadratures come first, the 4-node quadrature follows and finally, on the last

interval of length 4h, a 5-node open formula is used. If m = 0 or l = 0, no summation is

performed.

3.3 Convergence and Global Error

Let ψi = |Xi − X̃i|; ηi = |Yi − Ỹi|, i = 0, 1, ..., N .

For each n ≥ 6 and i = n we can subtract (3.11) and (3.12) from (3.13) and (3.14)

respectively and bound the differences as follows:

ψn ≤ h
n−1∑
i=6

qC4ηi + C0h
5 + C2h

5 + C3h
4

and

ηn ≤ h
n−1∑
i=6

qC5ηi + h
n∑

i=6

qC6ψi + C0h
5 + C2h

5 + C3h
4,

where q = maxr,i |qr
i |, while C4, C5, C6 are constants incorporating upper limits for X, Y,K,

and κ. C0 ≤ 6qC1 max(C4, C5, C6) comes from the evaluation of the error in the first (ini-

tialized) integration nodes. When n=6 the first summations in each of the above equations

are not present.
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We can add and manipulate these two inequalities to obtain

ψn + ηn ≤ h

n−1∑
i=6

qC7(ψi + ηi) + C8h
4, (3.15)

where the term C8h
4 includes all error terms in the previous two inequalities, including the

initial conditions. We then use a discrete Gronwall inequality [7], as stated below.

Let {zn}, {gn} and {pn} be real-valued sequences defined for 0 ≤ n ≤ N, such that pn ≥ 0

for all n. Assume that, for n = 0, 1, ..., N,

zn ≤ gn +
n−1∑
i=0

pizi,

and that gn ≤ g. Then

zn ≤ g

n−1∏
j=0

(1 + pj), 0 ≤ n ≤ N.

Using the inequality and (3.15), we obtain

ψn + ηn ≤ C8h
4(1 + qC7h)

n−6 ≤ qC8h
4(1 + qC7h)

N−6 = O(h4), (3.16)

where C7 = max(C4 + C5, C6). Therefore, we can formulate the following result.

Theorem 3.1. The algorithm (3.11)–(3.12) initialized by values X̃i, Ỹi, 0 ≤ i ≤ 5, satisfying

(3.7), is convergent with global approximation error O(h4).

3.4 Initialization

In order to have a fourth-order method, we need to initialize the numerical approximation

(3.11)–(3.12) with six time levels, corresponding to 0 ≤ n ≤ 5.

The first one, n = 0, is defined using locally fifth order quadratures (e.g. Simpson’s rule)

to approximate X̃0 = V (0) and Ỹ0 = U(0). The evaluation of the functions V and U in each

of the initialization steps is done in an analogous way.
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The next one, n = 1, requires a special procedure that we leave for last.

For n = 2 we use Simpson’s formula (3.3) in (3.1) to define implicitly X̃2 and Ỹ2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̃2 =
h

3

[
Ỹ0K(0, 2h) + 4Ỹ1K(h, 2h) + Ỹ2K(2h, 2h)

]
+ V (2h),

Ỹ2 =
h

3

[
Ỹ0 κ(0, 2h, X̃2)K(0, 2h) + 4Ỹ1 κ(h, 2h, X̃2)K(h, 2h)

+Ỹ2 κ(2h, 2h, X̃2)K(2h, 2h)
]

+ U(2h).

(3.17)

We solve this system by iteration, initializing the iterates with X̃
(0)
2 = X̃1 and then recursively

solving the second equation in (3.18) for Ỹ2,

Ỹ
(i+1)
2 =

h

3 − hκ
(
2h, 2h, X̃

(i)
2

)
K(2h, 2h)

[
Ỹ0 κ

(
0, 2h, X̃

(i)
2

)
K(0, 2h) + 4Ỹ1 κ

(
h, 2h, X̃

(i)
2

)
K(h, 2h)

+
3

h
U(2h)

]
,

followed by solving the first one for X̃2,

X̃
(i+1)
2 =

h

3

[
Ỹ0K(0, 2h) + 4Ỹ1K(h, 2h) + Ỹ

(i+1)
2 K(2h, 2h)

]
+ V (2h).

We continue these iterations until the differences between consecutive iterates are smaller

than a prescribed tolerance.

For n = 3 we use Newton-Cotes closed-type formula (3.4) in (3.1) to define implicitly X̃3

and Ỹ3:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̃3 =
3h

8

[
Ỹ0K(0, 3h) + 3Ỹ1K(h, 3h) + 3Ỹ2K(2h, 3h) + Ỹ3K(3h, 3h)

]
+ V (3h),

Ỹ3 =
3h

8

[
Ỹ0 κ(0, 3h, X̃3)K(0, 3h) + 3Ỹ1 κ(h, 3h, X̃3)K(h, 3h)

+3Ỹ2 κ(2h, 3h, X̃3)K(2h, 3h) + Ỹ3 κ(3h, 3h, X̃3)K(3h, 3h)
]

+ U(3h).

(3.18)

We solve this system by iteration, in an entirely analogous way as done for n = 2.
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For n = 4 and n = 5 we use the Newton-Cotes formulas of open type (3.5) and (3.6)

respectively.

We finally describe the initialization for t = h. First, we construct on the time interval

[0, h] two quartic polynomials p(t) and q(t) which are fourth order approximations of X(t)

and Y (t) respectively on this interval. For example, p can be chosen as the McLaurin

polynomial of fourth degree for X and q as the one for Y . Let

p(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4, q(t) = b0 + b1t+ b2t

2 + b3t
3 + b4t

4. (3.19)

Next we differentiate (3.1) with respect to t to obtain

X ′(t) = K(w, t)Y (t) +

∫ t

0

Y (w)
∂K(w, t)

∂t
dw + V ′(t), (3.20)

Y ′(t) =

∫ t

0

Y (w)

[
∂κ

(
w, t,X(t)

)
∂t

+
∂κ

(
w, t,X(t)

)
∂X

X ′(t)

]
K(w, t) dw + U ′(t)

+

∫ t

0

Y (w)κ
(
w, t,X(t)

) ∂K(w, t)

∂t
dw + κ

(
w, t,X(t)

)
K(w, t) Y (t).

(3.21)

Substituting (3.19) into (3.20)–(3.21), we are led to the equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p′(t) =K(w, t)q(t) +

∫ t

0

q(w)
∂K(w, t)

∂t
dw + V ′(t),

q′(t) =

∫ t

0

q(w)

[
∂κ

(
w, t, p(t)

)
∂t

+
∂κ

(
w, t, p(t)

)
∂X

p′(t)

]
K(w, t) dw + U ′(t)

+

∫ t

0

q(w)κ
(
w, t, p(t)

) ∂K(w, t)

∂t
dw + κ

(
w, t, p(t)

)
K(w, t) q(t).

(3.22)

Now we evaluate (3.1) with p in place ofX and q in place of Y , for t = 0, t = h
2
, and t = h, and

we also evaluate (3.22) for t = 0 and t = h. The integrals in these equations are approximated

using Simpson’s rule, in order to ensure a fifth-order approximation. The evaluations at t = 0

lead to a0 = X(0) = V (0), b0 = Y (0) = U
(
0, X(0)

)
, a1 = X ′(0) = K(w, 0)b0 + V ′(0) and

b1 = Y ′(0) = U ′(0) + κ
(
w, 0, X(0)

)
K(w, 0)b0. The remaining relations lead to a linear
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algebraic system of six equations in six unknowns, the coefficients ai and bi, 2 ≤ i ≤ 4, of p

and q. The system may or may not have a unique solution. If it does, we finally evaluate

(3.19) at t = h for the desired fifth-order approximations

X̃1 = p(h), Ỹ1 = q(h).

Alternatively, when the system does not have a a unique solution, we define the remaining

Taylor coefficients at t = 0 by further differentiation of (3.20) and (3.21), and use the relations

ai =
X(i)(0)

i!
and bi =

Y (i)(0)

i!
, 2 ≤ i ≤ 4.

3.5 The Algorithm for Linear-Death-Rate Size-Structured Equations

In order to have an explicit method fully defined, we need to find χ(ih; 0, lh), χ(ih; lh, 0) to

be used in (2.12) to write these equations in the form (3.1) with local discretization error of

the same order as that used for the numerical quadratures.

For the model described, this amounts to solving ordinary differential equations with local

fifth-order accuracy, for example using Runge-Kutta’s method.

Remark: If the mortality rate µ depends on the solution—i.e. when we have a nonlinear

death rate—it is necessary to find
∫ tn

0
F

(
Y (s)

)
ds, n = 1, 2, 3, with accuracy O(h5), where

supposedly we only know approximations to Y (0), Y (h), Y (2h). Such an approximation

can be found by extrapolation methods [15] but the resulting method is considerably more

complicated and will be described and analyzed elsewhere.

4 Conclusions

We presented the classical formulation of size-structured population models in terms of

partial differential equations and an equivalent formulation in terms of a system of integral
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equations that, in the case of linear mortality rates reduces to a Volterra system of second

kind.

We then proposed numerical methods for the approximation of the solution of the last

system by quadratures, specifically describing a fourth-order method based on Newton-Cotes

formulas. Except for the initialization—that requires the use of an open-type formula based

on six nodes—the method described uses exactly one Newton-Cotes formula of open-type

based on five nodes (for the last five) coupled with closed-types Newton-Cotes formulas based

on three or four nodes.

The initialization of numerical methods originating within this framework will necessarily

be quite involved—as the example provided shows—since it always requires approximations

at more points than are typically obtained by Newton-Cotes quadrature formulas of the

order needed for the given method.

The general framework described and analyzed can provide several other numerical meth-

ods, of higher order of convergence if so desired, provided the solution of the differential prob-

lem is regular enough. However, the problem of establishing the regularity of the solution of

the model in general is still open.

The case of mortality rates that depend on the total population result in considerably

more complicated equations that make it impossible to define numerical methods that are

explicit in the unknowns. The numerical solution of the problem in such cases will be

addressed in a forthcoming paper.
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