
UCRL-TR-235618

Computer Experiments for
Function Approximations

A. Chang, I. Izmailov, S. Rizzo, S. Wynter, O.
Alexandrov, C. Tong

October 17, 2007

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

UCRL-TR-235618

Unlimited Release

October 2007

Computer Experiments for Function Approximations 1

Allison Chang 2

Ilia Izmailov 3

Shemra Rizzo 4

Sharolyn Wynter 5

Oleg Alexandrov 6

Charles Tong 7

1This project was jointly sponsored by the National Science Foundation Division of Math Sciences

Award #0439872 and the U.S. Department of Energy Lawrence Livermore National Laboratory

under Contract No. DE-AC52-07NA27344.
2Massachusetts Institute of Technology, aachang@mit.edu
3Carnegie Mellon University, izmailov@math.princeton.edu
4ITESM, shemra@gmail.com
5North Carolina State University, swynter84@@hotmail.com
6UCLA, aoleg@math.ucla.edu
7Lawrence Livermore National Laboratory, chtong@llnl.gov

1

Abstract

This research project falls in the domain of response surface methodology, which seeks
cost-effective ways to accurately fit an approximate function to experimental data.
Modeling and computer simulation are essential tools in modern science and engi-
neering. A computer simulation can be viewed as a function that receives input from
a given parameter space and produces an output. Running the simulation repeatedly
amounts to an equivalent number of function evaluations, and for complex models,
such function evaluations can be very time-consuming. It is then of paramount impor-
tance to intelligently choose a relatively small set of sample points in the parameter
space at which to evaluate the given function, and then use this information to con-
struct a surrogate function that is close to the original function and takes little time
to evaluate.

This study was divided into two parts. The first part consisted of comparing four
sampling methods and two function approximation methods in terms of efficiency and
accuracy for simple test functions. The sampling methods used were Monte Carlo,
Quasi-Random LPτ , Maximin Latin Hypercubes, and Orthogonal-Array-Based Latin
Hypercubes. The function approximation methods utilized were Multivariate Adap-
tive Regression Splines (MARS) and Support Vector Machines (SVM). The second
part of the study concerned adaptive sampling methods with a focus on creating use-
ful sets of sample points specifically for monotonic functions, functions with a single
minimum and functions with a bounded first derivative.

Contents

1 Introduction 7

2 Experimental Design 10

2.1 Monte Carlo . 11
2.2 LPτ . 12
2.3 Latin Hypercubes . 13
2.4 Orthogonal-Array-Based Latin Hypercubes 16

3 Function Approximation 21

3.1 Error Metrics . 21
3.2 Multivariate Adaptive Regression Splines 22
3.3 Support Vector Machines . 23

4 Test Results for Part I 25

4.1 Comparing Sampling Methods . 25
4.2 Tuning MARS . 26
4.3 Comparing Error Metrics . 28
4.4 Tuning SVM . 30
4.5 Comparing MARS and SVM . 30
4.6 Conclusions . 31
4.7 Iterative Algorithm . 32

5 Adaptive Sampling 37

5.1 The Choose and Learn Algorithm . 37
5.2 The CLA for Two-Dimensional Functions 40

6 Adaptive Sampling for Functions with a Single Minimum 45

6.1 Modified Choose and Learn Algorithm 45
6.2 MARS-Based Algorithm . 47

7 Test Results for Part II 50

8 Adaptive Sampling for Functions with a Bounded First Derivative 55

1

9 Conclusion 59

9.1 Summary of Findings . 60
9.2 Future Research . 60

Bibliography 61

2

List of Figures

1.1 Input parameter space of a 2-dimensional function, f(x1, x2). 8
1.2 Well-selected sample points. 8
1.3 Input-output pairs generated during sampling. 8
1.4 Response surface, or function approximation. 9

2.1 Ideal sampling. 10
2.2 Monte Carlo sample in 2D, n = 100. 11
2.3 Monte Carlo sample in 2D, n = 1000. 11
2.4 Monte Carlo sample in 2D, n = 5000. 12
2.5 LPτ sample in 2D, n = 100. 13
2.6 LPτ sample in 2D, n = 1000. 13
2.7 LPτ sample in 2D, n = 5000. 14
2.8 A 5× 5 Latin square and the corresponding sample points. 14
2.9 Latin hypersquare sample, n = 100. 15
2.10 Latin hypersquare sample, n = 500. 15
2.11 Latin hypersquare sample, n = 1000. 16
2.12 Latin hypersquare sample, n = 5000. 16
2.13 Sample points in a Latin cube. 17
2.14 OALH sample in 2D, n = 121. 18
2.15 OALH sample in 2D, n = 529. 19
2.16 OALH sample in 2D, n = 1, 024. 19
2.17 OALH sample in 2D, n = 5, 041. 20

3.1 A one-dimensional example of the piecewise-linear MARS approach. . 23
3.2 A hyperplane approximating the support vectors. 23
3.3 A curve approximating the support vectors. 24

4.1 Error histograms for Monte Carlo sampling. 26
4.2 Error histograms for OA-Based LH sampling. 26
4.3 Test to compare sampling methods. 27
4.4 Error plots for y = x3 (left) and y = x6 (right). 28
4.5 Error plots for y = sinx (left) and y = sin2 x (right). 28
4.6 Error plots for y = x5. 29
4.7 Error plots for y = sin(2x). 29
4.8 Prediction errors for y = x3 and y = sinx, γ = 5. 31
4.9 MARS and SVM approximations for y = x3. 32

3

4.10 MARS and SVM approximations for y = x6. 33
4.11 MARS and SVM approximations for y = sin(2x). 34
4.12 MARS and SVM approximations for y = sin2 x. 35
4.13 Prediction errors for y = x3 and y = x6. 35
4.14 Prediction errors for y = sin(2x) and y = sin2 x. 36

5.1 Passive sampling (left) versus adaptive sampling (right). 38
5.2 CLA applied to a 1D monotonic function after two iterations. 39
5.3 Zoomed-in region of domain for which an error is calculated. 39
5.4 CLA applied to y = x+ sinx, x ∈ [0, 12], ε = 0.904. 40
5.5 CLA applied to y = x3 , x ∈ [0, 15], ε = 102.3595. 41
5.6 Initial parameter space of 2D function. 41
5.7 y = x1x2, xi ∈ [0, 3] (left) and y = x2

1x
2
2, xi ∈ [0, 3] (right). 42

5.8 Sample points for y = x1x2 (left), and y = x2
1x

2
2 (right). 42

5.9 y = arctan(40(0.4− (x5
1 + x5

2)
1

5)), xi ∈ [0, 100] (side view). 43

5.10 y = arctan(40(0.4− (x5
1 + x5

2)
1

5)), xi ∈ [0, 100] (top view). 43

5.11 Sample points for y = arctan(40(0.4− (x5
1 + x5

2)
1

5)), ε = 0.001. 44

6.1 Modified CLA applied to y = x2. 47
6.2 MARS-Based Algorithm applied to y = x+ sinx. 48
6.3 MARS-Based Algorithm applied to y = x2. 49

7.1 y = (x− 0.4)2 + 0.4 (left) and y =
√

|x− 0.6|+ 0.3 (right). 50

7.2 Errors for y = (x− 0.4)2 + 0.4 (left) and y =
√

|x− 0.6|+ 0.3 (right). 51
7.3 Errors for y = arctan(50(x2 − 0.14)). 52
7.4 Modified CLA (left) and MARS-Based Algorithm (right), 50 points. . 52
7.5 Modified CLA (left) and MARS-Based Algorithm (right), 100 points. 53
7.6 Modified CLA (left) and MARS-Based Algorithm (right), 200 points. 53
7.7 Modified CLA (left) and MARS-Based Algorithm (right), 50 points. . 53
7.8 Modified CLA (left) and MARS-Based Algorithm (right), 100 points. 54
7.9 Modified CLA (left) and MARS-Based Algorithm (right), 200 points. 54

8.1 First two iterations of the CLA-2 for y = sinx 56
8.2 y = x3 with ε = 5 and d = 675 , x ∈ [−15, 15]. 57
8.3 y = sinx with ε = .02 and d = 1, x ∈ [−10, 10]. 57
8.4 y = x cos x− sinx with ε = .5 and d = 10.5π , x ∈ [0, 10.5π] 58

4

List of Tables

4.1 Test values for γ, w, and e. 30
4.2 Number of basis functions for MARS. 31
4.3 SVM values for w and e. 31

9.1 List of software. 59

5

Acknowledgments

We would like to recognize Dr. Michael Raugh at UCLA IPAM (Institute for Pure
and Applied Mathematics) for overseeing the RIPS (Research in Industrial Projects
for Students) program and offering constant encouragement. We also wish to thank
the IPAM staff for their support. Finally, we would like to acknowledge Dr. Charles
Tong and Dr. Oleg Alexandrov for their supervision and guidance throughout this
project.

6

Chapter 1

Introduction

Modeling and computer simulation are essential tools in modern science because many
systems of interest are too complex or too costly to build in real life. Simulations
typically take in a set of inputs and return some output, so we can think of them as
functions F : X → Y . Here, X represents the parameter space from which we choose
the input values, and Y represents the space of all possible output values. Models must
undergo critical tests for verification and validation before they are actually deemed
useful, and these tests generally require a large number of simulation runs. This
translates into a large number of function evaluations, which may take an inordinate
amount of time. One solution to this problem is the use of computer experiments
to construct a new function, called a response surface, that closely approximates the
original function and is inexpensive to evaluate.

This project involved research in the area of response surface (also called surrogate
or emulator) surface methodology, the aim of which is to develop efficient and accurate
methods to fit an approximate function to experimental data. There are two major
steps to constructing an approximation for a particular function. The first step is
experimental design, or choosing a limited number of points in the parameter space at
which to evaluate the original function. The selected sample points and corresponding
output constitute a training data set. During this step, it is important that the
training data capture the maximum amount of information with respect to the input-
output relationships of the original function. The second step is to generate an
approximate function based on the training data. Figures 1.1–1.4 provide a two-
dimensional illustration of the process of constructing a response surface.

The first half of this project focused on existing function approximation methods,
namely Multivariate Adaptive Regression Splines (MARS) and Support Vector Ma-
chines (SVM), which were both assessed in terms of efficiency and accuracy. Another
objective for the first part was to establish whether there is any significant difference in
using four different experimental design methods: Monte Carlo, Quasi-Random LPτ ,
Maximin Latin Hypercubes, and Orthogonal-Array-Based Latin Hypercubes. These
sampling methods are classified as passive learning techniques, that is, they select
the sample points at which to evaluate the original function regardless of the nature
of the function. Software for all the methods was either obtained from an outside
source or implemented by the RIPS team, and the methods were applied to a number

7

htbp

x1

x2

Figure 1.1: Input parameter space of a 2-dimensional function, f(x1, x2).

htbp

x1

x2

Figure 1.2: Well-selected sample points.

of test functions.
The second half of this project was devoted to active learning experimental de-

signs, or adaptive sampling. The challenge was, knowing the values of the function
for a set of sample points, to determine points at which the function should be fur-
ther evaluated to facilitate an improved approximation. An important consideration
for the second part of the project was how a priori information about a function
could guide the sampling and function approximation methods. Users of function ap-
proximation techniques usually know some characteristics of their functions, such as
monotonicity or bounded first derivative, even if the functions are not exactly defined.
The ultimate goal of this project was to discover a means of using such information
to develop a robust and cost-effective methodology for approximating functions.

htbp

y

x1

x2

Figure 1.3: Input-output pairs generated during sampling.

8

htbp

x1

y

x2

Figure 1.4: Response surface, or function approximation.

9

Chapter 2

Experimental Design

The first step in constructing a response surface is experimental design, also called
sampling. In choosing points at which to evaluate the original function, we want the
selected sample to be large enough so that the resulting approximation is reasonably
accurate, but not too large since the original function is expensive to evaluate.

Ideally, regions in which the target function varies greatly would be sampled on
a fine grid, and regions in which it varies little would be sampled on a coarser grid.
For example, the left side of the function shown in Figure 2.1 changes dramatically
while the right side is rather flat. Thus, it would be preferable to have many sample
points in the left region of the parameter space and fewer points in the right region.
Methods that implement this sort of reasoning fall in the area of adaptive sampling,
which will be further discussed in Chapter 5.

x

Figure 2.1: Ideal sampling.

However, in creating a response surface, the shape of the original function is
generally unknown. So it is appropriate to use passive sampling methods that are
“space-filling.” In other words, these methods generate a set of sample of points
that are more or less spread evenly over the entire parameter space. We used four
different passive learning sampling methods: Monte Carlo, LPτ , Latin Hypercube and
Orthogonal-Array-Based Latin Hypercube. All four methods return a set of n sample
points within the unit hypercube [0, 1]p, where p is the dimension of the parameter
space. The set of sample points is then scaled to cover the domain of the original
function. In what follows, we describe the four methods in detail.

10

2.1 Monte Carlo

Monte Carlo methods are frequently used to solve various physical and mathematical
problems. The primary characteristic of these methods is that they are stochastic.

The Monte Carlo method for this project was implemented in the C programming
language using the rand() function, which outputs a random integer in the range from
0 to RAND MAX inclusive, where RAND MAX is the maximum value that can be returned
by rand(). To generate a single sample point in p dimensions, the C program calls
the rand() function p times. Each of the p components of the point is subsequently
divided by RAND MAX so that the point falls within the unit hypercube.

Figures 2.2–2.4 show two-dimensional Monte Carlo samples of n points, with n =
100, n = 1000, and n = 5000 respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.2: Monte Carlo sample in 2D, n = 100.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.3: Monte Carlo sample in 2D, n = 1000.

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.4: Monte Carlo sample in 2D, n = 5000.

2.2 LPτ

The LPτ method is based on Sobol’s quasi-random sequence generator [1] and re-
turns a set of well-spaced points in a unit hypercube of any dimension up to 51. A
key feature of this method is that the points follow a deterministic sequence, which
generates 230 − 1 different points before repeating itself. Because the sequence is
deterministic, a large sample includes all of the points in a smaller sample. In other
words, if one creates a sample using LPτ and then wishes to add more points to it,
the method does not change the points already there; it just adds more points in a
“space-filling” way.

To introduce the mathematics behind the LPτ method, suppose a user desires a
sample of n one-dimensional points x1, x2, . . . , xn. The LPτ equation for generating
these points is:

xi = b1v1 ⊕ b2v2 ⊕ (2.1)

Here, ⊕ denotes the bit-by-bit exclusive-or operation, and bkbk−1 . . . b2b1 is the binary
representation of n. For example, the binary representation of 13 is 1101, so if n = 13,
then b4 = 1, b3 = 1, b2 = 0, b1 = 1. Lastly, the vi are direction numbers, or binary
fractions that may be computed using the formula vi = mi/2

i, where the mi are odd
integers, 0 < mi < 2i. The numbers vi are calculated using a recurrence defined by
the coefficients of a primitive polynomial in the field Z2. A deeper explanation of the
Sobol generator is beyond the scope of this report but may be found in [1].

Figures 2.5–2.7 show two-dimensional LPτ samples, with n = 100, n = 1000, and
n = 5000, respectively.

In comparing samples generated by the Monte Carlo and LPτ methods, it is
evident that LPτ points follow a regular pattern, while the purely random Monte
Carlo points do not. In particular, the LPτ sample covers the entire square in a well-
spaced rhombus-like configuration and also concentrates several points in the center
of each rhombus for more sensitive analysis of the data. Test results, presented in
Chapter 4, appear to indicate that these characteristics make LPτ a more effective

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.5: LPτ sample in 2D, n = 100.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.6: LPτ sample in 2D, n = 1000.

sampling tool than Monte Carlo for the tested functions.

2.3 Latin Hypercubes

An n× n Latin square is a square of natural numbers in which each row and column
contains a different permutation of the numbers 1, 2, . . . n (or 0, 1, . . . , n− 1), so that
each of these numbers appears exactly once in every row and column. In Figure 2.3
below, we have a 5× 5 Latin square.

Given an n×n Latin square, one can take the n cells at which the value is a fixed
number to use as sample points. For example, Figure 2.3 shows how the coordinates
of five sample points may derive from the locations of the number 1 in a Latin square.
We can write these coordinates in an n× 2 matrix, such as

13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.7: LPτ sample in 2D, n = 5000.

Latin Square

1 2 3 4 5
3 5 1 2 4
2 4 5 3 1
5 3 4 1 2
4 1 2 5 3

Sample Points

1
1

1
1

1

Figure 2.8: A 5× 5 Latin square and the corresponding sample points.

1 1
2 3
3 5
4 4
5 2

.

Note that each column of this matrix is a permutation πj of 1, 2, . . . , n, where j is
the number of the column. Since there are n rows and each entry of the matrix is a
natural number between 1 and n inclusive, each column must represent all numbers
in that range—otherwise there would be a row or column in the square with at least
two sample points. The matrix of sample points can be scaled down to lie in the
interior of [0, 1]2 via the formula

Xij =
πj(i)− 0.5

n
, (2.2)

where i is the number of the row. In our example, the result comes out to be

14

X =

0.1 0.1
0.3 0.5
0.5 0.9
0.7 0.7
0.9 0.3

.

Figures 2.9–2.12 show Latin square samples of n points, using n = 100, n = 500,
n = 1000, and n = 5000.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.9: Latin hypersquare sample, n = 100.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.10: Latin hypersquare sample, n = 500.

A Latin hypercube is a generalization of a Latin square to p-dimensional space.
Again, each row is a permutation of 1, 2, . . . , n, and all np−1 points with a fixed value
are chosen as sample points. The np−1 × p array is scaled down to fit in [0, 1]p via
basically the same formula as in the two-dimensional case (Equation 2.2). The only
difference is that for two dimensions, j ∈ {1, 2} and for p dimensions, j ∈ {1, 2, . . . , p}.
Figure 2.13 depicts an example of a cube (p = 3) with five sample points.

15

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.11: Latin hypersquare sample, n = 1000.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.12: Latin hypersquare sample, n = 5000.

Note that the definition of a Latin square at the beginning of this section does not
exclude the possibility of having the same number along the diagonal of the square.
For instance, an equally valid alternative to Figure 2.8 could be a square in which
all five 1’s are located on the diagonal. Clearly this would not correspond to an
ideal set of sample points. To counteract this problem, which generalizes to higher
dimensions, this project uses a maximin Latin hypercube algorithm, which generates
multiple Latin hypercube samples and then selects the one for which the minimum
distance between the points is largest.

2.4 Orthogonal-Array-Based Latin Hypercubes

Although Latin hypercubes give rise to good samples with one point representing
every row, orthogonal arrays (OAs) may be used to generate even more well-spaced
samples. An orthogonal array A is an N × k matrix, each of whose entries is a

16

Figure 2.13: Sample points in a Latin cube.

number in 0, 1, . . . , s− 1 for a predefined s ∈ N, referred to as the number of levels.
The strength of such an array, often denoted t, is the maximum number satisfying the
condition that any subarray of A containing t of the columns and the full set of rows
would have each of the possible rows represented an equal number of times. This
number, λ, is called the index of the array and can be found by the formula λ = N

st .
A common and convenient notation to describe an array with the above-mentioned
parameters is OA(N, k, s, t), which shall be used throughout this report. An example
of an OA(8, 7, 2, 2) array is shown below. Note that this array is not orthogonal in
the typical linear algebra sense.

0 0 0 0 0 0 0
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1
1 1 0 0 1 1 0
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 1 0 0 0 1

.

For instance, if we take columns 1 and 5, we note that, as expected from the definition
of an orthogonal array, each of the obtained rows of length 2 shows up 8

22 = 2 times:

0 0
1 1
0 0
0 1
1 1
1 0
0 1
1 0

.

It is worth noting that, given an arbitrary set of parameters (N , k, s, t), neither the
existence nor the uniqueness of OA(N, k, s, t) is guaranteed. However, there exists a
method, called Bush’s construction, for creating an orthogonal array OA(st, s+1, s, t)
for any s, t ∈ N, with s being a power of a prime. Note that in the case at hand,

17

λ = st

st = 1,

so every row must be unique, a property that will be necessary later on. Since one
can remove columns from an orthogonal array without destroying its orthogonality,
we have means of creating an orthogonal array OA(st, k, s, t) for any k such that
t ≤ k ≤ s.

Given an orthogonal array A with p factors and s levels, it is possible to use it to
create an array X of sample points (rows) by the formula

Xij =
πj(Aij) + 0.5

s
. (2.3)

We permute the elements of each column for added randomness. This sampling
method is known as Orthogonal-Array-Based Latin Hypercubes (OALH) and is
stronger than its non-OA-based counterpart for which, in essence, the sample points
are derived from orthogonal arrays of strength 1.

Figures 2.14–2.17 show two-dimensional orthogonal-array-based Latin hypercube
samples of different sample sizes n. Note how the points are distributed more evenly
than in the case of an ordinary Latin hypercube (see Figures 2.9–2.12).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.14: OALH sample in 2D, n = 121.

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.15: OALH sample in 2D, n = 529.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.16: OALH sample in 2D, n = 1, 024.

19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.17: OALH sample in 2D, n = 5, 041.

20

Chapter 3

Function Approximation

We obtained software packages that implement two function approximation methods,
called MARS and SVM. Both packages build an approximate function based on a
training data set that contains a set of sample points and the corresponding output
values. This chapter first describes how we evaluated the error in the approximations
and then discusses the two different methods in depth.

3.1 Error Metrics

We analyzed the accuracy of the approximations generated by MARS and SVM using
two different error measures. Since we have explicit formulas for the test functions,
we can compute the exact value of a function at certain points. Note that even
though the motivation behind function approximation methods is the existence of
computationally expensive functions, the test functions for this project are all simple
enough that they can be easily evaluated for many points. Thus, it is possible to
calculate a root mean squared (RMS) error between the exact and approximate values.
If g and h are m-vectors, then the RMS error between them is defined by the formula

RMS =

√

√

√

√

1

m

m
∑

i=1

(gi − hi)
2. (3.1)

We will call this first error measure the prediction error.
The second error measure involves a process called cross-validation. With this

approach, we remove one point from the training data set and generate a function
approximation to fit the remaining points in the set. We use this approximation to
predict the function value at the removed point. In other words, we “cross-validate”
an exact function value at a sample point in the training data set against the value
that would be predicted at that point based on an approximation generated to fit
the rest of the points in the data set. After performing cross-validation at a specified
number of sample points, we compute an RMS error between the exact and predicted
function values at those points. This error will be called the cross-validation error.
Unlike the prediction error, the cross-validation error does not require knowledge of

21

the original function to be calculated. This is an advantage because in practice,
formulas for the original functions may not be known.

3.2 Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) is a regression procedure that
makes no assumption about the underlying functional relationship between the de-
pendent and independent variables. The MARS algorithm has two steps, the first of
which is a forward stepwise regression procedure that implements a recursive parti-
tioning process. In a sense, the method is based on the “divide and conquer” strategy,
which partitions the input space into regions, each with its own regression equation.
MARS uses basis functions in each region to generate an approximation to the cor-
responding part of the original function. The actual number of basis functions is
chosen by the user before running the algorithm. The final function approximation
is a weighted sum of the individual basis functions.

More specifically, the response surfaces generated by MARS are splines, which are
formed by joining polynomials of the same degree together at the knots, or division
points between regions (see Figure 3.1). At each knot, MARS requires that the two
relevant polynomials of degree k join smoothly, i.e., their derivatives must be equal
at the knot up to order k − 1. Note that in Figure 3.1, k − 1 = 0, so the smoothness
criterion requires only that the spline be continuous. The MARS software allows the
user to choose between two kinds of splines — piecewise-linear (k = 1) and piecewise-
cubic (k = 3).

The MARS algorithm analyzes the entire space of inputs and outputs, as well
as the interactions between variables in the function, in order to decide how to split
the function domain into regions and to select the optimal basis functions for each
region. During this analysis, basis functions are added to the model to maximize an
overall least squares goodness-of-fit criterion. As a result of these operations, MARS
automatically determines the most important independent variables as well as the
most significant interactions among them.

The second step of the algorithm is a backward stepwise procedure to remove
basis functions that do not contribute significantly to maximizing the least-squares
goodness-of-fit criterion. Each basis function represents a disjoint region in the func-
tion domain, so removing it just by itself would cause the resulting approximation to
have zero value in the corresponding region. Instead, MARS deletes basis functions
by merging them into a single (parent) region in roughly the inverse splitting order.
This pruning procedure of the basis functions counteracts the problem of over-fitting.

The general MARS model equation is:

y = f(x) = β0 +
M
∑

m=1

βmhm(x), (3.2)

where M is the number of basis functions in the model, hm are the basis functions,
and βm are the weights in the sum of the basis functions. A comprehensive description
of MARS may be found in [5].

22

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

knots

Figure 3.1: A one-dimensional example of the piecewise-linear MARS approach.

3.3 Support Vector Machines

Support Vector Machines (SVMs) are learning methods used for data classification
or, as in the case of this study, regression. The sample points, xi ∈ [0, 1]p, together
with their corresponding y-values, yi ∈ R, are known as support vectors. The goal is
to find a hyperplane approximating the vectors within an error margin of ε > 0 (see
Figure 3.2).

Figure 3.2: A hyperplane approximating the support vectors.

Defining w as the vector normal to the hyperplane, the program seeks to minimize
its norm (||w|| =

√
wTw) subject to the constraint

∣

∣yi − (wTy + b)
∣

∣ ≤ ε,

where b is the constant in the equation of the hyperplane,

23

f(y) = wTy + b.

Figure 3.3: A curve approximating the support vectors.

When nonlinear regression is desired (Figure 3.3), the sample points {xi} are
mapped to a feature space F via a feature map Ψ : [0, 1]p 7→ F that corresponds to a
kernel K, such that K(xi,xj) = Ψ(xi)

TΨ(xj). Since it is only the dot product of the
vectors in question that matters, it is customary (and often more convenient) to use
the kernel function instead of the feature map itself. The four kernels used by SVM
are

• linear: K(xi,xj) = xi
Txj

• polynomial: K(xi,xj) = (γxi
Txj + r)d, where γ > 0

• radial basis function (RBF): K(xi,xj) = e−γ||xi−xj ||
2

, where γ > 0

• sigmoid: K(xi,xj) = tanh(γxi
Txj + r).

Here γ, r, and d are kernel parameters.
This project uses Thorsten Joachims’ implementation of SVM called SVMlight,

which is freely available at http : //svmlight.joachims.org.

24

Chapter 4

Test Results for Part I

In this chapter, we describe our procedure for testing the four passive sampling meth-
ods and two function approximation methods detailed in Chapters 2 and 3. We also
present an iterative algorithm for constructing response surfaces that makes use of
what we found to be the best techniques. Because we wanted to make sure that we
understood how the methods worked for simple cases before testing more complicated
cases, we used low-dimensional, well-behaved functions for all of the tests.

4.1 Comparing Sampling Methods

To determine differences in using Monte Carlo, Quasi-Random LPτ , Maximin Latin
Hypercube, and Orthogonal-Array-Based Latin Hypercube samples (see Chapter 2
for descriptions), we generated 361 points with each of the four sampling methods and
then constructed response surfaces to approximate the two-dimensional test functions
y = x1 + x4

2 and y = x1 + x1x2 + x2. For both functions, the domain was [0, 3]2. The
function approximation method was MARS, and we specified a piecewise-cubic model
with 50 basis functions. We also specified interaction levels of 1 for the first function
and 2 for the second. These parameters will be further explained in the next section.
We used 100 points to compute the prediction error and 100 points to compute the
cross-validation error (see Section 3.1 for error definitions).

For a given sample size, the LPτ and Maximin Latin Hypercube algorithms pro-
duce the same samples each time they are run, but the Monte Carlo and Orthogonal-
Array-Based Latin Hypercube methods generate different samples since both of them
are based on random numbers. Thus, for each of the latter two methods, we gener-
ated 100 samples and calculated average errors. Figures 4.1 and 4.2 show histograms
of the prediction and cross-validation errors for the two methods.

Figure 4.3 shows bar graphs of the prediction and cross-validation errors. The
Monte Carlo method resulted in the highest prediction error for both test functions.
This makes sense since it is a completely random method that does not guarantee well-
spaced points. The results for the other three methods are not consistent between the
two test functions, so it is difficult to predict how they will work for other functions.
We will use LPτ for subsequent tests because it resulted in relatively low errors for

25

the two initial tests. This method is also deterministic and therefore has the useful
property of always producing the same set of points for a given sample size.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60

70

80

90

100

y = x
1
 + x

2
4, x

i
 ∈ [0, 3], Monte Carlo Sample

Error Bins

Fr
eq

ue
nc

y

Prediction Error
Cross−validation Error

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

10

20

30

40

50

60

70

80

90

y = x
1
 + x

1
x

2
 + x

2
, x

i
 ∈ [0, 3], Monte Carlo Sample

Error Bins

Fr
eq

ue
nc

y

Prediction Error
Cross−validation Error

Figure 4.1: Error histograms for Monte Carlo sampling.

0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

10

20

30

40

50

60

Error Bins

Fr
eq

ue
nc

y

y = x
1
 + x

2
4, x

i
 ∈ [0, 3], OA−Based LH

Prediction Error
Cross−validation Error

0 1 2 3 4 5 6

x 10−3

0

10

20

30

40

50

60

70

80

Error Bins

Fr
eq

ue
nc

y

y = x
1
 + x

1
x

2
 + x

2
, x

i
 ∈ [0, 3], OA−Based LH

Prediction Error
Cross−validation Error

Figure 4.2: Error histograms for OA-Based LH sampling.

4.2 Tuning MARS

The MARS software allows users to control a number of parameters. As mentioned
in Section 3.2, MARS involves splitting the function domain into several regions, and
then assigning to each region its own basis function. Users can choose the number of
basis functions, as well as whether the approximate function should be piecewise-linear
or piecewise-cubic. One final parameter that can be varied is the level of interaction
among variables. If a function evaluation involves the product of two variables, x1x2

or x2
1x

3
2 for example, the interaction level is 2; if a function evaluation involves the

product of three variables, the interaction level is 3, and so on. Again, we emphasize
that our test functions are low-dimensional because we wanted to understand the

26

1 2 3 4
0

0.01

0.02

0.03

Sampling Methods

E
rr

or
s

y = x
1
 + x

2
4, x

i
 ∈ [0, 3]

Prediction Error
Cross−validation Error

Monte Carlo

Latin Hypercube

OA−Based LH

LP
τ

1 2 3 4
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Sampling Methods

E
rr

or

y = x
1
 + x

1
x

2
 + x

2
, x

i
 ∈ [0, 3]

Prediction Error
Cross−validation Error

Monte Carlo

Latin Hypercube
OA−Based LH

LP
τ

Figure 4.3: Test to compare sampling methods.

behavior of the methods for simple cases. Our conclusions have not been tested in
higher dimensions.

4.2.1 Varying MARS Parameter Values

To test the outcome of using different parameter values, we first generated 729 sample
points with the LPτ method. Then we used 50 points to compute the prediction error
and the same number of points for the cross-validation error. Figures 4.4–4.5 show
results for the functions y = x3, y = x6, y = sinx, and y = sin2 x. The domain for the
first two functions was [−2, 2], and the domain for the last two functions was [−π, π].
The diamond and square markers represent the prediction and cross-validation errors
respectively for the linear model, and the triangular and x-shaped markers represent
the prediction and cross-validation errors respectively for the cubic model. From these
plots, we notice that on the whole, the piecewise-cubic model has a lower error than
the piecewise-linear model. This implies that the piecewise-cubic model is generally
more accurate than the piecewise-linear model.

In addition, Figures 4.4–4.5 display a pattern in the number of basis functions
required to generate an accurate approximation. Considering that the complexity of
the approximation increases with the number of basis functions, we want this number
to be as small as possible. The plots show that the error does not decrease significantly
between 50 and 100 basis functions. This implies that we likely do not need more than
50 basis functions for a sample of 729 points in order to get an accurate approximation
for a one-dimensional function.

4.2.2 Varying Sample Size

We also tested whether or not the number of sample points affected the number of
basis functions needed for an accurate approximation. This time, we used only two
test functions: y = x5, x ∈ [−2, 2], and y = sin(2x), x ∈ [−π, π]. We specified

27

0 20 40 60 80 100
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Number of Basis Functions

E
rr

or
y=x3

Lin, Pred
Lin, CV
Cub, Pred
Cub, CV

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Basis Functions

E
rr

or

y=x6

Lin, Pred
Lin, CV
Cub, Pred
Cub, CV

Figure 4.4: Error plots for y = x3 (left) and y = x6 (right).

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Number of Basis Functions

E
rr

or

y=sin(x)

Lin, Pred
Lin, CV
Cub, Pred
Cub, CV

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of Basis Functions

E
rr

or

y=sin2(x)

Lin, Pred
Lin, CV
Cub, Pred
Cub, CV

Figure 4.5: Error plots for y = sin x (left) and y = sin2 x (right).

the piecewise-cubic model for all cases. The different markers in the following plots
represent different sample sizes, ranging from 169 to 841. As illustrated by Figures
4.6–4.7, the error stabilizes at 40 basis functions, regardless of the function and the
sample size. Thus, the test results seem to indicate that for one-dimensional functions,
the sample size does not affect the desired number of basis functions.

4.3 Comparing Error Metrics

Note that the cross-validation errors are directly related to the prediction errors. That
is, a high prediction error implies a high cross-validation error, and a low prediction
error implies a low cross-validation error. Therefore, the cross-validation error appears
to be an appropriate indicator of accuracy. However, computing it can be slow because
each point selected for cross-validation corresponds to a new function approximation.
For instance, using 100 points for cross-validation means 101 function approximations,

28

including the one based on the original training data. In contrast, using 100 points
to compute the prediction error does not require more than the single initial function
approximation from the training set. For purposes of efficiency, we computed only
the prediction error in the remainder of our tests.

Nevertheless, it is important to keep in mind the advantage of the cross-validation
error stated in Section 3.1, that it does not require knowledge of the original function.
In practice, the original function usually has no explicit formula, and even if it does,
evaluating the function would be more expensive than constructing a new approxi-
mation. In other words, computing the prediction error in practice, if not impossible,
would be even more expensive than computing the cross-validation error. We use the
prediction error in our tests only because it takes less time to calculate for our simple
test functions.

10 20 30 40 50 60 70 80 90
0.1

0.15

0.2

0.25

Number of Basis Functions

P
re

di
ct

io
n

E
rr

or

y=x5

169
289
361
529
625
841

10 20 30 40 50 60 70 80 90
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Number of Basis Functions

C
ro

ss
−V

al
id

at
io

n
E

rr
or

y=x5

169
289
361
529
625
841

Figure 4.6: Error plots for y = x5.

10 20 30 40 50 60 70 80 90
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of Basis Functions

P
re

di
ct

io
n

E
rr

or

y=sin(2x)

169
289
361
529
625
841

10 20 30 40 50 60 70 80 90
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of Basis Functions

C
ro

ss
−V

al
id

at
io

n
E

rr
or

y=sin(2x)

169
289
361
529
625
841

Figure 4.7: Error plots for y = sin(2x).

29

4.4 Tuning SVM

The SVM software also has several parameters that may be changed from the default
values to produce more accurate response surfaces. As described in Section 3.3, the
SVM method makes use of kernel functions. We discovered through some initial
testing that the polynomial kernel does not work well for non-polynomial functions,
but that the radial basis function kernel is fairly versatile. So for the rest of our tests,
we used the radial basis function kernel, which has the form K(xi,xj) = e−γ||xi−xj ||

2

,
where γ > 0. One of SVM’s parameters is the value of γ. Two other parameters are
w, the width of the tube for regression, and e, a termination criterion.

We computed prediction errors from running SVM with different values for γ, w,
and e on two test functions: y = x3, x ∈ [−2, 2], and y = sin x, x ∈ [−π, π]. The 90
different cases are presented in Table 4.1.

γ w e
5 10−1 10−3

10 10−2 10−4

20 10−3 10−5

10−4 10−6

10−5 10−7

10−6

Table 4.1: Test values for γ, w, and e.

We generated 729 sample points using LPτ for each test function and used 50
points to compute the prediction error. The prediction errors for γ = 5 are plotted in
Figure 4.8. The error curves for γ = 10 and γ = 20 have essentially the same shape as
for γ = 5, only the errors are slightly higher. There are actually five different curves
in each plot, which correspond to the five different values of e. Since the curves are so
close to each other that they are barely distinguishable, we can infer, at least for one-
dimensional functions, that the value of e does not matter much. The relationship
between the value of w and the prediction error appears almost linear.

4.5 Comparing MARS and SVM

We tested the performance of MARS and SVM for different sample sizes on the same
test functions: y = x3, y = x6, y = sin(2x), and y = sin2 x. The domain of the first
two functions was [−2, 2], and the domain of the last two functions was [−π, π]. For
MARS, we changed the number of basis functions depending on the number of sample
points (Table 4.2). In general, there should not be more basis functions than sample
points because this would mean that at least one of the regions into which the MARS
algorithm divides the function domain has no sample points to use in constructing a
local approximation. For SVM, we used γ = 4 for all cases and changed the w and e
parameters depending on the function (Table 4.3). The values of w and e were chosen
so that running SVM would take no more than a few seconds.

30

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.02

0.04

0.06

w

P
re

di
ct

io
n

E
rr

or
y = x3, γ = 5

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

w

P
re

di
ct

io
n

E
rr

or

y = sin(x), γ = 5

Figure 4.8: Prediction errors for y = x3 and y = sinx, γ = 5.

number of sample points 25 53 121 289
number of basis functions 11 20 40 50

Table 4.2: Number of basis functions for MARS.

y = x3 y = x6 y = sin(2x) y = sin2 x
w 0.01 0.1 0.001 0.00001
e 0.001 0.001 0.0001 0.0001

Table 4.3: SVM values for w and e.

The subplots in Figures 4.9–4.12 each contain three curves — the exact function,
and the two response surfaces produced by MARS and SVM.

Both MARS and SVM create accurate approximations for the n = 121 and n =
289 cases. However, for n = 25 and n = 53, MARS performs rather poorly, especially
at the endpoints of the domain (see Figures 4.9–4.12). SVM is better for small sample
sizes and produces less error at the endpoints. Overall, the prediction errors for SVM
are lower than those for MARS, but for the larger sample sizes, SVM takes seconds
to run while MARS runs almost instantaneously on an Ubuntu computer with a 3.2
GHz Intel Pentium 4 processor and 2.0 GB of RAM. Figures 4.13 and 4.14 show
the prediction errors for the four functions as a function of the number of sample
points. For all four functions, the error drops quickly between n = 25 and n = 53,
and becomes nearly flat between n = 121 and n = 289.

4.6 Conclusions

Our conclusions are based on preliminary results using simple analytic functions.
They may serve to illustrate the performance of methods applicable to more compli-
cated functions of interest to LLNL.

• The LPτ sampling method is preferable because it creates space-filling samples

31

−2 −1 0 1 2
−8

−6

−4

−2

0

2

4

6

8

x

y

n = 289

−2 −1 0 1 2
−8

−6

−4

−2

0

2

4

6

8

x

y

n = 121

−2 −1 0 1 2
−8

−6

−4

−2

0

2

4

6

8

x

y

n = 53

−2 −1 0 1 2
−10

−5

0

5

10

x

y

n = 25

exact
MARS
SVM

y = x3

Figure 4.9: MARS and SVM approximations for y = x3.

that result in more accurate function approximations than Monte Carlo, Latin
Hypercubes, and Orthogonal-Array-Based Latin Hypercubes.

• SVM is not an easy method to use because there does not seem to be a clear
pattern as to which parameter values lead to the most efficient and accurate
function approximation. It is difficult for a novice user to know how SVM will
behave for a particular function — whether the approximation will take a long
time to generate and how large the error will be. MARS generally runs much
faster than SVM, and there are not as many parameters the user can modify.
However, using the right parameter values, SVM has the potential to generate
more accurate approximations than MARS can, especially at the endpoints of
the function domain for small sample sizes.

4.7 Iterative Algorithm

In using passive learning sampling techniques, it is difficult to know the number of
sample points needed to create a function approximation of a certain accuracy. For
example, we might want the error to be no larger than 10% of the maximum absolute
value of the function. Larger samples generally mean higher accuracy, but we do not
want more points than is necessary. One way to handle this problem is to start with
n0 sample points generated using LPτ and run the following iterative algorithm:

32

−2 −1 0 1 2
−10

0

10

20

30

40

50

60

70

x

y

n = 289

−2 −1 0 1 2
−10

0

10

20

30

40

50

60

70

x

y

n = 121

−2 −1 0 1 2
−10

0

10

20

30

40

50

60

70

x

y

n = 53

−2 −1 0 1 2
−10

0

10

20

30

40

50

60

70

x

y

n = 25

exact
MARS
SVM

y = x6

Figure 4.10: MARS and SVM approximations for y = x6.

1. Fit a response surface to the sample using MARS, and compute the cross-
validation error.

2. Divide the cross-validation error by the maximum absolute value of the function.
(We will call this proportion the “normalized error.”)

3. If the normalized error is less than TOL, the approximation is accurate enough.
Otherwise, add more sample points and repeat steps 1 through 3.

It is appropriate to use the cross-validation error instead of the prediction error
because we would like for this algorithm to work in practice. As mentioned in Sections
3.1 and 4.3, exact formulas for the target function are often unknown or extremely
expensive to evaluate. Thus, it would not be reasonable to use the prediction error
in this case.

For example, we applied the algorithm to the three-dimensional Ishigami function:

y = sin(x1) + 7 sin2(x2) + 0.1x4
3 sin(x1), xi ∈ [0, 3]. (4.1)

One complication for this algorithm is that the number of basis functions should
depend on the number of sample points n. For the Ishigami example, we used 25
basis functions for n ∈ {50, 100, 150}, and 100 basis functions for n ≥ 200. We also
used n0 = 50, TOL = 0.1, and added 50 points with each iteration. At n = 300, the
normalized error was 0.099297.

33

−2 0 2

−1

−0.5

0

0.5

1

n = 289

x

y

−2 0 2

−1

−0.5

0

0.5

1

n = 121

x

y

−2 0 2

−1

−0.5

0

0.5

1

n = 53

x

y

−2 0 2
−2

−1.5

−1

−0.5

0

0.5

1

n = 25

x

y

exact
MARS
SVM

y = sin(2x)

Figure 4.11: MARS and SVM approximations for y = sin(2x).

The iterative algorithm just described is an active learning algorithm because
it chooses the optimal number of sample points based on what it has learned from
choosing smaller samples. In the next chapter, we will cover more complex techniques
for adaptive sampling that seek not the optimal number but the optimal placement
of sample points within the parameter space.

34

−2 0 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
n = 289

x

y

−2 0 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
n = 121

y

x

−2 0 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
n = 53

x

y

−2 0 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
n = 25

x

y

exact
MARS
SVM

y = sin2(x)

Figure 4.12: MARS and SVM approximations for y = sin2 x.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sample Size

P
re

di
ct

io
n

E
rr

or

y = x3

MARS

SVM

n = 25

n = 53

n = 121 n = 289

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

Sample Size

P
re

di
ct

io
n

E
rr

or

y = x6

MARS

SVM

n = 25

n = 53

n = 121

n = 289

Figure 4.13: Prediction errors for y = x3 and y = x6.

35

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

Sample Size

P
re

di
ct

io
n

E
rr

or

y = sin(2x)

MARS

SVM

n = 25

n = 53

n = 121 n = 289
0 50 100 150 200 250 300

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Sample Size

P
re

di
ct

io
n

E
rr

or
y = sin2(x)

MARS

SVM

n = 25

n = 53

n = 121 n = 289

Figure 4.14: Prediction errors for y = sin(2x) and y = sin2 x.

36

Chapter 5

Adaptive Sampling

In this chapter, we begin discussing the second part of this project — adaptive sam-
pling. Although the passive learning techniques discussed in Chapter 2 produce space-
filling designs, they sometimes fail to maximize the utility of sample points because
they capture redundant information about the function. Adaptive sampling tech-
niques provide a way to judiciously select sample points based on the activity of the
function. As illustrated in Figure 5.1, the goal is to place a greater concentration of
sample points in areas where the function has more activity and fewer sample points
in areas with less activity.

Considering that the exact behavior of the function to be approximated may be
unknown, determining how to efficiently distribute sample points within the param-
eter space presents a major challenge. In practice, it is reasonable to assume that
users of function approximation methods know general properties of their target func-
tions. We will begin our study of adaptive sampling methods with an algorithm that
generates sets of sample points specifically for monotonic functions, and from there
we will develop algorithms that generate sample points for functions with a single
minimum. We will end our study of adaptive sampling by investigating an algorithm
that targets functions with bounded first derivative.

5.1 The Choose and Learn Algorithm

The first adaptive sampling technique we investigated was Partha Niyogi’s Choose
and Learn Algorithm (CLA) [11], which can be applied to monotonic functions.
A function f : I → R, where I is an interval, is monotonically increasing in one
dimension if for every a and b in I, a < b implies f(a) ≤ f(b). It is monotonically
decreasing in one dimension if for every a and b in I, a < b implies f(a) ≥ f(b). The
main idea of the algorithm is to use a worst-case error measure to guide the choice of
sample point location. This error measure will be explained in the next section. An
outline of the algorithm is provided below.

The Choose and Learn Algorithm (for one-dimensional functions)

1. Let the function be defined on an interval I. Place the first two sample points

37

x x

Figure 5.1: 1D comparison of sample point distribution with passive sampling (left)
and adaptive sampling (right).

at xmin and xmax, the left and right endpoints of I respectively.

2. Calculate the error on I.

3. If the error is less than or equal to some fixed tolerance level ε, then terminate
the process. Otherwise, divide I into two regions by placing the next sample
point at the midpoint of I.

4. Calculate the sum eD of the errors in all regions.

5. If eD is less than or equal to ε, then terminate the process. Otherwise, find the
region with the largest error and divide it in half by placing the next sample
point at its midpoint.

6. Calculate the errors for the newly generated regions and return to step 4.

Figure 5.2 shows a conceptual image of this process after two iterations. This
algorithm is adaptive in the sense that with each iteration, it chooses the location
of the next sample point based on what it has learned from the data it has seen so
far. At every iteration, the algorithm fits a linear approximation to the function in
each region. The error in each region is a measure of the greatest possible difference
between the linear approximation and the exact function values. We assume that
regions in which the function has the largest deviations from the line will have the
largest error. It is these regions that will be divided most frequently by the algorithm
and consequently will have the greatest number of sample points. By selectively
rationing out sample points to the areas that need the most attention, as opposed to
uniformly distributing points, the CLA provides a more useful distribution of sample
points throughout the parameter space.

38

x1 x2

f(x1)

f(x2)

xmin= x0 xmax= x3

Figure 5.2: CLA applied to a 1D monotonic function after two iterations. The dot-
dashed line is the monotonic function, and the solid line is its piecewise-linear ap-
proximation.

5.1.1 Implementation of the CLA

For monotonic functions, there are bounds on the range of possible values that the
function can take, as indicated by the rectangular boxes in Figure 5.2. The dashed line
represents the original function f while the solid line represents the approximating
linear function, h, within each interval. It is important to note that because we
assume f to be monotonically increasing, the values of f cannot be outside of the
solid boxes shown.

x1
x2

f(x1)

f(x2)

f

h

Figure 5.3: Zoomed-in region of domain for which an error is calculated.

Figure 5.3 shows a zoomed-in version of Figure 5.2 that focuses on one region
[x1, x2], for which we calculate the error eC1

. In general, a region Ci = [xi, xi+1] has
error eCi

, calculated using the following equation (per [11]):

eCi
=

(∫

Ci

| h− f(xi) |p dx

)1/p

=
1

(p+ 1)1/p
(xi+1−xi)

1/p | (f(xi+1)−f(xi)) |, (5.1)

39

where p ≥ 1 is a fixed real number. We used p = 1, in which case the error equation
simplifies to the formula for the area of a triangle (the shaded section in Figure 5.3):

eCi
=

1

2
(xi+1 − xi) | (f(xi+1)− f(xi)) | . (5.2)

Since we do not know anything about the behavior of the original function f ,
except that it increases in each interval [xi, xi+1], eCi

is the maximum possible error
h can have with respect to f . If there are n+1 sample points, then the error eD over
the entire domain is defined by

eD =

(

n
∑

i=0

epCi

)1/p

. (5.3)

Figures 5.4 and 5.5 show the results for the CLA applied to the one-dimensional
functions y = x+sin x, x ∈ [0, 12] and y = x3, x ∈ [0, 15]. The vertical lines represent
the location of the sample points selected by the CLA. Clearly the algorithm chooses
more points where the function has a steeper slope and fewer points where the function
has a flatter slope.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Figure 5.4: CLA applied to y = x+ sin x, x ∈ [0, 12], ε = 0.904.

5.2 The CLA for Two-Dimensional Functions

While implementing the CLA for one-dimensional functions was straightforward, fig-
uring out how to extend it to two dimensions was more complicated, both in terms of
keeping track of the different regions and computing the errors in each region. Note
that the functions of interest are those that are either monotonically increasing in
both variables or monotonically decreasing in both variables. For one-dimensional
functions, we calculated the error with respect to a linear approximation h at the
endpoints of intervals. In two dimensions, we represent the x1, x2 parameter space by

40

0 5 10 15
0

500

1000

1500

2000

2500

3000

3500

Figure 5.5: CLA applied to y = x3 , x ∈ [0, 15], ε = 102.3595.

a rectangle with corners a, b, c, d as illustrated in Figure 5.6. The function approxi-
mation is an affine function h(x1, x2) = αx1 + βx2 + γ that has the same values as
the original function f(x1, x2) at the three corners a, b and d.

x1

x2

d

a

c

b

e

Figure 5.6: Initial parameter space of 2D function.

The error measure is similar to Equation 5.1, only it is based on a double integral
over the variables x1 and x2. Initially we calculate the error on the rectangular
parameter space with corners a, b, c, d. If the error is larger than a fixed ε, then the
iterative process begins with locating the center point e of the region and using that
point to divide the region into four new subregions (see Figure 5.6). As in the one-
dimensional case, we compute the error eCi

of each subregion and then use the sum
eD of the errors, as in Equation 5.3, to determine whether to continue with another
iteration or terminate the process.

Figure 5.8 illustrates the application of the CLA for two functions that increase
monotonically in two variables, y = x1x2 and y = x2

1x
2
2 (Figure 5.7). As a more

dramatic example, Figures 5.9 and 5.10 show two views of a two-dimensional step
function, y = arctan(40(0.4 − (x5

1 + x5
2)

1

5)) — one view from the side and the other
from the top. Figure 5.11 illustrates the application of the CLA for this function.

41

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3
0

1

2

3

4

5

6

7

8

9

x
1

x
2

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3
0

20

40

60

80

100

x
1

x
2

Figure 5.7: y = x1x2, xi ∈ [0, 3] (left) and y = x2
1x

2
2, xi ∈ [0, 3] (right).

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 5.8: Sample points for y = x1x2, ε = 2.1407 (left), and y = x2
1x

2
2, ε = 2.15

(right).

42

Figure 5.9: y = arctan(40(0.4− (x5
1 + x5

2)
1

5)), xi ∈ [0, 100] (side view).

Figure 5.10: y = arctan(40(0.4− (x5
1 + x5

2)
1

5)), xi ∈ [0, 100] (top view).

43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x 2

y = arctan (40 (0.4 − (x
1
5 + x

2
5)1/5))

Figure 5.11: Sample points for y = arctan(40(0.4−(x5
1+x5

2)
1

5)), ε = 0.001. Lower-left
corner corresponds to the largest value of y in Figure 5.9.

44

Chapter 6

Adaptive Sampling for Functions

with a Single Minimum

Functions with a single minimum are a more complex case for adaptive sampling
than monotonic functions. The final part of this project was to develop two sampling
algorithms to handle this case.

6.1 Modified Choose and Learn Algorithm

In the previous chapter, we illustrated the application of the original CLA only to
monotonically increasing functions. The algorithm works in the same way for mono-
tonically decreasing functions. A function with a single minimum can be divided into
two parts, one that is monotonically decreasing and another that is monotonically
increasing. Applying the CLA to each part separately produces a sample that again
places more points where the function has a steeper slope and fewer points where the
function has a flatter slope.

The first step of this Modified CLA is finding the approximate location of the
minimum in the domain on which the function is defined. This can be accomplished
using the following recursive algorithm. First, let the left and right endpoints of the
domain be xmin and xmax respectively. The algorithm returns the endpoints of a
smaller interval that contains the minimum.

1. Initialize a = xmin and b = xmax.

2. Find the midpoint of the interval, xmid :=
a+b
2
.

3. If b − a < δ, return a and b as the endpoints of the interval containing the
minimum.

4. Otherwise, find the corresponding y-values: ymin, ymid, and ymax.

5. If ymin < ymid, the minimum must lie in [a, xmid], otherwise we could not have
observed an increase in y-values between these two points. In this case, let
b = xmid and return to step 2.

45

6. If ymid > ymax, the minimum must lie in [xmid, b], otherwise we could not have
observed an decrease in y-values between these two points. In this case, let
a = xmid and return to step 2.

7. If ymid ≤ ymin, ymid ≤ ymax, or both, we cannot rule out either of the subinter-
vals. In this case, we take xmid low := a+xmid

2
and xmid high := xmid+b

2
, along with

their respective y-values, ymid low and ymid high.

8. Re-labeling the points as (x0, y0) , (x1, y1) , (x2, y2) , (x3, y3) , (x4, y4) in order of
increasing x-values, we note that there exists an index i, such that the se-
quence {yk}k≥i is monotonically increasing (provided the cardinality of their set
is greater than 1) and the sequence {yk}k≤i is monotonically decreasing. After
finding this i, we return to step 2 and focus on the interval [xi−1, xi+1]∩ [x0, x4].
Note that (xi+1 − xi−1) =

1

2
(x4 − x0), so we halve the interval of interest with

each recursive step, making the algorithm’s running time O (log(δ)).

The second step of the Modified CLA is to apply the original CLA on two subin-
tervals: [xmin, a], on which the function is monotonically decreasing, and [b, xmax], on
which the function is monotonically increasing.

Our algorithm also offers the user the possibility to determine how many sample
points should be created before the algorithm stops. Therefore, the iterative process
stops either when the error is less than the threshold, or the number of sample points
reaches the maximun number allowed. Since the algorithm partitions the function into
two monotonic functions, the number of sample points for each function is determined
as follows:

1. Find the length of the original interval.

2. Find the distance from the left endpoint of the original function to the minimum.
Note that the function is monotonically decreasing in this interval.

3. Find the distance from the right endpoint of the original function to the mini-
mum. Note that the function is monotonically decreasing in this interval.

4. Find the ratio of the length of each subinterval to the original interval.

5. Use this ratio to assign the corresponding percentage of sample points for each
of the two subintervals.

Figure 6.1 illustrates the application of the Modified CLA to the function y = x2

on [−10, 10], for which the single minimum is located at 0. We used δ = 0.005 in the
first step to find the approximate location of the minimum and a CLA error tolerance
level of ε = 7.01 for both subintervals in the second step.

46

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Figure 6.1: Modified CLA applied to y = x2, x ∈ [−10, 10] with δ = 0.005 and
ε = 7.01.

6.2 MARS-Based Algorithm

The second algorithm we implemented was suggested by our industrial advisor,
Charles Tong. We call it the MARS-Based Algorithm. Similar to the CLA, the
MARS-Based Algorithm is an iterative method that uses the behavior of the function
to guide the placement of the next sample point. The key difference between the two
methods is that the MARS-Based Algorithm uses standard deviation as the measure
of error. The steps of the algorithm are listed below.

1. Select a small number of sample points over [xmin, xmax] using a passive sampling
method (e.g., LPτ). Add xmin and xmax to the sample if they are not already
present. For convenience, label the sample points {x1, x2, ..., xk}, where xmin =
x1 < x2 < · · · < xk = xmax. The number of sample points k should be large
enough for MARS to be able to generate an approximate function for a user-
specified number of basis functions.

2. Generate an approximate function f̂k using MARS to fit the k sample points.

3. Using a fixed number s of evenly-spaced prediction points, find the mean value
of f̂k on each interval [xi, xi+1] via the formula

mi =
1

s

s
∑

q=1

f̂k

(

xi +
q − 1

s− 1
(xi+1 − xi)

)

, (6.1)

47

and use mi to compute the standard deviation

σi =

√

√

√

√

1

s

s
∑

q=1

(

f̂k

(

xi +
q − 1

s− 1
(xi+1 − xi)

)

−mi

)2

. (6.2)

Store the standard deviation for each interval.

4. Find the interval with the maximum standard deviation, i.e., [xi′ , xi′+1] such

that σi′ = max1≤i≤k σi. Split this interval in two at its midpoint xk+1 =
xi′+1−xi′

2

and renumber the sample points so that xmin = x1 < x2 < · · · < xk < xk+1 =
xmax. (In the implementation of this step, all indices from i′ + 1 to k are
increased by 1, and xk is inserted into the new opening within the array.)

5. Repeat steps 2 – 4 until max1≤i≤k σi < σ̄ or k = Kmax, where σ̄ and Kmax are
specified by the user.

The MARS-Based Algorithm can be applied directly to both monotonic functions
and functions with a single minimum. For example, Figures 6.2 and 6.3 show the
application of the MARS-Based Algorithm to y = x + sin x, which is monotonically
increasing, and to y = x2, which has a minimum. Figures 5.4 and 6.1 show samples
generated by the CLA and Modified CLA for the same two functions.

0 2 4 6 8 10 12
0

2

4

6

8

10

Figure 6.2: MARS-Based Algorithm applied to y = x+sinx, x ∈ [0, 12], with σ̄ = 0.1.

To test the performance of the two algorithms, we implemented both of them in
C. In the next chapter, we compare the effectiveness of the Modified CLA and the
MARS-Based Algorithm on one-dimensional functions with a single minimum.

48

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Figure 6.3: MARS-Based Algorithm applied to y = x2, x ∈ [−10, 10], with σ̄ = 0.8.

49

Chapter 7

Test Results for Part II

To compare the performance of the Modified CLA and MARS-Based Algorithm, we
first applied them to two functions with a single minimum, y = (x − 0.4)2 + 0.4,
x ∈ [0, 1] and y =

√

|x− 0.6|+ 0.3, x ∈ [0, 1], shown in Figure 7.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

x

y

y = (x − 0.4)2 + 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

x

y

y = sqrt(| x − 0.6 |) + 0.3

Figure 7.1: y = (x− 0.4)2 + 0.4 (left) and y =
√

|x− 0.6|+ 0.3 (right).

We generated samples of size 20, 25, 30, 40, and 50 for both functions using the
two algorithms. For the MARS-Based Algorithm, we specified 20 basis functions for
every case. For each sample size and each algorithm, we computed a prediction error
using 50 points. Figure 7.2 shows these prediction errors.

A third test function was y = arctan(50(x2 − 0.14)), x ∈ [−1, 1]. Figures 7.4 –
7.6 show the application of the two algorithms to this function for sample sizes of
50, 100, and 200. The curve is the exact function, and the vertical lines represent
the placement of the sample points. The plots on the left were all generated using
the Modified CLA; the plots on the right were all generated using the MARS-Based
Algorithm. In applying the MARS-Based Algorithm, we used 50 basis functions in
every case.

After generating the samples, we used the sample points to fit a MARS approx-
imation. Figures 7.7 – 7.9 show the approximate functions that correspond to the
samples shown in Figures 7.4 – 7.6. Both algorithms result in an accurate approxima-

50

20 25 30 35 40 45 50
0

0.01

0.02

0.03

Number of Sample Points

P
re

di
ct

io
n

er
ro

r
y = (x − 0.4)2 + 0.4

MARS−Based algorithm
Modified CLA

Student Version of MATLAB

20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of Sample Points

P
re

di
ct

io
n

er
ro

r

y = sqrt | x − 0.6 | + 0.3

MARS−Based algorithm
Modified CLA

Student Version of MATLAB

Figure 7.2: Modified CLA and MARS-Based Algorithm prediction errors for y =
(x− 0.4)2 + 0.4 (left) and y =

√

|x− 0.6|+ 0.3 (right).

tion for 200 sample points, but one major difference is evident for the smaller sample
sizes. It appears that, due to differences in the location of the sample points, the
MARS-Based Algorithm approximates the function better than the Modified CLA
near the minimum, but the Modified CLA approximates the function better than the
MARS-Based Algorithm near the endpoints of the interval.

Figure 7.3 shows prediction errors for different samples generated by three different
sampling methods: LPτ , the Modified CLA, and the MARS-Based Algorithm. For
this particular test function, y = arctan(50(x2− 0.14)), x ∈ [−1, 1], the errors for the
two adaptive sampling methods were comparable to each other and noticeably lower
than those for LPτ , demonstrating the effectiveness of adaptive sampling.

51

50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of sampling points

E
rr

or

y = atan (50 * (−0.14 + x2))

Passive Sampling (LPτ)

Modified CLA
Mars−Based Algorithm

Figure 7.3: Prediction errors for approximating y = arctan(50(x2 − 0.14)) using
different sampling methods.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 7.4: Modified CLA (left) and MARS-Based Algorithm (right), 50 points.

Conclusions

Based on the prediction errors from the three tests, samples produced by the Modified
CLA and MARS-Based Algorithm result in function approximations with about the
same level of accuracy for a given sample size. In terms of implementation for one-
dimensional functions, the Modified CLA is simpler, primarily because it does not
involve the use of MARS. As discussed in Chapter 4, the MARS software requires the
user to choose certain parameter values, such as the number of basis functions, and
it is not always obvious which values will work best.

However, extending the algorithms to two-dimensions would be more complicated

52

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 7.5: Modified CLA (left) and MARS-Based Algorithm (right), 100 points.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 7.6: Modified CLA (left) and MARS-Based Algorithm (right), 200 points.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 7.7: Modified CLA (left) and MARS-Based Algorithm (right), 50 points.

for the Modified CLA than for the MARS-Based Algorithm because finding the min-
imum of a two-dimensional function is not trivial, and because computing the error
involves solving a double integral. The MARS-Based Algorithm does not require
knowing the approximate location of the minimum, and the standard deviation is not

53

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 7.8: Modified CLA (left) and MARS-Based Algorithm (right), 100 points.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 7.9: Modified CLA (left) and MARS-Based Algorithm (right), 200 points.

difficult to compute for two-dimensional functions.

54

Chapter 8

Adaptive Sampling for Functions

with a Bounded First Derivative

The last class of functions that we considered in this project was functions with a
bounded first derivative, i.e., f : X → Y such that f is differentiable and |f ′(x)| ≤ d
for x in an interval of interest I and some d ∈ R. Knowing the maximum absolute
value d of f ′ and the value of f at one point, we can also bound the value of f at other
points in I because the slope m between any two points in I satisfies |m| ≤ d. This
principle serves as a basis for a variation on the Choose and Learn Algorithm, which
we will call CLA-2. The CLA-2 returns a set of sample points using the following
steps:

1. Let xmin and xmax be the endpoints of I. These will be the first two sample
points.

2. Evaluate ymin = f(xmin) and ymax = f(xmax).

3. Calculate the error

eI =
1

4d
(d2(xmax − xmin)

2 − |ymax − ymin|2). (8.1)

4. If eI is greater than some fixed tolerance level ε, then divide I into two regions
by placing the next sample point at the midpoint of I.

5. Let the k + 1 sample points generated thus far be xmin = x0 < x1 < · · · <
xk+1 = xmax and yi = f(xi). For each region Ci = [xi, xi+1], i = 0, 1, . . . , k,
compute the error

eCi
=

1

4d
(d2(xi+1 − xi)

2 − |yi+1 − yi|2). (8.2)

6. Compute the total error eD =
∑k

i=0
eCi

. If eD ≤ ε, then terminate the algorithm.
Otherwise, find the region with the largest error and divide it in half by placing
the next sample point at its midpoint. Repeat steps 4–6.

55

Figure 8.1: First two iterations of the CLA-2 for y = sin x

Figure 8.1 shows an example of the first two iterations of the CLA-2 Algorithm.
The shaded parts represent the regions in which the function can exist, bounded by
lines with slopes of absolute value equal to the maximum absolute value d of the func-
tion’s first derivative. The area of each shaded part is the error of the corresponding
region, given by Equation 8.2. The idea is that because the function cannot exist
outside of the shaded regions without violating the bound on the first derivative, if
the area of the shaded regions is small, then there are enough sample points that any
approximation to the function should be fairly accurate.

Figures 8.2–8.4 show the application of the CLA-2 to three functions: y = x3,
y = sin x and y = x cos x− sinx respectively. An important feature of this algorithm
is that it places more sample points where the function has a flat slope than where it
has a steep slope. The reasoning behind this behavior is that if the function values
at xi and xi+1 are close, then it is possible that the function oscillates on the interval
[xi, xi+1]. On the other hand, if f(xi+1) is much greater than f(xi), then considering
the bound d on f ′, the function would have to change steadily over [xi, xi+1]. That is,
in the second case, we could reasonably approximate the function by a line, so it is
not necessary to place many sample points in that region. Note that this is the exact
opposite of how the CLA and MARS-Based Algorithm choose sample points. In the
case of CLA, the function was monotonic, so if f(xi+1) differed little from f(xi), that
meant that the function could only change little, while if f(xi+1) differed a lot from
f(xi) that meant that the function can change in many ways on [xi, xi+1].

56

−15 −10 −5 0 5 10 15
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

x

y

y = x3

Figure 8.2: y = x3 with ε = 5 and d = 675 , x ∈ [−15, 15].

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

y = sin (x)

Figure 8.3: y = sinx with ε = .02 and d = 1, x ∈ [−10, 10].

57

0 5 10 15 20 25 30 35
−30

−20

−10

0

10

20

30

40

y

x

y = x cos (x) − sin (x)

Figure 8.4: y = x cos x− sinx with ε = .5 and d = 10.5π , x ∈ [0, 10.5π]

58

Chapter 9

Conclusion

The subject of response surface methodology encompasses an enormous variety of
techniques to achieve useful experimental designs and accurate function approxima-
tions. In this project, we examined four passive sampling methods, two function
approximation methods, and four adaptive sampling methods. We obtained code to
implement all of these methods, either from an outside source or by programming
them ourselves, as shown in Table 9.1.

Method Author of Code Language

Monte Carlo LLNL team C
LPτ Boris Shukhman C
Latin Hypercubes MATLAB (lhsdesign) MATLAB
OA-Based Latin Hypercubes

Construction of Orthogonal Arrays Art Owen C
Driver LLNL team C

MARS
Subroutines to generate response surface Jerome Friedman Fortran 77
Driver LLNL team C

SVM
Subroutines to generate response surface Thorsten Joachims C
Driver LLNL team C

CLA LLNL team C
Modified CLA LLNL team C
MARS-Based Algorithm LLNL team C
CLA2 LLNL team C

Table 9.1: List of software.

Note that we acquired code to generate an orthogonal array, but we wrote our
own code to produce a set of sample points using the orthogonal array. Likewise, we
acquired code containing functions to implement MARS and SVM, but we wrote our
own programs to call those functions and compute errors.

59

9.1 Summary of Findings

Regarding passive sampling methods, we found that the LPτ method returns a well-
spaced sample and will, in fact, always generate the same well-spaced set of points
for a given sample size. Its deterministic nature, along with its ability to create a set
of sample points for which the subsequent function approximation has relatively high
accuracy, made it a more useful method than Monte Carlo, Latin Hypercubes, and
Orthogonal-Array-Based Latin Hypercubes.

As for function approximation methods, we determined that even though it is
possible for SVM to achieve higher accuracy than MARS, SVM is also more difficult
to use. The default values for several of the parameters in the SVM software were
not the best for our test functions, but varying the parameter values was problematic
because it was not always clear whether changing a value would actually result in a
better approximation. Moreover, depending on the function and the combination of
parameter values, SVM sometimes ran too slowly to be feasible. The MARS software
also had a few parameters to tune, but after some initial tests it was not complicated
to predict how the method would respond to modifying their values.

We used MARS exclusively to create function approximations in the second half
of this project, in which we investigated different adaptive sampling schemes with a
focus on functions with a single minimum. For this special case, we developed two
algorithms, the Modified CLA and the MARS-Based Algorithm, that aimed to place
more sample points in regions of the function domain on which the function varies
greatly. We discovered that the two algorithms produce sets of sample points that
are not significantly different in terms of the accuracy of the function approximations
generated to fit them. However, there are differences in ease of implementation. The
Modified CLA was more straightforward to implement for one-dimensional functions,
but would be more difficult to implement for two-dimensional functions.

9.2 Future Research

The tests described in Chapter 4 used only low-dimensional functions. Because of
time constraints, we were not able to test more complicated functions, but since
function approximation is supposed to be a solution to the problem of evaluating
computationally expensive functions, it would be constructive to test the methods
with functions of high dimension. Also, the SVM software should be studied more
thoroughly to determine if there is a means of choosing optimal parameter values.
SVM was originally developed as a learning tool for classification, not regression, but
if its regression capability is to be exploited, then there should be more documentation
on how to make the best use of the software.

In addition, the adaptive sampling algorithms researched for this project applied
to just three classes of functions, those that are monotonic, those with a single min-
imum and those with a bounded first derivative. Advancing this research includes
formulating the algorithms for more complicated functions of higher dimension, and
investigating methods to handle functions with other given properties.

60

Bibliography

[1] P. Bratley and B.L. Fox. Algorithm 659: Implementing sobol’s quasirandom
sequence generator. ACM Transactions on Mathematical Software (TOMS),
14(1):88–100, 1988.

The introduction of this article provided a brief explanation of the math-
ematics behind the LPτ method.

[2] Christopher J.C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

This paper provides an in-depth tutorial of SVM with an emphasis on its
application in pattern recognition.

[3] Kai Tai Fang, Runze Li, and Agus Sudjianto. Design and Modeling for Computer
Experiments. Chapman & Hall/CRC, 6000 Broken Sound Parkway NW, Suite
300, Boca Raton, FL 33487, 2006.

[4] Aly Farag and Refaat M. Mohamed. Regression using support vector machines:
Basic foundations. Technical report, Computer Vision and Image Process-
ing Laboratory, Electrical and Computer Science Department, University of
Louisville, December 2004.

This paper outlines the use of Support Vector Machines for finding regression.

[5] J.H. Friedman. Multivariate adaptive regression splines. The Annals of
Statistics, 19(1):1–67, 1991.

This paper describes the existing methodology for multivariate regression
modeling and then presents the algorithm for the Multivariate Adaptive
Regression Splines (MARS) method.

[6] A.S. Hedayat, N.J.A. Sloane, and John Stufken. Orthogonal Arrays: Theory
and Applications. Springer-Verlag New York, Inc., New York, NY, USA, 1999.

This book outlines the theory of orthogonal arrays, providing the basic
definitions and describing Bush’s construction.

61

[7] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to
support vector classification. Technical report, Department of Computer Science
and Information Engineering, National Taiwan University, 2003.

This paper provides an introduction to SVM, chiefly in relation to its use
for data classification.

[8] Thorsten Joachims. SVMlight: Support vector machine. SVM-Light Support
Vector Machine, University of Dortmund, November, 1999.

This web site offers instructions on running SVMlight.

[9] J.R. Koehler and A.B. Owen. Computer experiments. Handbook of Statistics,
13:261–308, 1996.

This article provides a good introduction to the concept of computer ex-
periments and also outlines the Latin hypercube and orthogonal-array-based
Latin hypercube sampling methods.

[10] Max D. Morris and Toby J. Mitchell. Exploratory designs for computational
experiments. Journal of Statistical Planning and Inference, 43(3):381–402, 1995.

This paper discusses the various sampling designs for computer experiments,
outlining the maximin criterion used to strengthen Latin hypercubes.

[11] Partha Niyogi. Active learning by sequential optimal recovery. Technical report,
Artificial Intelligence Laboratory, Center for Biological and Computational
Learning, Massachusetts Institute of Technology, March 1995.

This paper gave an introduction to adaptive sampling and outlined the
Choose and Learn Algorithm.

[12] Art B. Owen. Orthogonal arrays for computer experiments, integration and
visualization. Statistica Sinica, 2(2):439–452, 1992.

This paper provides a detailed outline of orthogonal arrays and their use
in computer experiments.

[13] Timothy W. Simpson, Dennis K.J. Lin, and Wei Chen. Sampling strategies for
computer experiments: Design and analysis. International Journal of Reliability
and Applications, 2(3):209–240, 2001.

This paper presents various sampling methods commonly used in computer
experiments, including Latin hypercubes.

[14] Boxin Tang. Orthogonal array-based latin hypercubes. Journal of the American
Statistical Association, 88(424):1392–1397, December 1993.

62

This paper outlines the nature of orthogonal array-based Latin hypercubes as a
sampling method.

63

