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Abstract
As modern supercomputing systems reach the peta-flop perfor-
mance range, they grow in both size and complexity. This makes
them increasingly vulnerable to failures from a variety of causes.
Checkpointing is a popular technique for tolerating such failures,
enabling applications to periodically save their state and restart
computation after a failure. Although a variety of automated
system-level checkpointing solutions are currently available to
HPC users, manual application-level checkpointing remains more
popular due to its superior performance. This paper improves per-
formance of automated checkpointing via a compiler analysis for
incremental checkpointing. This analysis, which works with both
sequential and OpenMP applications, reduces checkpoint sizes by
as much as 80% and enables asynchronous checkpointing.

1. Introduction
Dramatic growth in supercomputing system capability from tera-
flops to peta-flops has resulted in dramatically increased system
complexity. Efforts to limit the complexity of Operating Systems
for these machines have failed to reduce growing component com-
plexity. Systems like BlueGene/L [3] and the upcoming RoadRun-
ner have grown to more than 100k processors and tens of TBs of
RAM; future designs promise to exceed these limits by large mar-
gins. Large supercomputers are made from high-quality compo-
nents, but increasing component counts make them vulnerable to
faults, including hardware breakdowns [14] and soft errors [9].

Checkpointing is a common technique for tolerating failures.
Application state is periodically saved to reliable storage, and on
failure, applications roll back to their prior states. However, auto-
mated checkpointing can be very expensive due to the size of saved
data and amount of time the application loses while blocked. For
example, dumping all of RAM on a 128K-processor BlueGene/L
supercomputer to a parallel file system takes approximately 20
minutes [12]. Incremental checkpointing [13] reduces this cost. A
runtime monitor tracks application writes, and if it detects that a
given memory region has not been modified between two adjacent
checkpoints, that region is omitted from the subsequent checkpoint,
thereby reducing the amount of data to be saved. Previously ex-
plored monitors include virtual memory fault handlers [8], page
table dirty bits, and cryptographic encoding techniques [4].

When virtual memory fault handlers track application writes,
checkpointing can be optimized via “copy-on-write checkpointing”
or, more generally, “asynchronous checkpointing”. At each check-
point, all pages to be checkpointed are marked non-writable and
placed on a write-out queue. The application continues executing,
and a separate thread asynchronously saves pages on the write-out
queue. When the checkpointing thread is finished saving a given
page, the page is marked writable. If the application tries to write
to a page that hasn’t yet been saved, the segmentation fault handler
is called, a copy of the page is placed in the write-out queue, and the
application resumes execution. Checkpointing is thus spread over
a longer period of time, reducing pressure on the I/O system, and
allowing the application to continue executing.

In contrast to prior work, which uses runtime techniques for
monitoring application writes, here we present a compile-time anal-
ysis for tracking such writes. Given an application that has been
manually annotatedwith calls to acheckpoint function, for each
array the analysis identifies points in the code such that either:

• there exist no writes to the array between the point in the code
and the next checkpoint and/or

• there exist no writes to the array between the last checkpoint
and the point in the code

When the analysis detects that a given array is unmodified between
two checkpoints, this array is omitted from the second checkpoint.
Also, the analysis enables the use of asynchronous checkpointing
because each array can be asynchronously saved during the time
period from the last pre-checkpoint write to the array until the
first post-checkpoint write. In contrast to prior work, this technique
enables asynchronous checkpointing to begin before the checkpoint
itself. However, because it works at array granularity rather than
the page- or word-granularity of runtime monitoring mechanisms,
it may be more conservative in its decisions. Furthermore, the
analysis makes the assumption that when the application reaches a
one potential checkpoint location, it can determine whether it will
take a checkpoint when it reaches the next location.

Prior work has looked at compiler analyses for checkpoint op-
timization [10] [15], and has focused on pure compiler solutions
that reduce the amount of data checkpointed. Our work presents a
hybrid compiler/runtime approach that uses the compiler to opti-
mize certain portions of an otherwise runtime checkpointing solu-
tion. This allows us to both reduce the amount of data being check-



pointed, as well as support purely runtime techniques such as asyn-
chronous checkpointing.

2. Compiler/Runtime Interface
Our incremental checkpointing system is divided into run-time and
compile-time components. The checkpointing runtime may either
checkpoint application memory inside ofcheckpoint calls or in-
clude an extra thread that checkpoints asynchronously. Two check-
pointing policies are offered. Memory regions that do not contain
arrays (a small portion of the code in most scientific applications)
are saved in a blocking fashion during calls tocheckpoint. Arrays
are dealt with in an incremental and possibly asynchronous fashion,
as directed by the annotations placed by the compiler. The compiler
annotates the source code with calls to the following functions:

• add array(ptr, size) Called when an array comes into
scope to identify the array’s memory region.

• remove array(ptr) Called when an array leaves scope.
Memory regions that have been added but not removed are
treated incrementally by the checkpointing runtime.

• start chkpt(ptr) Called to indicate that the array that con-
tains the addressptr will not be written until the next check-
point. The runtime may place this array on the write-out queue
and begin to asynchronously checkpoint this array.

• end chkpt(ptr) Called to indicate that the array that contains
the addressptr is about to be written. Theend chkpt call must
block until the checkpointing thread finishes saving the array. It
is guaranteed that there exist no writes to the array between any
checkpoint and the call toend chkpt.

Overall, the runtime is allowed to asynchronously checkpoint a
given array between calls tostart chkpt andend chkpt refer-
ring to this array. Ifstart chkpt is not called for a given array
between two adjacent checkpoints, this array may be omitted from
the subsequent checkpoint because it was not written to between
the checkpoints.

For a more intuitive idea of how this API is used, consider
the transformation in Figure 1. The original code contains two
checkpoint calls, with assignments to arraysA andB in between.
The code within the...’s does not contain any writes toA or B.
It is transformed to include calls tostart chkpt andend chkpt
around the writes. Note that whileend chkpt(B) is placed imme-
diately before the write toB, start chkpt(B) must be placed at
the end ofB’s write loop. This is because astart chkpt(B) call
inside the loop may be followed by writes toB in subsequent iter-
ations. Placing the call immediately after the loop ensures that this
cannot happen.

3. Compiler Analysis
The incremental checkpointing analysis is a dataflow analysis con-
sisting of forward and backward components. The forward compo-
nent, called theDirty Analysis, identifies the first write to each array
after a checkpoint. The backward component, called theWill-Write
analysis, identifies the last write to each array before a checkpoint.
“Array” here refers to any block of memory. The analysis presented
here is focused on the simple case of memory buffers that are lexi-
cally identified in the source code as arrays. Issues such as aliasing,
heap arrays and pointer arithmetic are orthogonal to this analysis
and are addressed by a large body of ongoing work.

3.1 Basic Analysis

For each array at each noden in a function’s control-flow graph(CFG)
the analysis maintains two bits of information:

• mustDirty[n](array): True if there must exist a write to
array alongeverypath from acheckpoint call to this point

Original Code Transformed Code
checkpoint(); checkpoint();

... ...

A[...]=...; end chkpt(A);

... A[...]=...;

for(...) { start chkpt(A);

... ...

B[...]=...; for(...) {
... ...

} end chkpt(B);

... B[...]=...;

checkpoint(); ...

}
start chkpt(B);

...

checkpoint();

Figure 1. Transformation example

in the code; False otherwise. Corresponds to the dataflow infor-
mation immediatelybeforen.

• mayWillWrite[n](array): True if there mayexist a write
to array along somepath from a this point in the code to a
checkpoint call; False otherwise. Corresponds to the dataflow
information immediatelyafter n.

This information is propagated through the CFG using the
dataflow formulas in Figure 2. The Dirty and Will-Write analyses
start at the top and bottom of each function’s CFG, respectively, in
a state where all arrays are considered to be clean (e.g., consistent
with the previous and next checkpoint, respectively). They then
propagate forward and backward, respectively, through the CFG,
setting each array’s write bit toTrue at each write to this array.
When each analysis reaches acheckpoint call, it resets the state
of all the arrays toFalse. For the Dirty Analysis, all dirty arrays
will become clean because they are checkpointed. For the Will-
Write Analysis, at the point immediately before a checkpoint there
exist no writes to any arrays until the next checkpoint, which is the
checkpoint in question.

The application source code is annotated with calls tostart chkpt
and end chkpt using the algorithm in Figure 3. Such calls are
added in three situations. First,end chkpt(array) is inserted
immediately before noden if n is a write toarray and is not
preceded by any other write toarray along some path that
starts at a call tocheckpoint and ends with noden. Second,
start chkpt(array) is inserted immediately after noden if n is
a write toarray and there do not exist any more writes toarray
alongany path that starts withn and ends at acheckpoint call.
Third, a start chkpt(array) is inserted on a CFG branching
edgem → n if mayWillWrite[n](array) is true atm, but
false atn, due to merging of dataflow information at branching
point m. This treatment is especially important when an array is
written inside a loop. In this case,mayWillWrite[n](array) is
true at all points in the loop body, since the array may be writ-
ten in subsequent loop iterations. The flag becomes false on the
edge that branches out of the loop, and the compiler inserts the
start chkpt(array) call on this edge.

Because the Dirty analysis is based onmust-writeinformation,
end chkpt calls are conservatively placed as late as possible after
a checkpoint. Furthermore, the Will-Write analysis’ use ofmay-
write information conservatively placesstart save calls as early
as possible before a checkpoint.

To provide an intuition of how the analysis works, consider the
example in Figure 4. In particular, consider the points in the code



mustDirty[n](array) =

{
False if n = first node⋂

m∈pred(n) mustDirtyAfter[m](array) otherwise

mustDirtyAfter[m](array) = [[m]](mustDirty[m](array), array)

mayWillWrite[n](array) =

{
False if n = last node⋃

m∈succ(n) mayWillWriteBefore[m](array) otherwise

mayWillWriteBefore[m](array) = [[m]](mayWillWrite[m](array), array)

Statementm [[m]](val, array)
array[expr] = expr True
checkpoint() False
other val

Figure 2. Dataflow formulas for Dirty and Will-Write analyses

foreach (arrayarray), foreach (CFG noden) in application
// if n is the first write toarray since the lastcheckpoint call
if(mustDirty[n](array) = False ∧

mustDirtyAfter[n](array) = True)
placeend chkpt(array) immediately beforen

// if n is the last write toarray until the nextcheckpoint call
if(mayWillWriteBefore[n](array) = True ∧

mayWillWrite[n](array) = False)
placestart chkpt(array) immediately aftern

// if n follows the last write on a branch wherearray is
// no longer written
if(mayWillWriteBefore[n](array) = False ∧
∃m ∈ pred(n). mayWillWrite[m](array) = True)

placestart chkpt(array) on edgem → n

Figure 3. Transformation for inserting calls tostart chkpt and
end chkpt

wheremustDirty and mayWillWrite change fromFalse to
True. These are the points whereend chkpt andstart chkpt
calls are inserted.

3.2 Loop-Sensitive Analysis

The basic analysis performs correct transformations, but it has per-
formance problems when applied to loops. This can be seen in the
transformed code in Figure 4. Whilestart chkpt(B) is placed
immediately after the loop that writesB, end chkpt(B) is placed
inside the loop, immediately before the write toB itself. This hap-
pens because the placement ofend chkpt depends onmust-write
information, instead of themay-writeinformation used in placing
start chkpt. This placement is conservative, and becomes prob-
lematic in the case where the first post-checkpoint write to an array
happens in a small, deeply-nested loop, which are very common in
scientific computing. In this caseend chkpt will be called during
each iteration of the loop, causing potentially severe overheads.

To address this problem, the above analysis is augmented with
a loop-detection heuristic, shown in Figure 5. This heuristic uses
may-Dirty information, in addition to the must-Dirty and may-
WillWrite information of Section 3, and identifies the patterns of
dataflow facts that must hold at the top of the first loop that writes
to an array after a checkpoint. Figure 5 contains the CFG of such
a loop and identifies edges in the CFG where the various dataflow
facts areTrue. The pattern at nodei < n is:

• mustDirty[i < n](B) = False
• mayDirty[i < n](B) = True

i=0;

i<n

B[i]=?;

i++;

mustDirty[B]=True
mayDirty[B]=True
mayWillWrite[B]=True

checkpoint();

...

Figure 5. Dataflow pattern for writes inside loops

• mayWillWrite[i < n](B) = True
• pred(i < n) > 1

Furthermore, the CFG edge that points toi < n from out-
side the loop is the one coming from the predecessorp where
mustDirtyAfter[p](B) = False. Thus, by placingend chkpt(B)
on this incoming edge, we can ensure both thatend chkpt(B) is
called before any write toB, and that it is not executed in every
iteration of the loop.

Since this heuristic only applies to loops, it does not place
end chkpt(A) before the write toA in Figure 1. As such, we
need to use both rules to ensure thatend chkpt is placed con-
servatively. However, if both rules are used then the example in
Figure 1 will get twoend chkpt(B) calls: one beforeB’s write
loop and one before the write itself, negating the purpose of the
loop-sensitive placement strategy. To prevent this from happen-
ing we propose an extraEndChkpt-Placedanalysis that prevents
end chkpt(array) from being placed at a given node if there
already exists anend chkpt(array) on every path from any
checkpoint call to the node.EndChkpt-Placedis a forward anal-
ysis executed as a separate pass from the Dirty and Will-Write
passes. It maintains a bit of information for every array at every
CFG node.mustEndChkptP laced[n](array) is set toTrue if
end chkpt(array) is to be placed immediately before noden. It
is set toFalse if start chkpt(array) is to be inserted atn. The
latter rule ensures that the “exclusion-zone” of a given insertion of
end chkpt(array) doesn’t last past the nextcheckpoint call.

To implement this rule the loop-sensitive analysis maintains for
each CFG noden the following additional dataflow information:



Original Code Code with Dirty States Code with Will-Write States Transformed Code
checkpoint(); checkpoint(); [A→F,B→F] checkpoint(); [A→T,B→T] checkpoint();

... ... [A→F,B→F] ... [A→T,B→T] ...

A[...]=...; A[...]=...; [A→F,B→F] A[...]=...; [A→F,B→T] end chkpt(A);

... ... [A→T,B→F] [A→F,B→T] A[...]=...;

for(...) { for(...) { [A→T,B→F] for(...) { [A→F,B→T] start chkpt(A);

... ... [A→T,B→F] ... [A→F,B→T] ...

B[...]=...; B[...]=...; [A→T,B→F] B[...]=...; [A→F,B→T] for(...) {
... ... [A→T,B→T] ... [A→F,B→T] ...

} } [A→T,B→T] } [A→F,B→T] end chkpt(B);

... ... [A→T,B→F] ... [A→F,B→F] B[...]=...;

checkpoint(); checkpoint(); [A→T,B→F] checkpoint(); [A→F,B→F] ...

}
start chkpt(B);

...

checkpoint();

Figure 4. Analysis example

foreach (array), foreach (CFG noden) in application
if placeEndChkptNode(n, array)

placeend chkpt(array) immediately beforen
if ∃m ∈ pred(n). placeEndChkptEdge(m, n, array)

placeend chkpt(array) on edgem → n

Figure 7. Loop-sensitive transformation for inserting calls to
end chkpt

• mayDirty[n](array): True if there may exist a write to
array alongsomepath from acheckpoint call to this point
in the code;False otherwise. Corresponds to the dataflow in-
formation immediatelybeforen.

• mustEndChkptP laced[n](array): True if all paths from
anycheckpoint call to this point in the code contain a point
where aend chkpt(array) call will be placed.

This information is computed as shown in Figure 6. The mod-
ified rules for placingend chkpt calls are shown in Figure 7
and Figure 8 extends the example in Figure 1 with the new
mustEndChkptP laced information and the new placement of
end chkpt calls.

3.3 Inter-Procedural Analysis

We extend the above analysis with a context-insensitive, flow-
sensitive inter-procedural analysis. The inter-procedural analysis
applies the data-flow analysis from Section 3.2 to the CFG that con-
tains all of the application’s functions. When the analysis reaches
a function call node for the first time, it computes a summary for
that function by applying the dataflow analysis using the formulas
in Figure 6, but with a modified lattice.

In addition to the standardTrue andFalse, we introduce an
additionalUnset state that appears belowTrue andFalse in the
lattice. All the dataflow facts for all arrays are initialized toUnset
at the start or end of the function (start for the forward analyses
and end for the backward analysis). The standard analysis is then
executed on the function using the extended lattice, withUnset
being treated asFalse for the purposes of the EndChkpt-Placed
analysis. If the state of a given array remainsUnset at the end of
a given pass, this means that it was not modified by the pass. In the
case of the Dirty and Will-Write analyses this means that the array
is not written to inside the function. In the case of the EndChkpt-
Placed analysis, this means that noend chkpt calls are placed for
this array inside the function. The function summary then consists
of the dataflow facts for each array at the opposite end of the
function: end for the forward analyses and start for the backward

analysis. Function calls are processed by applying the function
summary as a mask on all dataflow state. IfdataF low[array] =
Unset in the function summary,array’s mapping is not changed
in the caller. However, ifdataF low[array] = True or False in
the summary, the corresponding dataflow fact forarray is changed
to True or False in the caller.
4. OpenMP Support
The increasing popularity of shared memory platforms for HPC
(ranging from clusters of symmetric multi-processors to large
shared-memory machines like the SGI Altix) has led to the in-
creased importance of the shared memory programming model.
OpenMP is one of the most popular shared-memory APIs, with
many applications written in either pure OpenMP or a combina-
tion of OpenMP and MPI. We have extended the above analysis
to support multi-threaded OpenMP applications. OpenMP offers
a structured fork-join parallelism model, with parallel regions of
code identified using#pragma omp parallel. It also offers sup-
port for variable privatization, work-sharing, and synchronization.
In light of prior work on shared memory checkpointing, our work
has focused onblockingcheckpointing tools such as C3[5] [6] and
BLCR[7], for these have proved to be the most portable. In par-
ticular, the analysis assumes thatcheckpoint calls are (i) global
barriers across all threads, and (ii) every thread will execute the
samecheckpoint call as part of the same checkpoint. This is sim-
ilar to OpenMP’s semantics for placing#pragma omp barrier.

The intuition behind our analysis extension is that each thread
is treated as a sequential application. The sequential analysis is
applied to the application, ignoring any interactions among threads.
This ensures thatstart chkpt and end chkpt calls are placed
such that for any thread:

• There are no writes toarray by the thread between a
start chkpt(array) call and acheckpoint call.

• There are no writes toarray by the thread between acheckpoint
call and aend chkpt(array) call.

This alone is sufficient for code outside of#pragma omp parallel
constructs and code that deals with private variables. This is
because in both cases the array access patterns are sequential.
However, it presents problems for parallel code that deals with
shared variables. Consider the case ofstart chkpt(array),
where array is shared. Although each thread is guaranteed to
call start chkpt(array) after the last pre-checkpoint write to
array, the fact that one thread has calledstart chkpt(array)
does not mean that all threads are finished writing to array. As
such, in the multi-threaded setting the checkpointing runtime is
not allowed to begin asynchronously checkpointingarray until all



mayDirty[n](array) =

{
False if n = first node⋃

m∈pred(n) mayDirtyAfter[m](array) otherwise

mayDirtyAfter[m](array) = [[m]](mayDirty[m](array), array)

mustEndChkptP laced[n](array) =

{
False if n = first node⋂

m∈pred(n) mustEndChkptP lacedAfter[m](array) otherwise

mustEndChkptP lacedAfter[m](array) =
if ¬ placeStartChkptNode(m, array) ∧ ¬ ∃l ∈ pred(m). placeStartChkptEdge(l, m, array) then

False
else if(placeEndChkptNode(m, array) ∨ ∃l ∈ pred(m). placeEndChkptEdge(l, m, array)) then

True
elsemustEndChkptP laced[m](array)

// end chkpt(array) will be placed immediately before noden if
placeEndChkptNode(n, array) =

// noden is the first write toarray since the lastcheckpoint
(mustDirty[n](array) = False ∧mustDirtyAfter[n](array) = True)

// end chkpt(array) will be placed along the edgem → n if
placeEndChkptEdge(m, n, array) =

// noden is itself clean but predecessorm is dirty, n contains or is followed
// by a write and predecessorm is not itself preceded byend chkpt(array)
(mustDirty[n](array) = False ∧mayDirty[n](array) = True∧
mayWillWrite[n](B) = True ∧mustDirtyAfter[m](array) = False∧
mustEndChkptP laced[m](array) = False)

// start chkpt(array) will be placed immediately after noden if
placeStartChkptNode(n, array) =

// noden is the last write toarray until the nextcheckpoint
(mayWillWriteBefore[n](array) = True ∧ mayWillWrite[n](array) = False)

// start chkpt(array) will be placed along the edgem → n if
placeStartChkptEdge(m, n, array) =

// noden follows the last write toarray until the nextcheckpoint
(mayWillWriteBefore[n](array) = False ∧mayWillWrite[m](array) = True)

Figure 6. Dataflow formulas for the loop-sensitive extension

Original Code Code with Must-EndChkptPlaced StatesTransformed Code
checkpoint(); checkpoint(); [A→F,B→F] checkpoint();

... ... [A→F,B→F] ...

A[...]=...; A[...]=...; [A→F,B→F] end chkpt(A);

... [A→T,B→F] A[...]=...;

for(...) { for(...) { [A→T,B→T] start chkpt(A);

... ... [A→T,B→T] ...

B[...]=...; B[...]=...; [A→T,B→T] end chkpt(B);

... ... [A→T,B→T] for(...) {
} } [A→T,B→T] ...

... ... [A→T,B→T] B[...]=...;

checkpoint(); checkpoint(); [A→T,B→T] ...

}
start chkpt(B);

...

checkpoint();

Figure 8. Transformation example with loop-sensitive optimizations
threads have calledstart chkpt(array). Similarly, the check-
pointing runtime must finish checkpointingarray whenany one
thread callsend chkpt(array).

While the start chkpt rule it simple, it does not work un-
less the runtime knows the number of threads that will call
start chkpt between a pair of checkpoints. Unless this is known,
it is not possible to determine whether a given thread’sstart chkpt
is the last one. OpenMP applications spawn new threads by execut-

ing code that is marked by#pragma omp parallel. Variables
declared inside this block are private to each thread and vari-
ables declared outside this block may be either private or shared
among the spawned threads, with heap data always being shared.
A spawned thread may spawn additional threads of its own, mak-
ing any variable it has access to either shared among all the newly
spawned threads or private to each of them. We track the number
of threads that a given array is shared among by adding calls to the



start thread andend thread functions at the top and bottom
of each#pragma omp parallel region, respectively:

• start thread(parentThread, privateArrays) - Informs
the checkpointing runtime thatparentThread has spawned
a new thread, giving it private copies of the arrays in the
privateArrays list. All other arrays are assumed to be shared
betweenparentThread and the new thread.

• end thread() - Informs the checkpointing runtime that the
given thread is about to terminate.

Note that since making a shared variable private to a thread
is equivalent to creating a copy of the original variable, the
start thread and end thread calls imply add array and
remove array calls, respectively, for the privatized variables.

While these runtime monitoring mechanisms can identify the
number of threads thatmaycall start chkpt(array), it is not
clear that all of these threads will actually perform the call, since
different threads may execute different code. Appendix A presents
a proof (Theorem 2) that if one thread callsstart chkpt(array)
between two checkpoints, all threads will do the same. Since
it is possible for a thread to spawn new threads after calling
start chkpt(array), the runtime considers such threads as hav-
ing also calledstart chkpt(array), until the nextcheckpoint
call. Similarly, if threads in a thread group callstart chkpt(array)
before exiting their#pragma omp parallel region, the check-
pointing runtime decrements the count of threads that have already
calledstart chkpt(array). Theorem 1 guarantees that if one
such thread callsstart chkpt(array), they all do.

5. Experimental Evaluation
5.1 Experimental Setup

We have evaluated the effectiveness of the above compiler analysis
by implementing it on top of the ROSE [11] source-to-source
compiler framework and applying it to the OpenMP versions [1] of
the NAS Parallel Benchmarks [2]. We have focused on the codes
BT, CG, EP, FT, IS, LU, SP. MG was omitted from our analysis
since it uses dynamic multi-dimensional arrays (arrays of pointers
to lower-dimensional arrays), which requires additional complex
pointer analyses to identify arrays in the code. In contrast, the other
codes use contiguous arrays, which require no additional reasoning
power. Each code was augmented with acheckpoint call at the
top of its main compute loop and one immediately after the loop.

The target applications were executed on all problem classes
(S, W A, B and C, whereS is the smallest andC the largest), on
4-way 2.4Ghz dual-core Opteron SMPs, with 16GB of RAM per
node(Peloton clusters at the Lawrence Livermore National Labora-
tory). Whenever data for all problem classes cannot be shown due
to space constraints, we present data for classA, since it is rep-
resentative of the others. Each run was performed on a dedicated
node, regardless of how many of the node’s cores were actually
used by the NAS benchmark. All results are averages of 10 runs
and each application was set to checkpoint 5 times, with the check-
points spaced evenly throughout the application’s execution. This
number was chosen to allow us to sample the different checkpoint
sizes that may exist in different parts of the application without
forcing the application to take a checkpoint during every single it-
eration, which would have been unrealistically frequent. Data for
BT, EP andFT is not available at input sizeC because it uses too
much static memory to compile.

The transformed codes were evaluated with two checkpointers.
First, we used the Lazarus sequential incremental checkpointer,
which implements page-protection-based incremental and asyn-
chronous checkpointing. We extended this checkpointer with the
API from Section 2 and used it to compare the performance
of purely runtime and compiler-assisted incremental and asyn-
chronous checkpointing. Since we did not have a multi-threaded

checkpointer available to us, we developed a model checkpointing
runtime to evaluate the performance of our compiler technique on
multi-threaded applications.

The model runtime implements the API from Section 2 and sim-
ulates the behavior of a real checkpointer. It performs the same state
tracking and synchronization as a real checkpointer but instead of
actually saving application state, it sleeps for an appropriate period
of time. One side-effect is that our checkpointer does not simulate
the overheads due to saving variables other than arrays. However,
since in the NAS benchmarks such variables make up a tiny fraction
of overall state, the resulting measurement error is small. Further-
more, because the model checkpointer can sleep for any amount of
time, it can simulate checkpointing performance for a wide variety
of storage I/O bandwidths.

The checkpointers have two primary modes of operation:PR
mode, where incremental checkpointing is done using a “Purely-
Runtime mechanism”, andCA mode, where “Compiler-Assistance”
is used. Lazarus supports both modes, and the model checkpointer
only supports theCAmode. Both checkpointers also support all four
permutations of the following modes:
Checkpoint contents:

• Full: Lazarus saves the application’s entire state and the model
checkpointer simulates the time it would take to checkpoint all
currently live arrays.

• Incr: Incremental checkpointing, where only the data that
has been written to since the last checkpoint is saved. InPR
mode the operating system’s page protection mechanism is
used to track whether a given page has been written to since
the last checkpoint. InCA mode the checkpointer saves all ar-
rays for whichstart chkpt has been called since the last
checkpoint.

Checkpoint timing:

• Block: The call tocheckpoint is blocked while the appropri-
ate portion of application state is saved.

• Asynch: Checkpointing is performed asynchronously using a
separate checkpointing thread.

5.2 Pure-Runtime vs. Compiler-Assisted Checkpointing

This section compares the performance of compiler-assisted check-
pointing with purely-runtime checkpointing, using Lazarus.1

5.2.1 Checkpoint Size

We begin by comparing the sizes of the checkpoints generated by
PR andCA. In the context of the NAS codes, which have an initial-
ization phase, followed by a main compute loop, the primary effect
of the analysis is to eliminate write-once arrays from checkpoint-
ing. These are the arrays that are written to during the initialization
phase and then only read from during the main compute loop. Since
there do not exist anystart chkpt calls for these arrays during the
main compute loop, they are only saved during the first checkpoint.
In contrast, Lazarus’ page-protection-based mechanism can track
any changes to application state, at a page granularity.

Figure 9 shows the sizes of checkpoints created by thePR and
CA on each NAS input size, as a percentage of each application’s
original checkpoint size. The amount of savings varies between
different applications, ranging from 80% forCG to ¡10% forEP.

While for small inputs there is sometimes a difference between
the effectiveness of the two approaches, for larger input sizes the
difference becomes very small. This is because the major applica-
tion arrays identified as as dead by the analysis grow as a fraction of
the overall application state as the input size increases. This shows

1 Data for Lazarus withIS was not available at the time of submission and
will be included in the final version of the paper.
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that it is possible for a compiler-based mechanism to achieve the
same reductions in checkpoint size as are available from a runtime-
based technique, without any runtime monitoring. Since both the
compiler technique presented in this paper and page-based incre-
mental checkpointing operate at a fairly coarse grain of whole ar-
rays and whole pages, in future work we plan to compare finer
grain runtime techniques [4] to more accurate compiler-based tech-
niques.

5.2.2 Running Time

The impact of the various checkpointing mechanisms on the appli-
cation running time was evaluated by looking at (i) the cost of us-
ing the given mechanism, without actually writing anything to disk
and (ii) the cost of writing to disk using the mechanism. Figure 10
shows the running time of each NAS application on input sizeA,
both without Lazarus (Original column) and with each Lazarus
checkpointing configuration. No checkpoint data was written to
disk. All times are normalized toOriginal. In many cases the
checkpointing mechanisms themselves add very little cost to origi-
nal application. The exceptions areFT, CG andBT, wherePR shows
a notable overhead, withAsynch-PR showing the highest overhead.
All three applications have a large amount of state relative to their
running time. Since the checkpointing thread must acquire and re-
lease a lock that controls access to the checkpointing queue for
each page that it needs to checkpoint, this becomes a notable cost
because the main application thread is repeatedly forced to stall
when it catches up to the slower checkpointing thread. This effect is
most important forFT andCG, with 70,000 and 50,000 lock acqui-
sitions per second, respectively and less so forBT, with only 6,000
lock ops/sec.CG shows little overhead withIncr-Asynch-PR be-
cause of the significant reductions in its state due to incremen-
tal checkpointing. Furthermore,BT shows a notable overhead for
Asynch-CA. The reason is thatBT’s control flows cause the com-
piler analysis to placeend chkpt calls into frequently used util-
ity functions. This results in many unnecessary calls toend chkpt
which itself releases and acquires a lock, thus raising the overhead
for Asynch-CA.

Figure 11 shows the difference between the above times and
the running times of these configurations on input sizeA, where
Lazarus writes checkpoints to the parallel file system. This is the
time spent writing checkpoints under each scheme. All times are
normalized to the cost ofFull-Block-PR.

The performance of the different checkpointing techniques is
determined by three properties of each application:
• Pre-Checkpoint Overlap: the amount of time betweenstart chkpt

calls and subsequent checkpoints. The larger the overlap, the

Code Pre-Ckpt Post-Ckpt Post-Ckpt
Overlap Overlap Locality

BT high low low
CG med low med
EP high med med
FT low low low
LU med low low
SP very high none none

Table 1. Properties of NAS benchmarks

better the performance ofCA relative toPR since it allowsCA to
begin checkpointing much earlier thanPR.

• Post-Checkpoint Overlap: the amount of time between check-
points and the subsequent first write to each buffer. Larger over-
lap leads to better performance withAsynch relative toBlock
since it gives the checkpointing thread more time to save each
memory region before the main thread first writes to it.

• Post-Checkpoint Locality: the amount of computation the algo-
rithm performs on each page before moving to the next page
during its first access to the page after a checkpoint. Larger
amounts raiseAsynch-PR performance relative toAsynch-CA
sinceAsynch-PR can checkpoint .

Table 1 lists these properties for each NAS benchmark. As sug-
gested by the able,BT shows best performance forBlock-CA and
shows poor performance with all theAsynch configurations.SP is
similar to BT, except that it has less state, somewhat larger sav-
ings from incremental checkpointing, higher pre-checkpoint over-
lap and somewhat lower post-checkpoint overlap and locality. Ac-
cordingly,SP shows a larger improvement ofCA relative toPR than
doesBT and shows similarly poor performance for allAsynch con-
figurations.

CG is much cheaper withIncr than withFull because of the
significant reductions in checkpoint size produced by incremental
checkpointing. BothPR andCA show some improvement in running
time withAsynch with un-optimized checkpointing but then show
a slow-down for small checkpoint sizes. This is because while
larger checkpointing costs hide the costs ofAsynch, when the cost
of checkpointing drops, the low amount of post-checkpoint overlap
in CG is not enough to make up for this cost. Finally, the medium
post-checkpoint locality inCG results in little difference between
Asynch-PR andAsynch-CA.

EP is unusual in having much less computational work per
byte of memory than any of the other benchmarks. As such, its
checkpointing times are small and noisy, making it difficult to make
performance conclusions about this benchmark.

FT’s significant checkpoint size reductions from incremen-
tal checkpointing makeIncr more efficient thanFull. Further-
more, althoughFT’s low pre-checkpoint overlap reduces the per-
formance potential ofCA (PR and CA show similar performance
with Full-Block andIncr-Block), its low post-checkpoint lo-
cality makesAsynch-CA more efficient thanAsynch-PR. LU has
a similar profile and mostly similar checkpoint costs. It is unclear
why its improved pre-checkpoint overlap does not result in better
performance forBlock-CA.
5.3 Compiler-Assisted OpenMP Checkpointing

This section looks at the cost of checkpointing for multi-threaded
OpenMP applications, using the model checkpointing runtime.

5.3.1 Checkpoint Size

Figure 12 shows the checkpoint sizes optimized by the compiler
analysis for input sizeA, normalized to the un-optimized check-
point size. There is little change in the reduction as the number of
threads increases. The only exceptions areEP andIS, where the
savings increase with increasing thread counts.



0

0.5

1

1.5

2

2.5

3

BT CG EP FT LU SP

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e
Original

Full-Block-PR

Incr-Block-PR

Full-Asynch-PR

Incr-Asynch-PR

Full-Block-CA

Incr-Block-CA

Full-Asynch-CA

Incr-Asynch-CA

Figure 10. Execution times with all configurations of Lazarus, no
data written (input sizeA)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

BT CG EP FT LU SP

N
or

m
al

iz
ed

 T
im

e 
D

iff
er

en
ce

Full-Block-PR

Incr-Block-PR

Full-Asynch-PR

Incr-Asynch-PR

Full-Block-CA

Incr-Block-CA

Full-Asynch-CA

Incr-Asynch-CA

Figure 11. Checkpointing time for all configuration of Lazarus,
data written to parallel file system (input sizeA)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BT CG EP FT IS LU SP

1

2

4

8

Figure 12. Checkpoint sizes generated by the model checkpointer
(input sizeA)

5.3.2 Running Time - Incremental Checkpointing

Figure 13 shows the execution times of the NAS applications, run-
ning with the model checkpointer in configurationIncr-Block as
a fraction of the execution time ofFull-Block. We show onlyCG
andEP on 4 threads, since the behavior of these codes is indicative
of other codes that have either a small or a large checkpoint size
reduction, respectively, and the number of threads has no effect on
this behavior. The x-axis is the I/O bandwidth used in the experi-
ments, ranging from 1 MB/s to 1 GB/s in multiples of 4, including
a datapoint for infinite bandwidth. This range includes a variety of
use-cases, including hard-drives ( 60MB/s write bandwidth) and 10
Gigabit Ethernet(1GB/s bandwidth). ForEP, although there is some
difference in performance between the two configurations, the ef-
fect is generally small and always< 20% at all bandwidths. How-
ever, forCG, the effect is quite dramatic, with the improvement from
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IncrChkpt-Block ranging from 95% for low bandwidths, when
the cost of checkpointing is important, to< 10% high bandwidths.

5.4 Running Time - Asynchronous Checkpointing

We evaluated the performance of asynchronous checkpointing by
comparing the execution time of applications that useIncr-Asynch
to those that useIncr-Block. Figure 14 shows the % reduction in
application running times from using withIncr-Asynch instead
of Incr-Block for input sizeA. No data was saved to highlight
the raw overhead of the runtime mechanisms required for blocking
and asynchronous checkpointing. For most applications there is
very little difference between the two configurations. The only ex-
ception isSP on 4 threads, where running withIncr-Asynch more
than 2x slower than running withIncr-Block. The reason appears
to be the addition of the extra thread. The nodes we were using have
different memory banks associated with different pairs of proces-
sors. As such, an the extra checkpointing thread that is assigned
to a processor that does not share a memory bank with the main
computing processors will suffer from poor synchronization per-
formance. In contrast, blocking checkpointing has no extra thread
and requires no additional synchronization. Despite their similari-
tiesBT does not suffer from the same overhead asSP becauseBT
uses a fewer number of larger arrays. The resulting 5x reduction
in the number ofstart chkpt calls removes synchronization as a
performance bottleneck.

Figure 15 shows the same configurations but with the full range
of bandwidths. Data for 2-thread and 4-thread runs is presented,
since it is typical. Asynchronous checkpointing tends to perform
better than blocking checkpointing for most bandwidths and appli-
cations, although the improvement does not hold in all cases.CG
performs worse with asynchronous checkpointing for small band-
widths for all thread numbers andSP shows a large slowdown with
asynchronous checkpointing for the reasons described above. As
input sizes increase the performance gains of asynchronous check-
pointing become more consistent but generally do not exceed 20%,
while SP consistently shows very poor performance on 4 threads.

6. Summary
We have presented a novel compiler analysis for optimizing au-
tomated checkpointing. Given an application that has been aug-
mented by the user with calls to acheckpoint function, the anal-
ysis identifies for each application array the regions in the code
that do not have any writes to the array. This information is used
to reduce the amount of data checkpointed and to asynchronously
checkpoint this data in a separate thread. In our experiments with
the NAS Parallel Benchmarks we have found that this analysis
can reduce checkpoint sizes by as much as 80%. These checkpoint
size reductions were found to have a notable effect on checkpoint-
ing performance. We compared the performance compiler-enabled
checkpointing to pure-runtime checkpointing and identified several
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application characteristics that determine the optimal checkpoint-
ing technique for each type of application. Furthermore, our eval-
uation of compiler-enabled asynchronous checkpointing showed
that asynchronous checkpointing is frequently better than blocking
checkpointing, we discovered that this is oftentimes not the case,
meaning that the choice of the optimal checkpointing technique
closely depends on the application. These results also suggest that
more work should be done to understand of the performance char-
acteristics of asynchronous checkpointing runtime systems.
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APPENDIX

A. OpenMP Theorems
Lemma 1: Let n1 →∗ nk be a path in the CFG from noden1 to
nodenk such thatmayWillWriteBefore[nk](array) = False
and no noden2, ..., nk−1 contains acheckpoint call.
∀1 < l < k.

mayWillWriteBefore[nl](array) = True ⇔
∀1 < p < l. mayWillWriteBefore[np](array) = True.

Proof:
Case ⇒:

• Suppose thatmayWillWriteBefore[nl](array) = True
and
∃1 < p < l. mayWillWriteBefore[np](array) = False.

• Let p′ be the largest such number. As such, while
mayWillWriteBefore[np′ ](array) = False,
mayWillWriteBefore[np′+1](array) = True.

• mayWillWrite[np′ ](array) =⋃
m∈succ(np′ )

mayWillWriteBefore[m](array).
• SincemayWillWriteBefore[np′+1](array) = True, we

know thatmayWillWrite[np′ ](array) = True.
• mayWillWriteBefore[np′ ](array) =

[[np′ ]](mayWillWrite[np′ ](array), array).
• However, the only statement that can cause aTrue to False

transition is acheckpoint call and we have assumed that this
cannot happen.

Case ⇐:

• Assume that∀. 1 < p < l. mayWillWriteBefore[np](array) =
True.

• This means thatmayWillWriteBefore[nl−1](array) =
True.

• mayWillWrite[nl](array) =⋃
m∈succ(nl)

mayWillWriteBefore[m](array).
• As such,mayWillWrite[nl](array) = True.
• mayWillWriteBefore[nl](array) =

[[nl]](mayWillWrite[nl](array), array).
• Since we know that nodenl’s statement cannot be acheckpoint

call, it must be thatmayWillWriteBefore[nl](array) =
True.

Lemma 2: Let n1 →∗ nk be a path as above.
∀1 < l < k.

mayWillWriteBefore[nl](array) = False ⇒
∀l ≤ p ≤ k. mayWillWriteBefore[np](array) = False.

Proof:

• Assume thatmayWillWriteBefore[nl](array) = False.
• Suppose that∃l ≤ p ≤ k.mayWillWriteBefore[np](array) =

True
• If l = p we have a contradiction, since

mayWillWriteBefore[nl](array) = False.
• Otherwise, byLemma 1, mayWillWriteBefore[nl](array) =

True, sincel < p.
• This contradicts our assumption.

Lemma 3: Let n1 →∗ nk be a path as above.
∃ a start chkpt(array) call along this path (∃1 ≤ l < k such
thatstart chkpt(array) appears immediately after nodenl or
on the edgenl → nl+1 ⇒ ∀1 ≤ i < l. mayWillWrite[ni](array) =
True and∀l ≤ j ≤ k. mayWillWriteBefore[nj ](array) =
False.

Proof:

• Since∃ a start chkpt(array) call along the path, we know
that either
(i) mayWillWriteBefore[nl](array) = True ∧
mayWillWrite[nl](array) = False or
(ii) mayWillWrite[nl](array) = True ∧
mayWillWriteBefore[nl+1](array) = False.

• i : 1 ≤ i < l:

If (ii) is true, we know thatmayWillWriteBefore[nl](array) =
True becausemayWillWriteBefore[nl]](array) =
[[m]](mayWillWrite[nl]](array), array) and the node
nl is not acheckpoint call by assumption.
As such, in both cases:mayWillWriteBefore[nl](array) =
True.
FromLemma 1 we know that
∀1 < p ≤ l. mayWillWriteBefore[np](array) =
True.
mayWillWrite[n](array) =⋃

m∈succ(n) mayWillWriteBefore[m](array).
As such,∀1 ≤ i < l. mayWillWrite[ni](array) =
True.

• j : l ≤ j < k

If (i) is true, we know that
mayWillWriteBefore[nl+1](array) = False because
mayWillWrite[nl+1](array) =⋃

m∈succ(nl+1) mayWillWriteBefore[m](array).
As such, in both cases:mayWillWriteBefore[nl+1](array) =
False.
According toLemma 2,
∀l ≤ p ≤ k. mayWillWriteBefore[np](array) =
False

Theorem 1: Let n1 →∗ nk andn′1 →∗ n′k be two paths as above,
with n1 = n′1 andnk = n′k.
If ∃ astart chkpt(array) call along one path then∃ astart chkpt(array)
call along the other path.
Proof:

• Assume that∃ a start chkpt(array) call along pathn1 →
n2 →∗ nk−1 → nk.

• FromLemma 3we know that∀1 ≤ i < l. mayWillWrite[ni](array) =
True and∀l ≤ j ≤ k. mayWillWriteBefore[nj ](array) =
False.

• As such, we know thatmayWillWrite[n1](array) = True
andmayWillWriteBefore[nk](array) = False.

• Let l be the largest number s.t.1 < l < k and
mayWillWrite[nl](array) = True.

• Thus, either (i)l = k or (ii) mayWillWrite[nl+1](array) =
False.

• Suppose (i):

By thestart chkpt placement rules of Figure 3,
start chkpt(array) would be placed on edgenl → nk.

• Now suppose (ii):

EithermayWillWriteBefore[nl+1](array) = True or
= False.
If = True, the start chkpt placement rules of Fig-
ure 3 would placestart chkpt(array) immediately after
nl+1.
If = False, the rules would placestart chkpt(array)
on edgenl → nl+1.

Theorem 2: Let n1 be the start of the application or acheckpoint
call and let nk be a checkpoint call or the end of the ap-
plication. For any two paths through the CFG fromn1 to nk

that do not containcheckpoint calls, if one contains a call to
start chkpt(array), so does the other.
Proof: Direct application ofTheorem 1.




