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Abstract 

 

EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure 

annotation tool that reports eukaryotic gene structures as a weighted consensus of all 

available evidence.  EVM, when combined with the Program to Assemble Spliced 

Alignments (PASA), yields a comprehensive, configurable annotation system that 

predicts protein-coding genes and alternatively spliced isoforms.  Our experiments on 

both rice and human genome sequences demonstrate that EVM produces automated gene 

structure annotation approaching the quality of manual curation.  
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Background 

 

Accurate and comprehensive gene discovery in eukaryotic genome sequences requires 

multiple independent and complementary analysis methods including, at the very least, 

the application of ab initio gene prediction software and sequence alignment tools.  The 

problem is technically challenging, and despite many years of research, no single method 

has yet been able to solve it, although numerous tools have been developed to target 

specialized and diverse variations on the gene finding problem (reviewed in [1, 2]).  

Conventional gene finding software employs probabilistic techniques such as hidden 

Markov models (HMM).  These models are employed to find the most likely partitioning 

of a nucleotide sequence into introns, exons, and intergenic states according to a prior set 

of probabilities for the states in the model.  Such gene finding programs, including 

GENSCAN [3], GlimmerHMM [4], Fgenesh [5], and GeneMark.hmm [6], are effective 

at identifying individual exons and regions that correspond to protein-coding genes, but 

nevertheless are still far from perfect at correctly predicting complete gene structures, 

differing from correct gene structures in exon content or position [7-10].   

 

The correct gene structures, or individual components including introns and exons, are 

often apparent from spliced alignments of homologous transcript or protein sequences.  

Many software tools are available that perform these alignment tasks.  Tools used to align 

expressed sequence tags (ESTs) and full-length cDNAs (FL-cDNAs) to genomic 

sequence include: EST_GENOME [11], AAT [12], sim4 [13], geneseqer [14], BLAT 

[15], and GMAP [16], among numerous others.   The list of programs that perform 

spliced alignments of protein sequences to DNA are much fewer, including the multi-

functional AAT, exonerate [17], and PMAP (derived from GMAP).  An extension of 

spliced protein alignment that includes a probabilistic model of eukaryotic gene structure 

is implemented in GeneWise [18], a popular homology-based gene predictor that serves a 

critical role in the Ensembl automated genome annotation pipeline [19].  In most cases, 

the spliced protein alignments and transcript alignments (derived from ESTs) provide 

evidence for only part of the gene structure, delineating introns, complete internal exons, 

and potential portions of other exons at their alignment termini. 



 

A comprehensive approach to eukaryotic gene structure annotation should utilize both the 

information intrinsic to the genome sequence itself, as is done by ab initio gene 

prediction software, and also any extrinsic data in the form of homologies to other known 

sequences, including proteins, transcripts, or conserved regions revealed from cross-

genome comparisons.  Some of the most recent ab initio gene finding software is able to 

utilize such extrinsic data to improve upon gene finding accuracy.  Examples of such 

software are numerous, and each falls within a certain niche based on the form of 

extrinsic data utilized.  TWINSCAN [20], for example, uses an "informant" genome to 

condition the probabilities of exons and introns in a closely related genome.  Later, 

TWINSCAN_EST [21] combined spliced transcript alignments with the intrinsic data, 

and finally, N-SCAN [22] (a.k.a. TWINSCAN 3.0) and N-SCAN_EST [21] utilized 

cross-genome homologies to multiple related genome sequences in the context of a 

phylogenetic framework.  Other tools, including Augustus [23], Genie [24], and 

ExonHunter [25] include mechanisms to incorporate extrinsic data into the ab initio gene 

prediction framework to further improve accuracy.  Each of these programs analyzes and 

predicts genes along a single target genome sequence, while using homologies detected 

to other sequences.  A more specialized approach to gene-finding is employed by the 

tools SLAM [26] and TWAIN [27], which consider homologies between two related 

genome sequences and simultaneously predict gene structures within both genomes. 

 

Early large-scale genome projects relied heavily on the manual annotation of gene 

structures in order to ensure genome annotation of the highest quality [28-30].  Manual 

annotation involves scientists examining all of the evidence for gene structures as 

described above using a graphical genome viewer and annotation editor such as Apollo 

[31] or Artemis [32].  These manual efforts were, and continue to be, essential to 

providing the best community resources in the form of high quality and accurate genome 

annotations.  Manual annotation is limited, though, as it is time consuming, expensive, 

and it cannot keep pace with the advances in high-throughput DNA sequencing 

technology that are producing increasing quantities of genome sequences.   

 



FL-cDNA projects have lessened the need for manual curation of every gene by 

providing accurate and complete gene structure annotations derived from high quality 

spliced alignments.  Software such as PASA [33] has enabled high-throughput automated 

annotation of gene structures by leveraging ESTs and FL-cDNAs alone or in the context 

of preexisting annotated gene structures.  Other, more comprehensive computational 

strategies have been developed to play the role of the human annotator by combining 

precomputed diverse evidence into accurate gene structure annotations.  These tools 

include Combiner [34], JIGSAW [35], GLEAN [36], and Exogean [37], among others.  

These algorithms employ statistical or rule-based methods to combine evidence into a 

most probable correct gene structure.  

 

We present a utility called EVidenceModeler (EVM), an extension of methods that led to 

the original Combiner development [34, 38], using a non-stochastic weighted evidence 

combining technique that accounts for both the type and abundance of evidence to 

compute weighted consensus gene structures.  EVM was heavily utilized for the genome 

analysis of the mosquito Aedes aegypti [39], and used partially or exclusively to generate 

the preliminary annotation for recently sequenced genomes of the blood fluke 

Schistosoma mansoni  [40], the protozoan oyster parasite Perkinsus marinus, the human 

body louse Pediculus humanus, and another mosquito Culex pipiens. The evidence 

utilized by EVM corresponds primarily to ab initio gene predictions and protein and 

transcript alignments, generated via any of the various methods described above. The 

intuitive framework provided by EVM is shown to be highly effective, leveraging high 

quality evidence where available, and providing consensus gene structure prediction 

accuracy that approaches that of manual annotation.  EVM source code and 

documentation are freely available from the EVM website [41]. 

 

 

 



 Results and Discussion 

 

In the subsequent sections, we demonstrate EVM as an automated gene structure 

annotation tool using rice and human genome sequences and related evidence.  First, 

using the rice genome, we develop the concepts underlying the algorithm of EVM as a 

tool that incorporates weighted evidence into consensus gene structure predictions.  We 

then turn our attention to the human genome where we examine the role of EVM in 

concert with PASA to automatically annotate protein-coding genes and alternatively 

spliced isoforms.  In each scenario, we include comparisons to alternative annotation 

methods. 

 

Evaluation of Ab initio Gene Prediction in Rice 

 

The prediction accuracy for each of the three programs Fgenesh [5], GlimmerHMM [4], 

and GeneMark.hmm [6] was evaluated using a set of 1,058 cDNA-verified reference 

gene structures.  All three were nearly equivalent in both their exon prediction accuracy 

(~78% exon sensitivity (eSn) and 72-79% specificity (eSp)) and complete gene 

prediction accuracy (22-25% gSn and 15-21% gSp) (Figure 1).  The breakdown of 

prediction accuracy by each of the four exon types indicates that all gene predictors excel 

at predicting internal exons correctly (~85% eSn) while predicting initial, terminal, and 

single exons less accurately (44-68% eSn) (Figure 2).  

 

Although each gene predictor exhibits a similar level of accuracy, they differ greatly in 

the individual gene structures they each predict correctly.  The Venn diagrams provided 

in Figure 3 reveal the variability among genes and exons predicted correctly by the three 

programs.  Although each program predicts up to 25% of the reference genes perfectly, 

only about a fourth of these (6.2%) were identified by all three programs simultaneously.  

It is also notable that more than half  (54%) of the cDNA-verified genes are not predicted 

correctly by any of the gene predictors evaluated.  At the individual exon level, there is 

much more agreement among predictions, with 60.5% of the exons correctly predicted by 

all three programs.  Only 7.1% of exons are not predicted correctly by any of the three 



programs.  The Venn diagrams indicate much greater overall consistency among internal 

exon predictions, correlated with the inherently high internal exon prediction accuracy, as 

compared to the greater variability and decreased prediction accuracy among other exon 

types.    A relatively higher proportion of the single (22.1%) , initial (14.4%) , and 

terminal (13.9%) exon types found in our reference genes are completely absent from the 

set of predicted exons. 

 

Consensus Ab initio Exon Prediction Accuracy 

 

Although there is considerable disagreement among exon calls between the various gene 

predictors, when multiple programs call exons identically, they tend to be more often 

correct. Figure 4 shows that by restricting the analysis to only those exons that are 

predicted identically by two programs, exon prediction specificity jumps to 94% correct, 

regardless of the two programs chosen.  Exon prediction specificity improves to 97% if 

we consider only those exons predicted identically by all three programs.  Note that 

although the specificity improves to near-perfect accuracy, the prediction sensitivity 

drops from 78% to 60%.  Although we cannot rely on shared exons to predict all genes 

correctly, we can in this circumstance trust those that are shared with greater confidence.  

EVM uses this increased specificity provided by consensus agreement among evidence 

for gene structure components and reports these specific components as part of larger 

complete gene structures, at the same time EVM uses other lines of evidence to retain a 

high level of sensitivity. 

 

 

Consensus Gene Prediction by EVM 

 

Unlike conventional ab initio gene predictors that use only the composition of the 

genome sequence, EVM constructs gene structures by combining evidence derived from 

secondary sources, including multiple ab initio gene predictors and various forms of 

sequence homologies.  In brief, EVM decomposes multiple gene predictions, and spliced 

protein and transcript alignments into a set of non-redundant gene structure components: 



exons and introns.  Each exon and intron is scored based on the weight (associated 

numerical value) and abundance of the supporting evidence; genomic regions 

corresponding to predicted intergenic locations are also scored accordingly. The exon and 

introns are used to form a graph, and highest scoring path through the graph is used to 

create a set of gene structures and corresponding intergenic regions (Figure 5) (see 

Materials and methods for complete details). Because of the scoring system employed by 

EVM, gene structures with minor differences, such as small variations at intron 

boundaries, can yield vastly different scores.  For example, a cDNA-supported intron that 

is only three nucleotides offset from an ab initio predicted intron could be scored 

extraordinarly high as compared to the predicted intron, although they differ ever so 

slightly in content.  Likewise, an intron fully supported by multiple spliced protein 

alignments will be scored higher than an alternate intron of similar length yielded by only 

a single similarly weighted protein alignment.  In this way, EVM uses the abundance and 

weight of the various evidence to appropriately score gene structure components to 

promote their selection within the resulting weighted consensus genome annotation. 

 

To demonstrate the simplest application of EVM, we combine only the three ab initio 

gene predictions and weight each prediction type equally.  Figures 1 and 2 display the 

results in comparison to the ab initio prediction accuracies, and demonstrate that by 

incorporating shared exons and introns into consensus gene structures, complete gene 

prediction accuracy is improved by at least 10%.  Exon prediction accuracy is increased 

by ~6%, and exon prediction accuracies for each exon type are mostly improved, with the 

exception of the initial exon type for which GeneMark.hmm alone is slightly superior.   

 

Consensus Gene Prediction Accuracy Using Varied Evidence Types and Associated 

Weights 

 

A gene structure consensus as computed by EVM is based on the types of evidence 

available and their corresponding weight values.  In the example above, each evidence 

type provided in the form of ab initio gene predictions was weighted identically. In the 

case where each prediction type is equivalent in accuracy, this may be sufficient, but 



when an evidence type(s) is more accurate, a higher weight(s) applied to that evidence is 

expected to drive the consensus towards higher prediction accuracy.   Figure 6 illustrates 

the impact of varied weight combinations and sources of evidence on exon and complete 

gene structure prediction sensitivity.  In the first set (iterations 1-10), only the three ab 

initio gene predictions are combined using random weightings.  Prediction accuracy 

ranges from 22-38% gSn and 77-84% eSn.  In the second set (iterations 11-20), sequence 

homologies are additionally included in the form of spliced protein alignments (using nap 

of AAT), spliced alignments of ESTs derived from other plants (using gap2 of AAT), and 

GeneWise protein-homology-based gene predictions.  There, complete prediction 

accuracy ranges from 44-62% gSn and 88-92% eSn.  In the third and final set (iterations 

21-30), PASA alignment assemblies derived from rice transcript alignments were 

included, from which a subset define the correct gene structure.  In the presence of our 

best evidence and randomly set weights, prediction accuracy ranges from 75-96% gSn 

and 95-99% eSn. 

 

Although this represents just a minute number of possible random weight combinations, 

it demonstrates the effect of the weight settings and the inclusion of different evidence 

types on our consensus prediction accuracy.  By including evidence based on sequence 

homology, our prediction accuracy improves greatly, doubling to tripling complete gene 

prediction accuracy of ab initio programs alone or in combination.  Also, very different 

weight settings can still lead to similar levels of performance, particularly in the presence 

of sequence homology data. 

 

EVM Consensus Prediction Accuracy Using Trained Evidence Weights 

 

Given the variability in consensus gene prediction accuracy observed using different 

combinations of weight values, finding the single combination of weights that provides 

the best consensus prediction accuracy is an important goal.  Searching all possible 

weight combinations to find the single best scoring combination is not tractable given the 

computational effort needed to explore such a vast search space.  To estimate a set of 

high scoring weights, we employed a set of heuristics that use random weight 



combinations followed by gradient ascent (see Materials and methods).    For the purpose 

of choosing high performing weights and evaluating their accuracy, we selected 1000 of 

our cDNA-verified gene structures and used half for estimating weights and the other half 

for evaluating accuracy using these weights (henceforth termed trained weights).  In both 

the training and evaluation process, accuracy statistics were limited to each reference 

gene and flanking 500 bp.  However, EVM was applied to regions of the rice genome 

including the 30 kb region flanking each reference gene, to emulate gene prediction by 

EVM in a larger genomic context. 

 

Because the training of EVM is not deterministic, and each attempt at training can result 

in a different set of high-scoring weights, we performed the process of training and 

evaluating EVM on the rice data sets three times separately.  The trained weight values 

computed by each training process are provided in Table S1 in Additional data file 2, 

and the consensus gene prediction accuracy yielded during each evaluation is provided in 

Table S2 in Additional data file 2. The average gene prediction accuracy is provided in 

Figure 7.  On this set of 500 reference genes, the average exon and complete gene 

prediction accuracies for the ab initio predictors are similar to those computed earlier for 

the larger complete set of 1058 cDNA-verified genes.  EVM applied to the ab initio 

predictions alone using optimized weights yielded 38% gSn and 34% gSp, approximately 

10% better than the best corresponding ab initio accuracy.  By including the additional 

evidence types in the form of protein or EST homologies independently, complete gene 

prediction sensitivity increases to 49-56% gSn and 44-50% gSp.  Using all evidence 

minus the PASA data, complete gene sensitivity reaches 62% gSn and 56% gSp. Note 

that each gain in sensitivity is accompanied by a gain in specificity, indicating overall 

improvements in gene prediction accuracy.   

 

 

 

 

 

Intuitive vs. Trained Weights. 



 

Although we can computationally address the problem of finding a set of weights that 

yield optimal performance, it is clear from our analysis of randomly selected weights that 

there could be numerous weight combinations that provide reasonable accuracy. In 

general, we find that combinations of assigned weightings in the form of  

 

(ab initio predictions) <= (protein alignments, EST alignments) < (GeneWise) < (PASA)   

 

provides adequate consensus prediction accuracy.  Using such a weight combination 

(gene predictions = 0.3, proteins and other plant ESTs = 1, GeneWise = 5, PASA = 10), 

we find that our consensus exon and complete gene prediction accuracy is quite 

comparable, with our intuitive weights providing performance levels that are, in most 

cases, just slightly lower than those of our trained weights (Figure S1 of Additional data 

file 1); in each case, accuracy measurements with intuitive weight settings were within 

3% of the results from trained weights.  The ability to intuitively tune EVM's evidence 

weights provides a flexibility that is not as easily afforded by current software systems 

based on a strict probabilistic framework. 

 

EVM vs. Alternative Annotation Tools: Glean and JIGSAW 

 

The accuracy of EVM was compared to that of competing combiner-type automated 

annotation tools using both Glean and JIGSAW. The publicly available Glean and 

JIGSAW software distributions were downloaded and run using default parameter 

settings.  We trained JIGSAW using identical data sets as provided to EVM, using the 

500 reference genes and associated evidence for training and the separate 500 genes and 

evidence for evaluation.  Glean’s unsupervised training is tightly coupled to the 

prediction algorithm, and so Glean was executed on the entire set of 1000 genes and 

associated evidence, with the proper half used for evaluation purposes.  Exon and 

complete gene prediction accuracies are shown in Figure 8.  Each evidence combiner 

demonstrates substantial improvements in accuracy in the presence of sequence 



homology evidence.  EVM fares well in this combiner showdown, and in most cases, 

provides the greatest prediction accuracy of the three tools analyzed.    

 

The prediction accuracy between JIGSAW and EVM is strikingly similar for two of the 

evidence combing scenarios examined:  combining gene predictions with other plant EST 

alignments (gap2), and when all alignment data is included minus the rice PASA 

evidence (all).  We further examined the latter case where both JIGSAW and EVM 

predicted >60% of the complete genes accurately to determine the similarity of their gene 

predictions.  Of the 500 reference genes tested, there are 310 predictions generated 

identically between EVM and JIGSAW, of which 260 were correct.  Therefore, although 

their prediction accuracies can be strikingly similar, overall, the gene structures predicted 

are quite different.  

 

A strength of EVM is its ability to utilize heavily trusted forms of evidence, such as gene 

structures inferred from alignments of cognate FL-cDNAs and ESTs.  Each of the three 

programs were trained in the presence of cDNA-supported gene structures as provided by 

PASA (long ORF structures within PASA alignment assemblies), a subset of which 

defines a correct gene structure (see Methods).  All three tools demonstrated the greatest 

prediction accuracy in the presence of PASA evidence.  Although each tool is effectively 

provided with evidence containing all complete introns and exons that define the correct 

gene structure, only EVM is found capable of nearly perfect prediction accuracy.  Of the 

500 evaluated reference genes, EVM predicted only six incorrectly when supplied with 

PASA evidence along with the competing evidence types (ab initio predictions, and 

protein and other plant EST alignments).  These six incorrect predictions involved three 

cases where neighboring genes were merged into single predictions, two cases where 

improper gene termini were chosen, and a single case that was confounded by a large 

degenerate retrotransposon insertion within an intron of a gene, an element that was not 

masked and excluded from the gene prediction effort.    

 

 

Comparison to Manual Annotation. 



 

It is expected and reassuring that EVM provides nearly perfect complete gene accuracy in 

the presence of high quality and reliable complete gene structure data, as provided in the 

form of the PASA alignment assemblies.  The importance of such ESTs and FL-cDNAs 

for gene structure annotation is well known [42-45], and software such as PASA is 

capable of annotating gene structures based solely on these data in absence of preexisting 

gene annotations or ab initio gene predictions [33].  A greater challenge is to achieve 

maximal consensus gene prediction accuracy in the absence of these data, which is the 

typical scenario with newly sequenced genomes that lack extensive EST or FL-cDNA 

sequences as companion resources.  In such cases we must rely on the accuracy of ab 

initio gene predictors and homologies to sequences from other organisms, and it is here 

that, in lieu of an equivalent automated annotation method, we expect to have the greatest 

gains from expert scientists directly evaluating and modeling complete gene structures 

based on these evidence.   

 

In our application of EVM thus far, the relevant set of input evidence is that which 

contains the ab initio gene predictions, protein alignments, GeneWise predictions based 

on protein homology, and the alignments to ESTs derived from other plants (Figure 7, 

entry "EVM:All(-PASA)", read as EVM with all evidence minus PASA evidence).  

Using trained weights, EVM correctly predicted 92% of the known exons and 62% of the 

500 cDNA-verified genes correctly, on average.   If the subset of the native cDNA data 

that defines the correct gene structure is not supplied as evidence, and if components of 

such known gene structures are not available as candidate introns and exons, then EVM 

will be unable to correctly predict the gene. In an effort to establish the upper limit of 

gene prediction accuracy in the absence of cDNA evidence, we propose to use the 

accuracy of manual annotation on the same data set.  The accuracy of human annotation 

has never been adequately measured although it is widely assumed that human annotation 

is the "gold standard" for genome projects.  For our study, a set of human annotators was 

asked to evaluate these data in absence of cognate rice cDNA alignments, and instructed 

to manually model a gene structure that best reflected the available evidence.   In absence 

of the rice cDNAs, manual annotation accuracy resulted in 96% eSn , 96% eSp and 81% 



gSN, 81% gSP (Figure 7).  In light of these statistics, we consider the accuracy provided 

by EVM on the identical data set to be demonstrably effective as an automated annotation 

system, and approaching the better accuracy obtained through manual curation efforts, 

particularly when compared to the accuracy of individual ab initio gene predictors on the 

same data set.   

 

 

Application of EVM and PASA to the ENCODE Regions of the Human Genome 

 

The ENCyclopedia of DNA Elements (ENCODE) project was initiated shortly after the 

sequencing of the human genome with the aim to identify all functional elements, 

including all protein coding genes, in the human genome sequence [46].  The pilot phase 

of the project focused on only 1% (~30 Mb spread across 44 regions) of the genome, 

termed the ENCODE regions.  The GENCODE consortium was formed to provide high 

quality manual annotation and experimental verification of protein coding genes in these 

regions [47].  The human ENCODE Genome Annotation Assessment Project (EGASP) 

was established to evaluate the accuracy of automated genome annotation methods by 

comparing automated annotations of the ENCODE regions to the GENCODE annotations 

[10].  Participants in the EGASP competition were allowed access to 13 ENCODE 

regions along with their corresponding GENCODE annotations, which could be used for 

training purposes.  Groups submitted their automated annotations for the remaining 31 

regions, after which time the corresponding GENCODE annotations were released and 

the automated annotation methods were evaluated based on a rigorous comparison to the 

GENCODE annotations [48]. 

 

The sequences, gene predictions, and annotations involved in EGASP additionally serve 

as a resource for evaluating current and future annotation methods.  Similarly to our 

application of EVM to the rice genome using cDNA-verified gene structures for training 

and evaluation purposes, we applied EVM to the ENCODE regions using the GENCODE 

annotations for training and evaluation purposes, analogous to the original EGASP 

competition.  Evidence used by EVM included the evidence tracks provided by UCSC: 



TWINSCAN, SGP2, GENEID, GENSCAN, CCDSGene, KNOWNGene, ENSEMBL 

(ENSGene), and MGCGene.  Additional evidence generated in our study included AAT 

alignments of non-human proteins, GeneWise predictions based on the non-human 

protein homologies, AAT nucleotide alignments of select animal gene indices, and PASA 

alignment assemblies generated from GMAP alignments of human ESTs and FL-cDNAs.  

The GlimmerHMM predictions used by EVM were those generated as part of the EGASP 

competition, and obtained separately.   

 

There are several notable differences between the training and evaluation of EVM on the 

ENCODE regions as compared to the earlier application to rice.  The cDNA-verified rice 

genes used for training and evaluation were restricted to a single splicing isoform. In 

addition, each gene was complete, containing the protein-coding region from start to stop 

codon.  The GENCODE protein-coding annotations, in contrast, include alternative 

splicing isoforms and several partial gene structures.  Accuracy measurements computed 

for rice genes included each cDNA-verified gene and the flanking 500 bases, whereas 

accuracy measurements on the ENCODE regions included these sequence regions in their 

entirety and all corresponding protein-coding gene annotations.   

 

EVM was trained on the 11 ENCODE test regions and then evaluated on the remaining 

33 regions.  Training and evaluation were performed under two independent trials.  The 

trained weights and corresponding accuracy values are provided in Tables S4 and S5 of 

Additional data file 2.  Our initial analysis of EVM on this data set utilized the ab initio 

gene predictions, and the EST and protein homologies, similar to our earlier analysis with 

rice.  The average gene prediction accuracy for the source predictions and EVM with 

varied additional evidences is illustrated in Figure 9.  The ab initio gene predictions used 

as evidence by EVM individually predict genes with accuracies mostly less than 20% 

gSn; the best individual performer was TWINSCAN with 22 % gSn and 20% gSp.  By 

combining these predictions alone, EVM improves complete gene prediction accuracy to 

31% gSn and 27% gSp, significantly better performance than any of the individual ab 

initio predictors.  By including spliced alignments to dog, pig, mouse, or rat assembled 

EST databases, gene prediction sensitivity further improves to 38-45% gSn and 34-40% 



gSp.  EST alignments from the more distantly related chicken yield slight improvement 

from using the predictions alone, yet not to the extent of mammals.  Alignments to the 

more distantly related sea squirt and frog gene indexes offer little to no improvement in 

prediction accuracy.  Overall, the improvements in EVM prediction accuracy afforded by 

alignments to the non-human gene indexes correlate well with their phylogenetic distance 

from human, with mouse and rat being found most useful.  By including human EST and 

FL-cDNA alignments in the form of PASA alignment assemblies along with the ab initio 

predictions, gene prediction sensitivity improves to 63%.  Protein homologies included 

with ab initio predictions, in the form of AAT (nap) alignments or GeneWise predictions, 

also demonstrated an improvement in gene prediction accuracy, with 36-56% gSn and 

30-44% gSp as compared to the 31% gSn and 27% gSp from combining the predictions 

alone.  

 

 

Post-EVM Application of PASA to Annotate Alternatively Spliced Isoforms 

 

EVM is not designed to directly model alternative splicing isoforms.  This is, however, a 

primary function of our companion annotation tool PASA, which contributes to the 

automated annotation of gene structures in several ways.  PASA, like EVM, is made 

freely available as Open Source from the PASA website [49].  Above, PASA alignment 

assemblies were used as one source of gene structure components by EVM.  

Alternatively, PASA can generate complete gene structures based on full-length 

alignment assemblies (alignment assemblies containing at least one FL-cDNA) by 

locating the longest open reading frame (ORF) within each alignment assembly, and 

annotate gene structures and alternatively spliced isoforms restricted to the transcriptome. 

A third application of PASA is to perform a retroactive processing of a set of preexisting 

gene structure annotations whereby alignment assemblies are incorporated into UTR 

annotations, exon modifications, correctly splitting or merging predicted gene structures, 

and used to model alternative splicing isoforms [33].  

 



To demonstrate the effect of applying PASA as a post-process to integrate transcript data 

into an existing set of gene structure annotations (which we refer to as PASAu for PASA 

updates), we applied PASA separately to the ab initio predictions, the various UCSC 

gene prediction tracks (which we refer to as other predictions), and to the EVM-generated 

data sets that either utilized or excluded the other predictions.  The change in prediction 

accuracy as a result of applying PASA's annotation updates is illustrated in Figure S2 of 

Additional data file 1.  PASAu is able to yield relatively large improvements (increases 

from 23-33% in gSn and 7-32% in gSp) to the accuracy of the various ab initio 

predictions by incorporating transcript alignment assembly-based updates. PASAu-

resulting changes to the accuracies of the other original  predictions were more variable, 

mostly involving small increases in tSn and larger decreases in tSp; more GENCODE 

transcripts predicted correctly, but additional PASA-based transcripts not represented in 

the GENCODE data set.  The EVM gene sets were affected similarly.  

 

The small change in gSn and gSp resulting from the annotation update functions of 

PASA to the EVM predictions is not surprising given that the PASA alignment 

assemblies were included here as inputs during the generation of the consensus gene 

structures by EVM.  The most notable consequence of the PASA updates was the 

modeling of alternative splicing isoforms.  Although the number of genes annotated as 

alternatively spliced was variable across the different annotation gene sets, the ratio of 

transcripts per alternatively spliced gene was fairly uniform, and largely consistent with 

the prevalence of alternatively spliced genes described in the GENCODE annotations 

(Figure 10).  The reason for the variability in the number of alternatively spliced genes is 

because of PASAu's stringent validation tests, forsaking automated gene structure 

updates in favor of targeted manual evaluation in those cases where the tentative gene 

structure updates or candidate splicing isoforms vary greatly from the originally 

annotated gene structures [49]. 

 

The gene prediction accuracy of EVM, PASA alone, and PASA applied as a post-process 

to update EVM predictions is provided along with the accuracies of methods evaluated as 

part of the EGASP competition in Figure 11.  PASA, when used in isolation to 



automatically annotate gene structures based on transcript alignments alone yields an 

impressive 60% gSN and 87% gSP; these values reflect the abundance and utility of the 

human ESTs and FL-cDNAs available.  EVM, with its greatest accuracy throughout the 

various surveys of the EGASP data set presented, yielded prediction accuracies between 

63-76% gSn and 47-54% gSp.  

 

 

Although it is useful to compare accuracies of these various tools based on their ability to 

recreate the GENCODE annotation for the ENCODE regions, direct comparisons 

between each method based on these data may be generally useful, but not exactly valid.  

In the case of ab initio gene prediction tools that require only the genome sequence as 

input, direct comparisons between the results of the gene predictors are fully justified, 

since the inputs are exactly identical.   The focus of EGASP was to examine the accuracy 

of diverse automated annotation methods and not necessarily to perform head-to-head 

comparisons between each method.  Therefore, groups were allowed to use any evidence 

available to them to assist in their annotation efforts, and so, for example, the additional 

evidence used by JIGSAW was not exactly the same inputs utilized by Exogean, or EVM 

as described here.  The analogous experiments we directed in rice were more tightly 

controlled given that each software tool was trained and executed using identical inputs.  

Even so, although alternative methods examined as part of the EGASP competition are 

shown to exceed EVM's accuracy, even if only slightly, EVM does fare well as an 

automated annotation system, especially when compared to the individual ab initio 

predictions. 

 

 

 



Conclusion 

  

We have shown that EVM is an effective automated gene structure annotation tool that 

leverages ab initio gene predictions and sequence homologies to generate weighted 

consensus gene predictions.  The gene prediction accuracy of EVM is influenced by the 

types of evidence provided and associated weight values.  Although a training system is 

provided to assist the search for optimal evidence weights, a manually set weighting 

scheme can perform similarly.   We demonstrated the general utility of EVM as an 

automated annotation utility using both rice and human genome sequences.  We also 

showed how to use PASA to provide an effective post-processing step to discover and 

annotate alternatively spliced isoforms.  EVM, especially when combined with PASA, 

provides an intuitive and flexible automated eukaryotic gene structure annotation 

framework, reducing the manual effort required to produce a high quality and reliable 

gene set to support the earliest efforts of furthering our scientific understanding of the 

genome biology of eukaryotes.  Both EVM and PASA are fully documented and freely 

available as open source from their respective websites [41] and [49]. 

 

 

 

 



Materials and methods 

 

Generating Evidence for Gene Structures 

 

The ab initio gene prediction programs Fgenesh [5], GeneMark.hmm [6], and 

GlimmerHMM [4] were applied to the rice genome sequences.  Fgenesh and 

GlimmerHMM were applied to repeat-masked genome sequences.  Repeats were masked 

using RepeatMasker [50] and the rice repeat library [51].  GeneMark.hmm was applied to 

the unmasked genome sequence; software problems prevented us from running 

GeneMark.hmm on all repeat-masked genome sequences, and so we chose instead to use 

the unmasked genome in this case.  The AAT software [12] was used to generate spliced 

protein and transcript alignments. For generating spliced protein alignments, AAT was 

used to search a comprehensive and non-redundant protein database that was first filtered 

from rice protein sequences.  A database of other plant transcript sequences was compiled 

by downloading and joining all plant gene indices provided by The Gene Index at the 

Dana Farber Cancer Institute [52], excepting the rice gene indices.  Rice ESTs and FL-

cDNAs were aligned to the rice genome and assembled into gene structures as described 

[53] with the exception that the high quality single-exon transcript alignments were 

included here along with spliced alignments. 

 

 

Compiling a Reference Rice Gene Set 

 

We extracted PASA assemblies encoding a complete open reading frame (ORF) 

exceeding 100 amino acids and considered these as candidates for high confidence 

complete gene structures, first requiring manual verification.  For the purpose of training 

and evaluating EVM, we sought approximately 1000 total high confidence gene 

structures, half to be used for training and the remainder for evaluation.  In an effort to 

select this subset of genes, we manually examined the candidate PASA-based structures 

in the context of the available evidence using the TkGFF3 graphical genome viewing 

utility provided in the EVM software distribution.  We then selected PASA-based 



structures that appeared to provide the best gene structure as the reference gene 

structures, yielding 1058 such genes.  We excluded PASA assemblies found to harbor 

rare AT-AC introns, to encode less than full-length ORFs, or to represent splicing 

variants that did not best represent the additional evidence.  These excluded assemblies 

comprised approximately 10% of the total.  To simplify training and evaluation of EVM, 

we extracted each high confidence gene and flanking 30 kb region from the complete rice 

genome and prepared these as independent and individual data sets.  All sequences, gene 

structures, and evidence are available for download from [41].  A comparison of the 

distribution of coding exon counts among the gene structures in the training set as 

compared to all candidates and the release-4 gene structure annotations (non-TE set) is 

provided in Figure S3 of Additional data file 1.  Although our verified set of known 

gene structures is notably deficient in single-exon genes, overall it is consistent with the 

other selections of rice genes and deemed suitable for our purposes herein. 

 

 

GENCODE Annotations for ENCODE Regions 

 

We obtained the ENCODE region sequences, GENCODE annotations, and the various 

EGASP annotation data sets from the EGASP ftp site [54].  We encountered some 

difficulties working with the downloaded data files because of inconsistent file formats, 

inconsistent annotation of stop codons, and annotation features extending out of the 

sequence range, and so we converted each data file over to a more strict GTF format, 

clipping annotations at the bounds of the ENCODE regions and adding stop codons 

where they were obviously lacking.  Prediction accuracies of the EGASP data sets were 

recomputed (Figure S4 of Additional data file 1) and were found to agree with the 

previously reported values; small differences between our recomputed values and 

previously published values are likely due to the slight differences in our stated 

implementation of our accuracy evaluation software and those differences resulting from 

our file conversions.  Our refined versions of the EGASP data sets are available from the 

EVM software website [41]. 

 



Additional evidence compiled for the GENCODE annotations included homologies to 

non-human proteins using AAT-nap and GeneWise, alignments to assembled animal 

ESTs downloaded from the Gene Index using AAT-gap2, and PASA alignment 

assemblies.  This additional evidence is also available from the EVM software site above. 

 

 

EVM Algorithm 

 

EVM reports consensus gene structures as high scoring paths through a directed acyclic 

graph containing complete intron, exon, and intergenic region features as vertices.  Each 

of the possible features is computed based on the evidence provided in the form of the 

genome sequence, ab initio gene predictions, and the transcript and protein alignments.  

Each type of evidence, such as the name of the gene prediction program or the 

combination of alignment method and sequence database searched, has an associated 

numeric weight value.  This weight value is either set by hand or by the training process 

described below.  The evidence and corresponding weights are used to score the exon, 

intron, and intergenic region features.  Consensus gene structures reported by EVM are 

computed by connecting exons, introns, and intergenic regions across the complete 

genome sequence such that the series of connected components provides the highest 

cumulative score.  An example of EVM applied to a section of the rice genome including 

components of the scoring system and feature set is illustrated in Figure 5.  For large 

genome sequences (ie. greater than 1 Mb), the data are partitioned into overlapping 

segments, and the EVM predictions from the separate partitions are subsequently joined 

into a single non-redundant set of predictions. 

 

 

Dismantling Predictions and Alignments into Exons and Introns 

 

Exons of eukaryotic gene structures are commonly treated as four distinct types: initial 

exon including the start codon to a donor splice junction, internal exon including an 

acceptor splice junction to a donor splice junction, terminal exon including the acceptor 



splice junction to the stop codon, and the single exon that corresponds to an intronless 

gene from start codon to stop codon.  These are the four types of exons considered by 

EVM.  The ab initio gene predictions provided as inputs to EVM are dismantled into their 

component exons and introns and added to a non-redundant corresponding exon or intron 

feature set.  Each exon of a given type is stored by EVM with its coordinates, the codon 

position of its leading base, and a list of all evidence types that perfectly support it.  

Introns are likewise stored as discrete features based on unique coordinate pairs and their 

supporting evidence.  Only the consensus GT or GC donor and AG acceptor dinucleotide 

splice sites are treated as valid by EVM; the more rare AT-AC consensus introns, 

although accepted by PASA are currently disallowed by EVM.  No maximum intron 

length is enforced by EVM, however a minimum intron length of 20 bp is set and can be 

tuned as required. 

 

Protein and transcript spliced alignment inputs to EVM, by default, are only capable of 

contributing internal exons and introns to EVM's feature set.  Spliced alignments 

contribute internal exons to the feature set for those internal alignment segments that 

have consensus splice sites and encode an ORF in at least one of the three reading 

frames.  An internal exon is added to the feature set for each incident codon position that 

provides an ORF on that strand.  A final way for alignment data to contribute initial, 

terminal, or single exons to the feature set is by explicitly providing such candidate exons 

to EVM a priori.  This is one mechanism that allows EVM to better exploit gene 

structures provided by PASA.   PASA includes functions to provide the longest ORF 

within each PASA assembly, and EVM includes a utility that extracts initial, terminal, 

and single exons from gene structures corresponding to the longest ORF within each 

PASA assembly.  This list of PASA-based exon candidates can be provided directly to 

EVM.  Internal exons provided by PASA alignment assemblies are included in the 

feature set exactly as other forms of spliced alignment data described above.   

 

Experiments performed on the rice genome utilizing PASA evidence as input instead 

included the structure of the longest ORF (minimum length of 50 amino acids) within 

each PASA alignment assembly in place of the alignment assemblies themselves 



supplemented with the terminal exon candidates, as described above.  These PASA 

longest ORF structures were provided to EVM as an OTHER_PREDICTION evidence 

class.  Utilizing the PASA data in this way was necessary in order to be able to provide 

identical PASA-based evidence to the alternative annotation tools Glean and JIGSAW as 

part of the rice combiner accuracy comparison. 

 

Scoring Genome Features 

 

The candidate unique exon, intron, and intergenic region feature types derive their score 

from either a feature-specific score and/or a corresponding feature type scoring vector, as 

described below.   Each type of evidence provided to EVM is specified as having a 

numerical weight value and belonging to one of the four allowable classes: PROTEIN, 

TRANSCRIPT, ABINITIO_PREDICTION, or OTHER_PREDICTION. Table 1 

indicates the scoring mechanism for each feature type and classification.  Primary 

differences between these four classes of evidence are that the PROTEIN and 

TRANSCRIPT classes are not expected to encode complete gene structures from start to 

stop codon, but instead contribute components of gene structures such as internal exons, 

and in the case of the PROTEIN class, an indication of coding nucleotides.  Complete 

gene predictions are partitioned into the classes ABINITIO_PREDICTION and 

OTHER_PREDICTION, where the ABINITIO_PREDICTION class predicts noncoding 

intergenic regions (ie. GeneMark.hmm), and OTHER_PREDICTION allows for the 

inclusion of high-specificity forms of complete predictions that do not intend to delineate 

the noncoding intergenic regions (ie. KnownGene).   

 

A feature type scoring vector contains a numerical value for each nucleotide across the 

genome sequence.  Evidence that contributes to a feature type scoring vector contributes 

its corresponding weight value to each nucleotide within the span of its feature 

coordinates.  Evidence that contributes a feature-specific score instead contributes a value 

of its (weight * feature_length) to that unique feature that it supports, in this case either 

that complete intron or exon.  Exons derive their scores from a combination of feature-

specific scores and a corresponding scoring vector.  In this case, the feature-specific 



scores are summed with the values in the corresponding scoring vector for each 

nucleotide position within its span.  For example, a complete feature with coordinates a 

to b would be scored like so:   

 

 Score(a,b) = ScoringVector[i]
a<= i<= b
∑       + featureLength * weight(evidence)

evidence _ end 5'= a
evidence _ end 3'= b

∑  

 

As each gene prediction or spliced alignment is dismantled into its component parts, the 

parts contribute the weight of that evidence to the scoring scheme.  For example, a single 

spliced protein alignment is dismantled into the protein alignment segments and 

intervening gaps, possibly contributing to feature types exon and intron of feature class 

PROTEIN.  Those 'perfect' complete introns and exons yielded from dismantling of this 

protein alignment chain are added to the candidate exon and intron feature set if those 

features do not already exist.  Each protein alignment segment contributes its 

corresponding evidence weight to each overlapping nucleotide position in the exon 

feature type scoring vector.  Those protein alignment gaps that correspond to complete 

introns in our feature set contribute a value of (weight*length) to the feature-specific 

score of each corresponding intron.  

 

The abundance of evidence is reflected in both the feature-specific and vectored scores.  

For example, often many protein homologies will exist at a given locus. Each protein 

database match (accession) at a given locus is scored separately, and so exon and introns 

supported by vast quantities of evidence will have scores that reflect both the weight and 

abundance of that evidence.  

 

For the purpose of scoring exons and introns and minimizing the memory requirements 

required for storing the scoring vectors, each strand and associated set of evidence is 

initially examined separately; note that our final gene prediction examines both strands 

simultaneously.  During the initial strand-based analysis, distinct exons and introns are 

collected from the evidence restricted to the strand being analyzed and scored 

accordingly.  After collecting properly scored gene structure components from each 



strand, they are grouped together as a single collection of features from both DNA 

strands. 

 

Dynamic programming is used to find the highest scoring set of connected exons, introns, 

and intergenic regions across the entire genome sequence (see Figure 5).  Unlike exon 

and intron features, the intergenic features are not precomputed and are instead scored 

during the dynamic programming stage; scores for intergenic regions are computed when 

attempting to connect candidate gene termini while building the DAG of connectable 

feature components (also referred to as the feature trellis). The highest scoring path of 

connected features is extracted from the feature trellis and separated into the individual 

gene predictions.  A primary restriction within our feature trellis is that the introns 

connecting exons must exist as explicit components of our feature set; EVM will not 

connect two otherwise compatible exons unless the required intron exists within the 

inputted evidence, such as provided by a gene prediction, or spliced protein or transcript 

alignment. 

 

Note that, by default, EVM will re-examine long introns to identify candidate nested 

genes.  Although we find this functionality extraordinarily useful for automated 

annotation, especially for insect genomes, this function was not employed in any analysis 

described here.  Although improvements in sensitivity can result from the nested gene 

search, there are associated costs in specificity (data not shown). 

 

Augmenting Intergenic Scores from Approximate Beginnings and Ends of Genes 

 

Because the ABINITIO_PREDICTION class of evidence is the only class that 

contributes explicitly to the prediction of intergenic regions, coping with cases where the 

consensus of ab initio predictions merges multiple adjacent genes into a single gene 

structure is particularly problematic.  To split the merged consensus into separate 

individual predictions, the true intergenic region would need a score that is suitable to 

offset the alternative, typically involving a predicted intron that joins what should be 

distinct loci.  To encourage the selection of separate complete gene structures supported 



by protein homologies instead of the merged gene, EVM augments the scores of 

intergenic regions supported indirectly by protein evidence, as elaborated below.   

 

The approximate boundaries of candidate intergenic regions supported by protein 

homologies are localized by examining the boundaries of protein alignment chains.  The 

beginnings and ends of all PROTEIN evidence structures (the far bounds of all spliced 

alignment chains, not the individual segments) are tallied.  A sliding window of 300 

nucleotides is applied to each strand and all peaks of beginnings and ends are separately 

tallied.  In addition to the protein alignment chains, the terminal exons provided by the 

extraction of long ORFs from PASA alignment assemblies also contribute to the tally of 

candidate beginnings and ends of genes. 

 

From each begin peak, a corresponding initial exon is located from the feature set.  The 

intergenic score for each nucleotide from the candidate initial exon upstream to the 

preceding gene is set to the maximal intergenic score, corresponding to the sum of the 

weights for ABINITIO_PREDICTION evidence classes.  Likewise, from each candidate 

gene end, a terminal exon is located from the feature set, and the genome region 

downstream to the next gene is set to the maximal intergenic score.  Note that single exon 

genes are also treated similarly as initial or terminal exons in the search for the next 

possible adjacent gene structure.   

 

Although this search for gene boundaries is not very precise, the heuristic employed here 

tends to work acceptably well in practice.  Choosing the proper boundaries of a gene 

structure is critical for predicting the entire gene correctly, as demonstrated by the greater 

variability in initial and terminal exon prediction amongst the various ab initio gene 

prediction programs. 

 

 

Filtering EVM Predictions with Low Support 

 



Instead of reporting the single best scoring gene structure at each locus, EVM reports the 

set of gene structures that when connected together with the intervening intergenic 

regions provides an optimal cumulative score.   There are sometimes cases where low 

scoring adventitious genes are included in the preliminary EVM gene set, largely a 

consequence of ABINITIO_PREDICTION introns called on either strand in what are 

really intergenic regions.  To remove these adventitious genes from the EVM gene set, 

the score of each EVM prediction is reexamined in the context of ab initio predicted 

introns being scored as if they were intergenic regions.  An alternative noncoding score is 

computed for each EVM gene prediction by summing the predicted intergenic regions 

with the ab initio predicted intron regions.  This noncoding score is then compared to the 

initial EVM prediction score, and those EVM predictions with a coding/noncoding score 

ratio < 0.75 are eliminated.  An example of a low scoring EVM prediction removed 

during this post-processing stage is illustrated in Figure S5 of Additional data file 1.  

An option is available in the EVM software to report these eliminated genes.  In those 

cases where all predictions agree, predictions lack introns, and the corresponding 

intergenic score is zero, the score ratio is set to an arbitrary high value and reported 

accordingly.  

 

 

Evaluating Prediction Accuracy 

 

Gene prediction accuracy (sensitivity and specificity) was computed at the level of 

nucleotides, exons, transcripts, and complete genes as described [10], with slight 

modifications.  Although some gene structures include UTR annotations, only the 

protein-coding portions of each exon were considered when computing accuracy.   

 

In our evaluation of the reference gene structures in rice, alternative splicing was ignored, 

and no attempt was made to generate a reference gene set for rice that included 

alternatively spliced transcripts.  Therefore, given the one transcript per gene in the rice 

data set, gene prediction accuracy calculations would necessarily be identical to the 

transcript accuracy calculations, and so only the gene prediction accuracy was reported.  



Although each reference gene region was provided as input to EVM in the context of the 

flanking 30 kb of genome sequence and corresponding evidence, all accuracy 

calculations were based on the gene predictions isolated from reference gene region 

including a flanking 500 bp.  In our comparison of the accuracy of EVM to the 

annotation tools Glean and JIGSAW, we obtained the most current versions of the 

software available from their respective sites: JIGSAW version 3.2.9 from [55] and 

GLEAN version 1.0.1 downloaded directly from the subversion source repository [56]. 

 

Accuracy calculations on the human ENCODE genome regions included these regions 

and corresponding predictions in their entirety.  Given that the GENCODE annotations 

included alternatively spliced transcripts, the prediction of alternatively spliced genes was 

a major component of our analysis, and so transcript prediction accuracy calculations 

were reported along with complete gene, exon, and nucleotide prediction accuracies. 

 

 

 

Estimating Optimal Evidence Weights 

 

The EVM training process is divided into three phases described below: 

 

1.  Initially Optimized PREDICTION weights: In the first stage, optimal weights are 

explored for the ABINITIO_PREDICTION class in isolation from evidence of the other 

classes.  The proper balance between the evidence weights applied to exons, introns, and 

intergenic regions is explored to optimize gene prediction accuracy.  Weights are 

randomly chosen for each ab initio gene prediction type and normalized so they sum to 

one.  EVM is applied to each reference gene and specified length of flanking region 

included.  EVM prediction accuracy is measured, and a conglomerate accuracy score is 

computed as: 

 

           AccuracyScore = F + gSn + eSn 

 



where 

            F = (2 * nSn * nSp) / (nSn + nSp) 

 

            Sn = TP / (TP + FN) 

 

         Sp = TP / (TP + FP) 

 

given that TP, FP, FN correspond to true positives, false positives, and false negatives, 

respectively.  The nSn, eSn, tSn, and gSn are short for nucleotide, exon, transcript, and 

gene-level sensitivity; likewise for the corresponding specificity values. 

 

Twenty random trials are performed.  The weight combination that yielded the greatest 

AccuracyScore is chosen.  These weight values are gradually adjusted while applying 

gradient ascent to find weight values that improve performance. 

 

2.  Initially Optimized Best Individual Evidence Weights:  Using the combination of 

weights now temporarily fixed for the ABINITIO_PREDICTION evidence, each other 

evidence type is introduced separately to find the minimum corresponding weight that 

provides the greatest AccuracyScore in the context of the ABINITIO_PREDICTION 

types.  The weight for the other evidence type is first set to zero and evaluated.  Next, the 

weight is set to the average weight value of the ABINITIO_PREDICTION types and 

evaluated.  Gradient ascent is performed to explore adjusted weight values and a higher 

scoring weight.  The minimum weight value that yielded the highest AccuracyScore is 

initially assigned to the other evidence type. 

 

3.  Simultaneous Application of All Evidence and Relative Weight Refinements: The 

weight values for all evidence types are adjusted to find weight combinations that 

demonstrate improved prediction accuracies when all evidence is examined 

simultaneously.  Evidence types are examined in descending order of their initially set 

weight values computed from phase 1 (ABINITIO_PREDICTION) or phase 2 (other) 

above.  Weight values are gradually adjusted and gradient ascent is applied to explore 



better performing weight value in the context of the other evidence types.  Cycling 

through the evidence types in this manner occurs until no appreciable improvement in 

performance is observed, in which case the training process ceases and the final weight 

values are reported. 

Evidence weights and EVM prediction accuracies encountered during the training 

process using the rice data are illustrated in Figure S6 of Additional data file 1. 

 

 

Manual Annotation of Gene Structures 

 

The genome sequence, ab initio gene predictions, protein alignments, GeneWise 

predictions, and other plant EST alignments were examined using the 

Neomorphic/Affymetrix Annotation Station software (described in [28]).  No rice 

transcript alignments either alone or in the context of PASA assemblies were made 

available to users so that we could reasonably estimate optimal gene structure annotation 

accuracy in the context of ab initio gene predictions and homologies to sequences derived 

from other organisms.  A group of annotators were provided with the same data sets 

evaluated by EVM, only in graphical form.  Annotators were instructed to model a gene 

structure in the targeted region that best reflected the available evidence using the 

Annotation Station software.  Annotators were not allowed to examine the data deeper 

than the visual display provided.  The sequence alignments themselves were not available 

except in the context of the glyphs highlighting their end points, and no additional 

sequence analyses such as running blast was allowed.  The focus of this effort was not to 

measure the maximal accuracy of manual gene annotation accuracy in general, but only 

to measure the maximal possible accuracy of an automated annotation such as EVM 

given the restricted inputs. 
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Figure Legends 

 

Figure 1: Rice Ab initio Gene Prediction Accuracies.  Gene prediction accuracies are 

shown for GeneMark.hmm, Fgenesh, and GlimmerHMM ab initio gene 

predictions based on an evaluation of 1058 cDNA-verified reference rice gene 

structures.  The accuracy of EVM consensus predictions from combining all three 

ab initio predictions using equal weightings (weight = 1 for each) is also 

provided.   

 

Figure 2:  Ab initio Prediction Sensitivity by Exon Type.  Individual ab initio exon 

prediction sensitivities based on comparisons to 1058 reference rice gene 

structures are shown for each of the four exon types: initial, internal, terminal, and 

single.  Results are additionally shown for EVM consensus predictions where the 

ab initio predictions were combined using equal weights. 

 

Figure 3: Venn Diagrams Contrasting Correctly Predicted Rice Gene Structure 

Components by Ab initio Gene Finders.  Percentages are shown for the fraction 

of 1058 cDNA verified rice genes and gene structure components that were 

predicted correctly by each ab initio gene predictor.  The cDNA-verified gene 

structure components consist of 7438 total exons:  86 single, 5408 internal, 972 

initial, and 972 terminal. 

 

Figure 4: Exon Prediction Accuracy Limited to Consensus Complete Exon Calls.  

Exon sensitivity and specificity were determined by comparing ab initio predicted 

exons.  Exons were restricted to only those perfectly agreed upon by either two or 

three different gene predictors.  Only those predicted exons found within 500 bp 

flanking the 1058 reference gene structures were considered for the specificity 

calculations. 

 

Figure 5: Consensus Gene Structure Prediction by EVM.  The main aspects of EVM's 

weighted consensus prediction generating algorithm are depicted here exemplified 



with a seven kb region of the rice genome.  The top view illustrates a genome 

browser-style view, showing the ab initio gene predictions GlimmerHMM, 

Fgenesh, and GeneMark.hmm, AAT-gap2 spliced alignments of other plant ESTs, 

PASA assemblies of rice EST and FL-cDNA alignments, AAT-nap spliced 

alignments of non-rice proteins, and GeneWise protein homology-based 

predictions.  Top strand and bottom strand evidence are separated by the sequence 

ticker.  Evidence is dismantled into candidate introns and exons; candidate exons 

are shown in the context of the six possible reading frames at the figure bottom.  

A coding, intron, and intergenic score vector are shown; feature-specific scores 

(see materials and methods) were added to corresponding vectors here for 

illustration purposes only, and note that all introns have feature-specific scores.  

The selection of exons, introns, and intergenic regions that define the highest 

scoring path is shown by the connections between exon features within the six-

frame feature partition.  This highest scoring path yields two complete gene 

structures, shown as an EVM tier at top, corresponding to the known rice genes 

(left) LOC_Os03g15860  Peroxisomal membrane carrier protein and (right) 

LOC_Os03g15870  50S ribosomal protein L4, chloroplast precursor.  

 

Figure 6: Response of EVM Prediction Accuracy to Varied Evidence Types and 

Weights.  Iterations (30) of randomly weighted evidence types were evaluated by 

EVM.  Iterations 1-10 included only the ab initio predictors GlimmerHMM, 

Fgenesh, and GeneMark.hmm.  Iterations 11-20 additionally included AAT-nap 

alignments of non-rice proteins, GeneWise predictions based on non-rice protein 

homologies, and AAT-gap2 alignments of other plant ESTs.  Iterations 21-30 

included PASA alignment assemblies and corresponding supplement of PASA 

long-ORF based terminal exons.  Exon and complete gene prediction sensitivity 

values resulting from EVM using the corresponding weight combinations are 

plotted below. 

 

Figure 7: Rice Consensus Gene Prediction Accuracy Using Optimized Evidence 

Weights.  Gene prediction accuracy for EVM was calculated at the nucleotide, 



exon, and complete gene level using trained weights and specific sets of evidence, 

applied to 500 of the reference rice gene structures.  The evidence evaluated is 

described as follows: EVM:GF includes ab initio gene predictions (GF) alone; 

EVM:GF+gap2 includes GF plus the AAT-gap2 alignments of other plant ESTs 

(gap2); EVM:GF+nap includes GF plus AAT-nap alignments of non-rice proteins 

(nap);  EVM:GF+GeneWise includes GF plus the GeneWise predictions based on 

non-rice protein homolgies (GeneWise);  EVM:ALL(-PASA) includes GF, nap, 

gap2, and GeneWise; EVM:ALL(+PASA) additionally includes the PASA 

alignment assemblies and PASA long-ORF based terminal exon supplement. 

 

Figure 8:  EVM’s Accuracy Compared to Glean and JIGSAW.  Both JIGSAW and 

Glean were trained and evaluated on the rice genome data, and accuracies were 

compared to those of EVM.  The trained weights utilized by EVM are provided in 

Table S3 of Additional File 2. 

 

Figure 9:  Human Consensus Gene Prediction Accuracy by EVM.  The consensus 

gene prediction accuracy by EVM is shown based on trained evidence weights 

and the corresponding combination of evidence as applied to the GENCODE test 

regions of the human genome.  The accuracies for the inputted gene predictions 

obtained from the EGASP data set are provided for reference sake, including 

GENSCAN, TWINSCAN, GlimmerHMM, GeneMark.hmm on the repeat-masked 

genome, GeneID, and SGPgene.  EVM-GF corresponds to EVM applied to these 

gene prediction tiers alone (GF), and serves as the baseline evidence for the 

subsequent entries.  EVM-GeneWise includes GeneWise predictions based on 

non-human protein homologies; EVM-nap includes AAT-nap spliced alignments 

of non-human proteins;  the EVM:gap2_* series includes AAT-gap2 alignments 

of corresponding transcripts from the Dana Farber Gene Indices: CINGI = Ciona 

intestinalis (Seq Squirt), XGI = Xenopus tropicalis (frog), GGGI =  Gallus gallus 

(chicken), DOGGI = Canis familiaris (dog), SSGI = Sus scrofa (pig), RGI = Rat, 

MGI = mouse; EVM-alignAsm includes PASA alignment assemblies and 



corresponding terminal exon supplement; EVM:All includes all evidence 

described hereto: GF, gap2, nap, genewise, and PASA. 

 

 

 

Figure 10: Addition of Alternatively Spliced Isoforms Using PASAu.  By applying 

PASA to the various annotation data sets, PASA is able to automatically annotate 

alternative splicing isoforms.  The number of alternatively spliced genes and the 

number of transcripts per alternatively spliced gene are shown, including the pre-

PASAu and post-PASAu values.  Only the EnsEMBL data set includes models 

for alternatively spliced isoforms prior to the application of PASA.  Dotted lines 

indicate the corresponding values based on the GENCODE reference annotation 

data set: 147 alternatively spliced genes and 3.42 transcripts per alternatively 

spliced gene.  Transcript isoforms alternatively spliced only in UTR regions were 

ignored.  Here, EVM:All(+OP) refers to the inclusion of the EVM:All evidences 

plus the ‘Other Predictions’ from EGASP including EnsEMBL, ENSgene, 

KnownGene, and CCDSgene, used by EVM as the OTHER_PREDICTION 

evidence class (see Table 1).  

 

Figure 11: EVM and PASA Automated Annotation Accuracies Compared to 

Alternatives.  The gene prediction accuracy of both EVM and PASA are shown 

in the context of the other methods evaluated as part of the EGASP competition.  

Both PASA, EVM, and PASA applied as a post-process to update EVM 

(EVM_ALL,PASAu).  Although PASA alone performs quite well, the benefits 

from applying PASA as a post-process to the EVM consensus predictions are not 

immediately apparent, except in the enumeration of alternatively spliced isoforms 

as shown in Figure 10.  PASA and EVM are shown to perform similarly to the 

best performing methods in the EGASP competition.   

 

 



 

Class Type Scoring Vector Feature-specific 

score 

ABINITIO_PREDICTION exon X  

ABINITIO_PREDICTION intron  X 

ABINITIO_PREDICTION  intergenic X  

TRANSCRIPT exon X  

TRANSCRIPT intron  X 

PROTEIN exon X  

PROTEIN intron  X 

OTHER_PREDICTION exon  X 

OTHER_PREDICTION intron  X 

 

Table 1: EVM Scoring Mechanism Based on Feature Class and Type 

 

 

 


