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Abstract

We develop a nodal dislocation dynamics (DD) model to simulate plastic processes in fcc crystals.

The model explicitely accounts for all slip systems and Burgers vectors observed in fcc systems,

including stacking faults and partial dislocations. We derive simple conservation rules that de-

scribe all partial dislocation interactions rigurosuly and allow us to model and quantify cross-slip

processes, the structure and strength of dislocation junctions and the formation of fcc-specific struc-

tures such as stacking fault tetrahedra. The DD framework is built upon isotropic non-singular

linear elasticity, and supports itself on information transmitted from the atomistic scale. In this

fashion, connection between the meso and micro scales is attained self-consistently with core pa-

rameters fitted to atomistic data. We perform a series of targeted simulations to demonstrate the

capabilities of the model, including dislocation reactions and dissociations and dislocation junction

strength. Additionally we map the four-dimensional stress space relevant for cross-slip and relate

our findings to the plastic behavior of monocrystalline fcc metals.
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I. INTRODUCTION

Crystal plasticity in deformed materials is governed by the collective behavior of large

ensambles of dislocations. Although continuum laws based on effective dislocation densities

can be formulated to describe the macroscopic materials response to a variety of loading

conditions, dislocation motion and interactions are complex phenomena that display an

intricate dependence on the underlying microstructure. Atomistic methods have been pro-

fusely utilized to study isolated interaction mechanisms, but they suffer from space and time

scale limitations and therefore fail to properly capture the long-range character of disloca-

tion stress fields and, obviously, the statistical nature of crystal plasticity. Alternatively,

Dislocation Dynamics (DD) is a direct approach that attempts to simulate the aggregate

behavior of large dislocation ensembles at the mesoscale by decomposing dislocation lines of

arbitrary curvature and character into piecewise segments1–7. Nevertheless, the number of

segments, N , can get quite large (∼106 to 108) for meaningful simulations and the compu-

tation of long-range forces is a O(N2) problem that can become computationally intensive

for large systems. For an excelent review on these and more aspects of DD see Ref.8 and

references therein.

The application of DD to model one aspect or another of crystal plasticity in fcc met-

als started in the 70’s with the work of Pharr and Nix9, althought it has not been until

recently that detailed studies involving complex geometries and relativelly large dislocation

densities have been undertaken10–18. Most of these works focus on mapping the strength of

dislocation junctions as a function of the reacting geometry, in a clear attempt to capture

the elementary mechanisms attendant to forest hardening in stage II of fcc deformation.

However, with the notable exception of the work by Shenoy et al.12, and Hardikar, Shenoy

and Phillips (in 2D)19, we are not aware of any work in the literature where the extended

nature of perfect dislocations in fcc materials is explicitely taken into account. In addition,

the theoretical framework of most dislocation dynamics tools is based on isotropic linear

elasticity, which ignores core effects despite the fact that it has recently been shown that

they govern important aspects of dislocation processes20,21, and that the core cut-off ra-

dius is not a universal parameter and may affect the calculation of dislocation energies22,23.

In this work, we set out to provide a dislocation dynamics methodology that accounts for

perfect dislocation dissociation and incorporates atomistic information regarding core sizes
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and energies. Our methodology hinges on a novel non-singular linear elasticity formulation,

whose free parameters are fitted to carefully-designed atomistic simulations.

A. Non-singular continuum theory of dislocations

The linear elastic formulation used in our DD method is the non-singular theory derived

by Cai et al.24. The singularity intrinsic to the classical continuum theory is removed in

this formulation by spreading the Burgers vector isotropically about every point on the

dislocation line using a spreading function characterized by a single parameter a, the so-

called core width. A particular form of the spreading function chosen in this formulation

leads to simple analytic formulations for the stress produced by straight dislocation segments,

the segment self- and interaction energies, and the forces on the segments. For any value

a > 0, the total energy and the stress remain finite everywhere and, what is more, the

well-known singular expressions are recovered for a = 0. Additionally, the formulation is

self-consistent in the sense that the expressions for the force obtained by direct differentiation

of the non-singular energy and by recurring to the Peach-Köhler formula are identical. The

value of the core width a can be selected for numerical convenience to satisfy any given

dislocation property. For example, below we match the atomistic and continuum energies of

a given dislocation configuration to obtain a general value for our simulations. Now, we can

compute core energies and include core effects during dislocation reactions, an issue largely

ignored to date in DD simulations. However, although in principle the value of a depends

upon the Burgers vector pand the character of a dislocation23 this general solution has a

clear connection to the more fundamental, atomistic models of dislocations, as we shall show

below.

B. Brief overview of ParaDis

ParaDis, and its companion serial version DDLab, are the fruits of a sustained effort at

Lawrence Livermore National Laboratory to develop a massively-parallel three-dimensional

DD methodology specifically designed for investigating the collective behavior of large num-

bers of dislocations25. The dislocation ensamble is replaced by a network of nodes with

the appropriate connectivity, which act as pointwise limits of each of the discretized seg-
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ments. Each segment carries a unit of ’vector current’ or Burgers vector, which denotes the

direction and magnitude of the displacement accumulated as the dislocation moves. Each

segment is asigned a line tangent, given by the unit vector connecting the two segment

nodes. The nodes move in response to the local stress tensor as dictated by the mobility

law, which essentially translates the local force exerted on each node into the corresponding

nodal velocities. In addition to moving the nodes, ParaDis evolves the network topology to

reflect the physics of dislocation motion and collisions in real crystals. Handling the evolv-

ing topology of moving and intersecting lines is a daunting bookkeeping task, especially in a

parallel implementation. It is therefore highly desirable to keep the logical complexity of the

topological switches to a minimum. Presently, ParaDis relies on two basic operations: i) in-

sertion of new nodes, and, ii), merging two nodes into one. Even though topological changes

consume only a small fraction of the computing time, the associated logic and bookkeeping

consitute upwards of 50% of the ParaDis source code.

II. TOPOLOGICAL CHANGES RELEVANT TO PARTIAL DISLOCATIONS

A. Implementation of partial dislocations

From a topological point of view, the dissociation of a (perfect) dislocation can be achieved

by using a simple node-splitting scheme. Splitting highly connected dislocation nodes is one

of the most commonly-used topological changes in discrete dislocation dynamics methods.

However, the explicit introduction of partial dislocations in a fcc/DD model presents two

main difficulties which are not generally encountered in the modeling of bcc or other systems.

First, dislocation dissociation is governed by Frank’s rule, which is an energy criterion that

relies solely on the crystal’s geometry and the stacking fault energy. However, the direct

consideration of the system energetics is generally not a structural part of discrete DD

models, where forces are calculated directly from the applied stresses through the well-

known Peach-Köhler formula. Thus, one must resort to splitting criteria based on power

dissipation, which can be calculated without the explicit knowledge of the system energetics.

In our model, the energy per unit time dissipated by the forces acting on a specific dislocation

node ni is calculated as Ẇi = λFivi, where Fi and vi are the total force and the velocity acting

on ni and λ > 1 is an adjustable parameter that reflects the inertial resistance of a dislocation
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node to change its current state. In other words, splitting will spontaneously occur only if

more energy is dissipated by undergoing the topological change than by remaining in the

(biased) present state. If λ = 1 both states are equiprobable from a transition state point of

view, or, in other words, the initial state is not inertially biased. Obviously, λ is an entirely

empirical parameter and must be adjusted with care to realistically reflect the energetics

of the system at hand and so as not to artificially favor transitions that may not otherwise

be preferred thermodynamically. A case in point is the dissociation of a perfect 1
2
〈110〉

dislocation to a pair of 1
6
〈112〉 Shockley partials. Since this transformation typically involves

energy reductions in the range of 5% ∼30% (taking into account the stacking fault energies,

γSF , of several fcc metals), we have chosen to use λ conservatively and here we have taken

λ = 1.01 for most of our dislocation simulations.

Secondly, the treatment of partial dislocations in fcc metals introduces the need to account

for the stacking fault ribbon joining the partials. The stacking fault energy, γSF (given in

energy per unit area), dictates the equilibrium separation distance between adjoining partials

by balancing the elastic repulsion with the increase in system energy due to the stacking fault

area. In a force method such as DD the attractive force per unit length between partials due

to the stacking fault is simply FSF i = −∂ESF

∂xi
= −∂(γSF xi)

∂xi
= −γSF , (here xi is the coordinate

along the separation direction), which, as as we can see, is constant regardless of the partial

separation distance. However, one complication remains and that is to ensure that the force

due to the stacking fault always point towards the other partial, i.e. the stacking fault force

must be self-cointained. In principle, the force due to the stacking fault must act on the

plane where the stacking fault is defined ({111}-type planes in fcc metals). Thus, FSF must

be locally orthogonal to both the line tangent ξ and the plane normal n. Also, as discussed

above, FSF must be directly proportional to γ. Therefore, in order to obtain the correct

magnitude of the stacking fault force, we assign a new quantity, γn, to each node such that

every segment is now unequivocally defined by its Burgers vector b, its local line tangent ξ

and its plane normal n weighted by the stacking fault energy γ. In this fashion, we define

the stacking fault force per unit length as:

FSF = ξ × γn (1)

As we can see from eq. 1, FSF does not depend on the character of the dislocation.

Stacking faults are two-dimensional crystal defects that have a specific energy (per unit
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area). This means that, analogous to dislocation lines themselves, they cannot have an

infinite extension and thus must end at the physical boundaries of the system (free surfaces,

grain boundaries, etc.) or at a dislocation. Much like the conservation of the Burgers vector

along a dislocation line is a requisite to satisfy the axiom of continuity, the magnitude γn

must be conserved along dislocation lines acting as physical limits of stacking fault surfaces.

This is so as to ensure the self-containment of the stacking fault, which in itself plays into

the axiom of continuity. The starting condition for perfect dislocation segments is γn = 0,

for perfect dislocations are not physical boundaries of stacking fault surfaces. To close the

model we need to specify another condition to determine the magnitude of n (which need

not be a unit vector in general) for faulted dislocations. We use Shockley partial dislocations

as the reference after which all other γn are calculated, e.g. after a perfect dislocation node

splits into two Shockley partial nodes, a unit vector n =
〈

1√
3

1√
3

1√
3

〉

is assigned to each one

of the resulting nodes. This choice ensures that FSF = γ (provided that ξ is also a unit

vector) and FSF is contained on a {111}-type plane, both of which must hold exactly for a

pair of Shockley partials stemming from the same parent perfect dislocation. Therefore, at

any given dislocation node two rules must now be satisfied:

∑

i bi = 0
∑

i γni = 0
(2)

These rules provide a useful check for topological self-consistency during DD simulations

involving multiple partial dislocations.

Although attempts to model the force due to stacking faults have been published

recently12,19,26, we believe that our algorithm provides a level of generality not achieved

in previous works.

B. Cross-slip

Cross-slip is one of the most important processes in crystal plasticity, governing hardening,

self-organization and patterning, and dynamic recovery in most metals. In fcc materials,

the traditional view is that cross-slip is enabled when the stress buildup arising from forest

and precipitation hardening is high enough for screw dislocations to escape their obstacles

by gliding on a plane different than their original slip plane (the so-called stage III). In

the classical theory of cross-slip, dissociated screw dislocations must be constricted until the
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edge components of the partials (which prevents slip on a plane other than the primary glide

one) mutually annihilate and the resulting perfect screw is free to transfer onto the cross-slip

plane. This process, first proposed by Schoeck and Seeger in 195527, imposes no restrictions

in principle as to whether cross-slip must occur on a close-packed plane. Later, Friedel28

suggested that a more realistic view would be to assume that the constricted segment splits at

once on the cross-slip plane, which is also close-packed. The theoretical aspects of Friedel’s

model were worked out by Escaig in what has come to be known as the Friedel-Escaig

mechanism for cross-slip29. However, this constricted state in the Friedel-Escaig model

is a high-energy one and the dislocation may cross-slip before reaching it by way of the

constriction-free mechanism proposed by Fleischer30, in which a dislocation spreads into the

cross-slip plane before the dislocation is fully constricted in the primary plane. Because, this

spreading is carried out by a Shockley partial, cross-slip, as in Friedel’s model, may only

occur on close-packed planes. More recently, Cawkwell et al.31 have proposed an alternative

mechanism based on the metastable existence of a non-planar core structure in Ir that leads

to very high cross-slip rates without need for constriction. For a comprehensive study of the

theoretical and experimental aspects of cross-slip, the reader is referred, respectively, to the

the excellent reviews by Püschl32 and Caillard and Martin33 (and references therein).

Of course, in real crystals, all cross-slip mechanisms described above can coexist simulta-

neously and the relative likelihood of each one is only determined by the local deformation

conditions, such as temperature, strain rate, applied stress and stacking fault energy, among

others. For consistency with the current experimental and theoretical understanding regard-

ing cross-slip processes, we have developed an algorithm compatible with the implementation

of partial dislocations explained in Section IIA that includes both the Friedel-Escaig and

the Fleischer mechanisms of close-packed cross-slip.

Therefore, our model allows dislocations to cross-slip by either mechanism, depending

only upon the local nodal conditions, i.e. with no a priori assumption of what the cross-

slip pathway should be. Both the Friedel-Escaig and the Fleischer mechanisms have been

implemented as follows:

• Friedel-Escaig: At any given time, a node belonging to a perfect dislocation whose

line tangent is locally parallel to the 〈110〉 direction of the Burgers vector is split on

both the glide and the cross-slip planes.
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• Fleischer: At any given time, a node belonging to a Shockley partial dislocation whose

line tangent is locally parallel to the 〈110〉 direction of the Burgers vector of the original

perfect dislocation is split on both the glide and the cross-slip planes.

These nodal splittings are consistent with eq. 2 so that the new nodes have the correct γn

and b vectors while retaining the same local line tangent as that of the initial node. In

both cases, if the energy dissipated per unit time by the new nodal configuration is greater

than that dissipated by the original one (which depends on the stress tensor applied on the

dislocations), then the new configuration is accepted and cross-slip is performed. Else, the

new configuration is rejected and the original dislocation node continues to glide on the

primary glide plane.

It is worth stressing that the advantage of this procedure is that both of these mechanisms,

together with the partial dislocation splitting explained in Section IIA operate simultane-

ously on every node at every time step and no assumptions are made as to which one should

be favored. It is the applied stress, the configuration’s geometry and the elastic parameters

that determine, by way of the power dissipation criterion, which process should occur.

C. Topology changes in multinodes

The above splitting procedure works very efficiently for nodes with single connectivity,

i.e. for non-branching dislocation segments, but it is not sufficient to describe all possible

dislocation configurations with more coplex geometries. For nodes with multiple connectiv-

ity, the so-called physical nodes or junctions, a modified splitting algorithm must be used in

order to allow for the topological changes associated with nodes where several dislocation

segments converge. On top of the multinode splitting scheme existing in ParaDis, which, in

general, does not preserve the original node connectivity, we have developed a new algorithm

to explore additional partial dislocation core transitions. Particularly, we are interested in

a procedure that permits cross-slip of physical nodes. This splitting algorithm must now

ensure that the connectivity is maintained and that the junction, as a physical entity, is

not altered by any topological transformations. The optimum way to do this is to insert

two nodes in two of the converging segments. How and where are these nodes inserted

will depend on the specifics of the system under study. In our case, we must particularize

this algorithm for fcc systems introducing appropriate geometric constraints consistent with
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dislocation theory. Specifically, if, and only if, two of the segments arriving at a multinode

are non-degenarate 1
2
〈110〉 directions of the same {111} plane then a node is inserted on

each one of these segments at a distance da (as for simple node splitting) from the original

multinode. The connectivity of the newly-inserted nodes is then increased by linking them

to one another, thereby effectively ’bypassing’ the original multinode. Next, b’s and γn’s

are assigned to the new nodes taking into account their local environment so as to conform

with the continuity rules 2. Finally, all possible configurations are compared against each

other and the final choice (which may very well include the starting configuration) is made

on the basis of our power dissipation criterion.

n3

4n

1n0n

n2n

δ

γα

γα

δ
B

B

(a)

n3

4n

1n

0n

n2n

α

γα

γα

δ

B

B n6

n5

Bδ
δγ

(b)

FIG. 1: (a) Schematic representation of a physical node (tetranode) resulting from the intersection

of a δB Shockley partial and a γα stair-rod dislocation. (b) Splitting mechanism of the multinode,

where two new nodes, n5 and n6, have been inserted and connected, and the connectivities and

Burgers vectors of segments n0n1 and n0n2 have been updated to reflect the new topological state

of the multinode. The Burgers vector directions and line tangents shown in the figures are not

intended to define the character of the dislocations, and are simply for labeling purposes.

The procedure is schematically outlined in Figure 1, where we have chosen a tetranode

as example. Note that this mechanism acts in addition to –not instead of– the topological

changes described in Sections IIA and IIB.
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III. RESULTS AND DISCUSSION

As discussed above, our methodology includes a panoply of topological transformations

for each dislocation node that reflects the special character of the fcc lattice. At any given in-

stant, depending on the local geometry and stress conditions, topology changes are accepted

or rejected on the basis of the maximum power dissipation criterion explained in Section

IIA. This criterion determines which transformations will occur but it does not provide pre-

cise quantitative information, such as partial dislocation separation distance, critical stresses

for cross-slip or strength of junctions. Below we present two sets of calculations. First we

fit the adjustable parameters of our DD methodology to results of Shockley partial equi-

librium spacings obtained with Molecular Dynamics (MD), which is considered here as our

first-principles method. Secondly, we perform quantitative predictions relevant to fcc metals

with the fully parametrized method. Specifically, we will focus on the calculation of the

strength of dislocation junctions, the formation of stacking-fault tetrahedra (SFT) and the

mapping of the cross-slip space for a single screw dislocation. We have chosen Cu as our

model fcc system, due to the extensive literature available regarding its plastic properties.

A. Shockley partial equilibrium separation distance

In order to parametrize our DD methodology, we have performed MD simulations of

perfect screw dislocation dissociation to measure the Shockley partial equilibrium separa-

tion. Subsequently, we have benchmarked our calibrated code against atomistic equilibrium

spacing results at zero stress as a function of dislocation character.

1. Fitting of the dislocation dynamics free parameters

For the MD calculations we use a Parrinello-Rahman, conjugate-gradient algorithm with

convergent image summations34. A perfect 1
2
[11̄0] screw dislocation was introduced in the

MD computational box and allowed to relax for a given level of Escaig stress. The Escaig

stress tensor is defined as that which produces a force only upon the edge components

of the Shockley partials. Once the equlibrium configuration is attained, we calculate the

separation distance by measuring the spacing between the dislocation cores of the resulting

pair of partials. The cores have been identified by plotting the atomic disregistry along
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the edge and screw directions, namely [11̄0] and [112̄], on the dislocation glide plane at

each stress. Figure 2 shows the screw and edge components of the atomic disregistry at

zero and 2000 MPa, where constriction is seen to occur. At zero stress, we measure a

Shockley partial dislocation spacing of 1.56 nm, not far from the 1.77 nm calculated by

Henager and Hoagland using core fields35. As the applied Escaig stress is increased the

partial dislocation spacing decreases in discrete steps consistent with the [112̄] interplanar

distance down to full constriction. Figure 2b shows the atomic disregistry for the dislocation

configuration at 2000 MPa. The discontinuity in the screw component profile can be clearly

appreciated, indicating the disappearence of most of the stacking fault ribbon. The edge

component curve displays an offset close to the center of the box, which is a sign that

the dislocation is not fully constricted and some splitting is retained, albeit too small to

produce an identifiable stacking fault. The slope in the curve for the edge component simply

represents the background homogeneous shear deformation imparted on the computational

box resulting from the applied Escaig stress. For the sake of consistency, throughout this

work we use values for a0, γSF and µ derived from the interatomic potential used in the

MD calculations36. The values for the lattice parameter, the intrinsic stacking fault energy

and the shear modulus are, respectively, a0 = 3.616 Å, γSF = 2.77× 10−3 eV·Å−2 and, after

rotating the canonical shear modulus of 76.2 GPa to the particular geometry used in the

MD simulations, µ = 63.2 GPa.

Following this procedure to measure separation distances, we have explored the constric-

tion stress range up to 2500 MPa, from zero down to the point when the dislocation is

seen to spontaneously dissociate on a different {111} plane, signaling a Friedel-Escaig tran-

sition. The results are shown in Figure 3. As we can see, between 2000 and 2500 MPa, the

equilibrium separation distance lies on the same plateau corresponding to one interplanar

distance (∼0.54 nm). In other words, we take constriction to occur at σE = 2000 MPa

based both on the core disregistry criterion explained in the above paragraph as well as

on the fact that the minimum separation distance attained before spontaneous dissociation

on a different {111} plane is first reached at that stress. We have also done calculations

applying a negative (stretching) Escaig stress that tends to separate the partial dislocations.

Lacking the energetics that would limit the size of the stacking fault ribbon in between the

two Shockley partial dislocations, once the separation forces created by the applied stress

surpass the value prescribed by γSF we have unbound runaway partials. We have observed
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FIG. 2: Atomic disregistry in Burgers vector units on the dislocation glide plane for a perfect

1
2 [11̄0] screw dissociated into partials: (a) at zero stress we measure a distance of 1.56 nm, whereas

at 2000 MPa (b) full constriction has been attained.

this to occur at approximately −500 MPa.

Now that the stress range over which the dislocation is split into partials has been defined

(−500 < σE < 2500 MPa), the next step is to make use of this information to parametrize

our DD simulation tools. To this end, we have fitted the value of the core width a in the

12



0.0

2.0

4.0

6.0

8.0

10.0

12.0

-500.0 0.0 500.0 1000.0 1500.0 2000.0 2500.0 3000.0

S
pa

ci
ng

 [n
m

]

Escaig stress [MPa]

MD
DD: a=b

DD: a=1.75b
DD: a=2b

FIG. 3: Shockley partial separation distance as a function of Escaig stress for a screw dislocation.

The MD curve has a descending staircase shape, a reflection of the quantized nature of the sep-

aration distance stemming from lattice discreteness. The best DD fit (obtained for a = 1.75b) is

achieved by matching the MD results for the separation distance at zero stress and the stress at

which constriction is attained.

non-singular linear elastic formulation used in our codes by fitting the linear elastic response

of DD to the MD data.

Since the MD curve shown in Figure 3 is defined by the equilibrium separation distance

of 1.56 nm at zero stress and the stress of 2000 MPa at which constriction occurs, we have

found the value of a that strikes the optimum compromise between these two pieces of

information. Figure 3 shows three linear elastic curves for three different trial values of a.

Clearly, the curve corresponding to a = 1.75b (where b is the modulus of the Burgers vector

of the perfect dislocation) is found to provide the best fit to the MD data and hereon we set

a = 1.75b = 0.447 nm for all subsequent calculations. Though the agreement between both

approaches is remarkable, the comparison between the two curves is burdened by limitations

coming from both sides. For example, the assumption of isotropy in DD ignores the crystal
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orientation of the relevant slip systems in fcc metals. For its part, despite using methods for

minimizing image interactions, the use of periodic boundaries in MD causes artifacts that

may affect the equilibrium configurations of the simulated structures.

Next, we turn to the calculation of the friction coefficients attendant to the mobility

functions. In the present DD implementation, the mobility function, M, is a second order

tensor that maps the nodal forces derived from the applied stress onto the corresponding

nodal velocities:

f = Mv (3)

M = B (n⊗ ξ) (4)

Here, only the glide contribution of M is considered. The parameter B is a friction coefficient

that is constant in the low-velocity regime that is of interest in the present calculations. In

general, B depends on the character of the dislocation as:

B = Bs cos2 θ + Be sin2 θ (5)

where θ is the angle between the dislocation line and the Burgers vector and Bs and Be are

the friction coefficients for the perfect screw and edge dislocations respectively. Following

the procedure outlined in Ref.37 we have carried out large scale three dimensional MD

simulations to calculate the values of the respective friction coefficients. For this potential,

we have obtained Bs = 9.82 × 10−6 and Be = 2.31 × 10−6 Pa·s respectively.

The final ingredient extracted from MD calculations to be used in our DD simulations is

the dislocation core (non-linear) energy for a fixed core width of a = 1.75b for all possible

partial dislocations included in our model. We use the procedure outlined in Ref.38 coupled

with the non-singular elastic formulation described in Section IA to calculate the elastic

energy of a dislocation dipole. Table I shows all the relevant core energies for both a = 1.75b

and, for academic interest, a = bp, where bp is the Burgers vector of the corresponding

partial dislocation. The high core energies associated with the Hirth and Frank partials are

a reflection of their relatively high Burgers vector moduli and edge character. By comparison,

the perfect screw dislocation displays a rather low core energy, which substantiates the fact

that perfect dislocation dissociation is a process purely governed by Frank’s rule of elastic

energy reduction, with little or no core contributions.
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TABLE I: Partial dislocation core energies for core widths, a of 1.75b and bp as calculated with

MD simulations for Cu. Burgers vector moduli are given in Å, while core energies are given in

units of eV·b−1. The core configurations were obtained folowing the procedure of Li et al. with

the modification for the perfect dislocation outlined in39.

Dislocation type bp bp Ecore(1.75b) Ecore(bp)

Shockley partial 1
6〈112〉 1.476 0.317 0.189

Stair-rod 1
6〈110〉 0.852 0.193 0.062

Hirth partial 1
3〈001〉 1.205 1.451 1.085

Frank partial 1
3〈111〉 2.088 1.835 1.450

Perfect dislocation 1
2〈110〉 2.557 0.530 0.236

2. Calculation of the separation distance as a function of dislocation character

Using our fully-parametrized methodology we now turn to the calculation of the Shockley

partial separation as a function of dislocation character and Escaig stress. Our intention is

to benchmark our tool against existing atomistic data at zero stress, and to calculate the

critical constriction stress in each case. For the latter calculation, the critical stress is taken

to be that at which constriction is attained, i.e. when the non-singular stress barrier is

surpassed. Results are shown in Figure 4, where we have considered perfect screw and edge

dislocations as well as 30o and 60o mixed dislocations. We can see that the agreement of

our curves with the available atomistic data (from Henager and Hoagland35) at zero Escaig

stress is quite reasonable. The critical constriction stresses for the perfect screw, 30o, 60o and

perfect edge dislocations are, respectively, 2000, 1900, 1700 and 1500 MPa. Approximately,

the critical constriction stress varies linearly with the dislocation character.

B. Strength of dislocation locks

In the absence of significant lattice resistance, the main impediment to dislocation glide

in pure fcc materials are forest interactions, i.e. intersections of mobile dislocations with

dislocations lying on other slip systems. There are a large number of potentially important

intersections mechanisms but here we focus on the reactions between attractive extended

dislocations that form strong barriers to the motion of other dislocations. The strength
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FIG. 4: Equilibrium separation distance between Shockley partials as a function of constricting

Escaig stress for a pure screw (alredy shown in Figure 3), 30o and 60o mixed dislocations, and a

perfect edge dislocation. All curves have been obtained with the model as parametrized in Section

IIIA. Our curves are compared with the data points obtained by Henager and Hoagland35 using

atomistic simulations.

of these barriers is important to estimate the strength coefficient matrix, αij in Taylor’s

equation for hardening:

τij = µbαij

√
ρj (6)

where τij is the critical resolved shear stress (C.R.S.S.) in slip system i, µ and b, as above,

are the shear modulus and the Burgers vector’s magnitude and ρj is the dislocation density

in slip system j. Essentially, eq. 6 relates the stress in slip system i due to dislocations in all

other slip systems. To obtain the total C.R.S.S. in slip system i, one simply does τi =
∑

j τij .

When particularizing this to the 16 slip systems in fcc metals, many of the αij coefficients

will be zero. However, by virtue of symmetry, all the non-zero coeffiecients reduce to four

types of interactions40,41, namely the Lomer-Cottrell locks, the glissile junctions, co-linear

junctions and Hirth locks.
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There have been several works on dislocation junctions in fcc metals both using dislocation

dynamics and atomistic simulations. For example, Zhou et al. investigated the formation of

perpendicular extended dislocations using large-scale MD simulations42 and found it to be a

complex process involving zipping, bowing and unzipping, leading to the formation of a unit

jog. On the other hand, Shenoy, Kukta and Phillips12 and Rodney and Phillips43 have stud-

ied the strength of the Lomer-Cottrell junction in Al using coarsening methods (dislocation

dynamics and the Quasicontinuum method respectively) and found relatively good agree-

ment with atomistic and continuum calculations. These and other works10,13–17 have mostly

focused on the Lomer-Cottrell lock, as this has traditionally been thought of as the strongest

of all attractive junctions. Recently, Madec et al.44 have proposed that the junction govern-

ing the hardening in fcc crystals is that resulting from dislocations with co-linear Burgers

vector gliding on intersecting planes, rather than the Lomer-Cottrell. Their argument is

sustained on the fact that, based on the computed magnitude of the hardening coefficient

α, co-linear interactions contribute the most to the total hardening in eq. 6. Devincre et al.

have further refined and confirmed Madec’s calculations in a recent publication18.

Here we study each attractive reaction and we investigate the minimum stress required to

break them once they are formed spontaneously. In principle, all the details of each disloca-

tion reaction are contained in the corresponding yield curve as a function of the interaction

angle (for example Refs.12,13,17). Strength yield curves are typically obtained as the loci of

the pairs of primary, τ1, and forest, τ2, stresses that produce junction dissolution. We are

intent on exploring these fcc junctions with our newly developed methodology in an attempt

to establish whether core energetics —via the line stifness model— and partial dislocation

reactions provide any additional insights beyond the classical, purely elastic treatment uti-

lized to date in the literature. To this end, we have only computed the three points that

define the positive quadrant of the yield curve —i.e. (τ1,τ2=0), (τ1=0,τ2) and (τ1=τ2)—,

our main aim simply being to demonstrate the numerical capabilities of our method. All

reactions have been simulated for parallel dislocation segments (no reaction angular depen-

dence), which should provide an upper bound for the lock strength. Otherwise, all the

simulations have been carried out for 60.2-nm long segments. The respective geometries are

specified for each reaction below with the equilibrium configurations shown schematically in

Figure 5.
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FIG. 5: Schematic representation of each junction geometry in equilibrium as obtained with our

methodology. With the notable exception of the co-planar lock, all junctions are symmetric with

respect to the intersection line of the glide and forest planes (for the parallel initial configuration

treated here). Thompson’s notation is used for clarity.

1. Lomer-Cottrell junction

The Lomer-Cottrell lock appears when two perfect dislocations of the same {111} zone

occur gliding on different planes. The two leading partials are attracted to one another and

react along the 〈110〉 line of intersection between the two planes to form a pure-edge 1
6
〈110〉

stair-rod partial dislocation. The stair rod’s Burgers vector does not belong to any of the

initial glide planes and is therefore a sessile dislocation. Both the elastic self-energy and

the core energy of a stair-rod dislocation are relatively low (see Table I) which makes this

reaction very stable and the lock quite strong. We have studied Lomer-Cottrell junctions
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with geometries involving a pair of perfect dislocations with b1 = 1
2
[1̄10] and b2 = 1

2
[101],

gliding respectively on (111) and (11̄1̄) planes. In Thompson’s notation this corresponds to

a AB(d)+DA(b) reaction.

If one disregards the stacking fault energy in the elastic model, the trailing partials are

repelled by the stair-rod dislocation and lie on their original glide planes at some equilibrium

distance. However, for the relatively long line segments considered (60.2 nm), the two trailing

partials collapse onto the stair-rod dislocation to form a perfect 1
2
〈110〉 Lomer dislocation,

capable of gliding on {001}-type planes (see Figure 5). According to Frank’s rule:

µbL
2 < µbsr

2 + 2µbsp
2 + γ,

this will only be energetically favorable if the stacking fault-energy γ is greater than a

critical value that depends on the magnitude of the Burgers vectors of the perfect Lomer

dislocation, bL, the stair-rod, bsr, and the Shockley partials, bsp (without considering core

effects). Neglecting the stacking fault energy, the split configuration (two Shockleys plus

the stair-rod) is energetically favorable by approximately 20%, and thus the collapse into a

Lomer dislocation does not occur. This is precisely what we have seen when we fix γ = 0 in

our DD simulations. In any case, we expect this mechanism to be quite sensitive to several

reaction parameters such as reaction length and angle, distance of the original dislocations

from the intersection line, etc.

Another important aspect to consider is the two types of configurations that are geo-

metrically possible, namely the case where the angle between the two intersecting planes is

acute and the case when it is obtuse. The formation of an obtuse Lomer-Cottrell junction

entails having extrinsic stacking faults45–47, which are considerably higher in energy than

intrinsic ones, such as those found for an acute lock (84.5 vs. 44.4 mJ·m−2, according to

our interatomic potential). The main implication of this is that obtuse configurations can

be considered practically forbidden for our purposes, a fact supported by our own atomistic

simulations of junction formation and cross-slip. The outcome is precisely that, although

geometrically plausible, the energy cost incurred when creating an extrinsic fault in our Cu

model is far too high for these transitions to be allowed. This observation is supported by

Bonneville and Vanderschaeve’s47 linear elastic analysis of Lomer-Cottrell junctions recon-

ciled with experimental observations.

Lastly, as the geometry in Figure 5 suggests, in principle the yield curve of the Lomer-

Cottrell is symmetric with respect to stresses applied on the the forest and glide planes and
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thus σ1|σ2=0 = σ2|σ1=0. The values obtained are ∼448 MPa for the first two symmetric points

and 375 MPa for the case of equally stressed planes, or 0.0071µ and 0.0059µ, respectively.

The normalized strength for the (σ1, 0) stress point along with the slip geometry and the

corresponding b and γn reactions are shown in Table II.

2. Hirth lock

The Hirth lock is formed when two perfect dislocations with perpendicular Burgers vectors

glide on intersecting planes. This reaction results in a sessile 1
3
〈001〉 Hirth partial dislocation

flanked by the two trailing partials. The Hirth lock is the conjugate of the Lomer-Cottrell in

that only the obtuse configurations will produce an intrinsic fault. Thus, in this case we need

not consider the acute configuration. For these simulations we have also chosen two perfect

dislocations with slip systems 1
2
[1̄10](1̄1̄1) and 1

2
[1̄1̄0](1̄11̄) (CD(a)+BA(c) in Thompson’s

notation). The normalized junction strengths are given in Table II for the three points in

the positive quadrant of the yield curve. In the same fashion as the Lomer-Cottrell, the

Hirth lock is symmetric about the bisectrix plane that contains the intersection line of the

forest and the glide planes (see Figure 5). Thus, the strength of the junction is invariant

with respect to which is the activated plane and equal to ∼265 MPa or 0.0042µ. On the

other hand, the strength for (σ1 = σ2) is ∼233 MPa or 0.0037µ. The normalized strength

for the (σ1, 0) stress point along with the slip geometry and the corresponding b and γn

reactions are shown in Table II.

Based on purely elastic considerations, Hirth41 considered this reaction to be the strongest

barrier to dislocation glide in fcc metals. Contrarily, our calculations show that the strength

of this junction is lowest among all four considered, for the parallel geometry and zipping

length of 60.2 nm. From the point of view of the reacting geometry, Kubin et al. have

recently extended Hirth’s analysis by mapping the dislocation reaction space as a function

of dislocation character and found a strong dependence of the barrier strength with the

angular character of the reacting dislocations10. However, their work shows that only a very

small deviation from perfectly-parallel segments is allowed for the formation of a Hirth lock.

Nevertheless, they also found the Hirth lock to be the weakest among all fcc junctions.
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3. Co-planar junction

A co-planar junction —also referred to as ’glissile’ junction—, is formed when two perfect

dislocations lying on different planes react along the plane intersection to produce the third

perfect dislocation of the {111} zone whose glide plane normal is b1 × b2. The simulated

geometry is similar to the Lomer-Cottrell, except that in this case one of the reacting

dislocations, the 1
2
[11̄0], is a perfect screw dislocation on the (111) plane, while the remaining

dislocation is a 1
2
[1̄01̄] lying on a (1̄1̄1) plane. The new dislocation is also perfectly glissile

on the (1̄1̄1) plane, which acts as the forest plane in our simulated geometry. This means

that the only stress component governing junction dissolution in this case is σ1, as σ2 simply

acts as a glide component on the forest plane. Thus, only those stress combinations for

which the applied σ1 can overcome the glide force created by σ2 are relevant for junction

strength calculations. Presumably, this will result in a discontinuous yield curve with a gap

at low σ1 stresses. Indeed, we found that there is no (0, σ2) nor (σ1 = σ2) solution for this

lock, as the new dislocation simply glides on the forest plane and the junction nodes act as

a Frank-Read source. For the (σ1, 0) we obtain a value of 656 MPa (0.0104µ). This value,

along with the slip geometry and the corresponding b and γn reactions are given in Table

II.

Because of its glissile nature on the forest plane, the co-planar junction is the only non-

symmetric one among the four fcc locks studied. The schematic equilibrium configuration is

shown in Figure 5, where the (d) plane is the initial glide plane and (c) is the forest plane.

4. Co-linear junction

The co-linear junction results from the mutual annihilation of locally-screw segments of

perfect dislocations with opposite Burgers gliding on different {111} planes. These dislo-

cations attract one another and, when sufficiently close, may alter the local character of

the dislocation line affecting the reaction length. The geometry we have used in this case

involves a BA(d) and a AB(c) dislocations annihilating along their mutual plane intersec-

tion (see Table II for the numeric expressions). By way of this reaction, segments of both

dislocations become connected on either sides of the annihilated length. If one takes into

account the extended nature of dislocations in the fcc lattice, the reacting dislocations form
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tetranodes that are sessile on either of the two original planes (although they can glide along

the line). Therefore, these nodes effectively act as pinning points, contributing to hardening.

The dissolution of this lock involves the unzipping of the virtual junction by glide of the

tetranodes along the intersection line. This is precisely the dissolution mechanism for the

point of the yield curve with equally activated planes, for which σ1 = σ2 = 635 MPa or

0.0103µ (see Table II for more details). The behavior is somewhat different when only one

of the planes is activated. In those cases, the tetranodes act partially as dislocation sources

via their activated dislocation segments, which increases the amount of stress required to

break the lock: ∼950 MPa or 0.015µ.

C. Formation of stacking-fault tetahedra

We now turn to another important aspect of fcc metals, namely the treatment of Frank

partial dislocations and the formation of stacking fault tetrahedra (SFT). The Frank partial

is an edge dislocation and since its Burgers vector is not contained in a close-packed {111}
plane it cannot glide conservatively under the action of an applied tress. A closed disloca-

tion loop of a Frank loop partial dislocation can be produced by the collapse of a platelet of

vacancies. This is commonly observed in quenched or irradiated metals where a local super-

saturation of vacancies is produced48. The Burgers vector of a Frank partial is not a lattice

vector and therefore a Frank loop encloses a stacking fault. If the stacking fault energy is

sufficiently high, the Frank loop will be stable, but in low stacking-fault energy metals the

loop must unfault to become stable. Basically, there are two ways to unfault a Frank loop,

depending on its size. If the loop is large, e.g. typically forming hexagonally-shaped loops,

it can be swept by a Shockley partial on the habit plane to form a perfect dislocation loop.

On the other hand, for intermediate-to-small sizes, the Frank partial may dissociate into a

low-energy stair-rod dislocation and a Shockley partial on an intersecting slip plane. Similar

to the Lomer-Cottrel junction, this dissociation can only take place in the acute direction

of the intersecting {111} plane, that is, in the convergent sense. As we shall show, this

condition ensures the proper formation of SFTs. Again, which mechanism should operate

is solely determined on the basis of the power dissipation criterion.

Due to its higher complexity and interest, here we focus on the formation of a stacking-

fault tetrahedron from a Frank loop in Cu. We start from a triangular 5.8-nm loop with
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sides aligned with 〈110〉 directions. We then let the system relax at zero stress by applying

the criterion explained in the previous paragraph and the rules in eq. 2. A sequence of the

simulation is shown in Figure 6. Each side of the original triangle is a Frank segment with

FIG. 6: Simulation of the transformation of a 4-nm triangular Frank loop into a perfect stacking-

fault tetrahedron. Dislocation segments are color-coded according to their Burgers vector: black

is Frank partials, blue are Shockley partials and green segments are stair-rod dislocations.

Burgers vector 1
3
[111] (shown in black). Each segment undergoes a dissociation of the type:

1

3
[111] → 1

6
[110] +

1

6
[112] (7)

into a Shockley partial and a stair-rod dislocation. Basically, the Shockley partials are each

glissile on the remaining {111} planes of the Thompson tetrahedron and react with one

another on the edges of it. Although dissociation initilally occurs close to the center of

the triangle sides, as we can see, the Shockley partials are more inclined to react among

themselves than to glide along the facets of the tetrahedron, reason why reactions at the

edges occur in advance of glide on the {111} planes. This means that the edges grow faster

than the facets, something commonly assumed to occur inversely.57 To ensure that this is

not an artifact of the simulation introduced by the line tension effects we look at the node

insertion criterion. The initial triangle contains only three nodes, then, as the dissociation
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proceeds, more nodes are introduced automatically to maintain the equilibrium shape of

the new partials. Our criterion for the insertion of nodes can be fine-tuned to achive a

satisfactory line shape but we have seen little influence of this on the final dynamics. In

other words, this effect appears to be a consequence of the system dynamics, governed by

the stacking fault energy and the power dissipation criterion, and not an artifact resulting

from discrete effects.

The initial dissociation of the Frank loop as written in eq. 7 is governed by eqs. 2, whereby

new Burgers and γn vectors are assigned to the product dislocations in eq. 7. However, no

assumption is made as to what direction should the dissociation occur, i.e. in the convergent

sense (tetrahedron) or in the divergent sense (where the resulting structure would be some

kinf of truncated geometry. The fact that the dislocations choose the former path is solely a

consequence of the dynamics implemented in the code and no ’artificial’ enticement of any

kind is performed.

D. Cross-slip

Figure 7 shows the geometry of the cross-slip space of interest. In essence, we are only

interested in the four components of the stress tensor that are relevant for cross-slip, namely

Escaig (E) and glide (G) stress applied independently on the primary (glide) and secondary

(cross-slip) planes:

σE1 = σ̃ : SE1

σG1 = σ̃ : SG1

σE2 = σ̃ : SE2

σG2 = σ̃ : SG2

(8)

where the σαi are the resolved stresses of each type (α = E, G) on each plane (i = 1, 2), σ̃

is the local stress tensor, and the Sαi are projection matrices.

The stress tensor σ̃ is obtained from the linear superposition of the four relevant compo-

nents considered in Figure 7:

σ̃ = aS′
E1 + bS′

G1 + cS′
E2 + dS′

G2 (9)

Here, a, b, c and d are stress factors related to each component and the S′
αi are the Schmidt

tensors that give the maximum resolved shear stress of each component on each plane.
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However, as defined in eq. 9, the four tensors S′
αi will not necessarily be independent of one

another and the application of one isolated component on any one plane may result in a

resolved shear stress on the other. This is not in itself an erroneous proposition, as in reality

any combination of stresses, independent or not, that produces the desired Peach-Köhler

forces is valid. However, for simplicity and mathematical elegance, and other technical

reasons that will be discussed below, it is best to find a solution for eq. 8 that renders the

Sαi tensors independent through a relation among their projection matrices.

The relation between the S′
αi and the Sαi simply follows from the imposition of orthog-

onality constraints on the projection matrices in equation 8, i.e.:

S′
αiSαi = I

S′
αiSβj = 0

(10)

In this fashion, we ensure that the σαi are mutually orthogonal and, thus, can be applied

independently.

Now, our intention is to explore the four-dimensional (4D) stress space defined by the four

components in equation 8 in order to identify the threshold stress hypersurface that marks

the transition from glide to cross-slip. Additionally, we are also interested in determining

the pertinent cross-slip mechanism, as given in Section IIB, under each stress condition.

For simplicity, we study the projections of this 4D stress space on the three-dimensional

subspaces defined by the combinations of Escaig and glide stress on each plane: i.e. σG1-

σE1-σG2, σE1-σG2-σE2, σG1-σG2-σE2 and σG1-σE1-σE2.

All calculations have been performed for the following geometry: b = 1
2
[11̄0], n1 = (111)

and n2 = (111̄). The length of the initial straight dislocation was of approximately 75

nm. The value ranges for each of the stress components considered was determined from

geometric stability conditions such as partial dislocation constriction or runaway partials.

Finally, we have calibrated the cross-slip maps from the minimum glide stress on the

secondary plane required to induce cross-slip by a Fleischer mechanism in the absence of

any Escaig stress on the primary plane, (σE1 = 0, σG2 = 2122.6 MPa). This value is closely

related to the energy required to nucleate a stair-rod dislocation in Fleischers’ model. Both of

these values have been obtained numerically using specifically-designed atomistic simulations

and provide physically-based input from which to build the stress maps. In what follows,

we make use of this and the parametrization performed in Section IIIA 1 to construct the
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FIG. 7: Schematic diagram showing the geometry of the glide (primary) and cross-slip (secondary)

planes with the four relevant components of the stress tensor, namely Escaig and glide stresses on

both planes. Shown schematically on each plane are two extended screw dislocations. The shaded

stripes are the stacking fault ribbons. Shockley partials are shown in black.

surfaces plotted in Figures 9 to 12. More details about each one of them are given in each

corresponding subsection below.

1. Glide and Escaig stress on primary plane; Escaig stress on secondary plane.

The 3D map for this stress combination is plotted in Figure 9. The calculations were

performed by relaxing the screw dislocation to the equilibrium distance dictated by the value

of σE1 and then applying pairs (σG1,σE2) to obtain the surface points. The surface obtained
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FIG. 8: Schematic view along the dislocation line of the different forces created by the four orthog-

onal stresses relevant for cross-slip. The direction of the forces shown for each Shockley partial

correspond to positive values of the stress. As shown in the figure, in some instances, the stresses

produce forces with opposite signs on different partials. This interplay among different stress

components governs the cross-slip mechanisms and gives the stress maps shown below.

(in color) represents the locus of the triad σG1-σE1-σE2 above which the dislocation is seen to

cross-slip by a Fleischer mechanism, i.e. no cross-slip occurs below the colored surface. σE1

ranges from the value for runaway partials at −0.0079µ to 0.0316µ at which full constriction

is attained in the absence of any other stress components (see Section IIIA 1).

A salient characteristic of this stress subspace is the absence of cross-slip for negative

(separating) Escaig stresses on the secondary plane. The reason is that, with the simulated

geometry, only positive values of σE2 will produce acute cross-slip. As we showed in Section

IIIB, obtuse cross-slip is forbidden in our simulations due to, presumably, the high extrinsic

stacking fault energy in our Cu model. Therefore, a positive or negative value for σE2 must

not be understood strictly in terms of constriction or separation of partials in this case, but,

rather, as giving the direction of the force that produces cross-slip in the acute or obtuse

sense. Because σE2 acts upon both partials simultanoeusly and in the same fashion, cross-

slip with these components always produces anti-symmetric structures such as those shown

27



in Figure 8. In this sense, the primordial effect of the glide stress on the primary plane is

simply to facilitate or hamper (for small and large values of |σG1| respectively) the onset of

cross-slip in this subspace. Of course, the cross-slip map is perfectly symmetric with respect

to any glide component on either plane, as in the starting configuration the two Shockley

partials can be considered indistinguishable for all practical purposes.

The shaded boundary plane at σE1 = 0.0316µ shown in the figure effectively marks the

transition from a Fleischer to a Friedel-Escaig cross-slip mechanism for any non-zero value of

the stress components acting on the secondary plane. However, because the only component

on the secondary plane considered for this subspace is σE2 and, as we showed, this can only

take positive values, in order to have Friedel-Escaig cross-slip it is actually required that σE2

be positive. In other words, the mathematical condition that must be satisfied in this stress

subspace to have Friedel-Escaig cross-slip is: (σE1 > 0.0316µ, ∀ σE2 > 0).

The stress surface does not show a strong dependence with σE1, in particular σG1, which

is virtually independent of σE1. However, notably, the amount of σE2 needed to induce

cross-slip decreases as the dislocation separation distance departs from its equilibrium value

at zero Escaig stress on the primary plane.

2. Glide and Escaig stress on primary plane; glide stress on secondary plane.

As pointed out above, all solutions are symmetric with respect to either of the two glide

stresses. This is clearly illustrated in Figure 10, where both σG1 = 0 and σG2 = 0 are

planes of mirror symmetry. In this case, the surfaces shown in the figure represent the loci

σG2 = f(σG1, σE1) above which cross-slip by a Fleischer mechanism occurs. Of course, by

virtue of symmetry, the mathematical condition for cross-slip can simply be expressed as

|σG2| > f(|σG1|, |σE1|), i.e. cross-slip takes place for stress triads on or above the red surface

or on or below the blue surface.

Again in these calculations, any departure from the Shockley partial equilibrium distance

towards a more constricted (assisted by σE1 > 0) or a more extended (σE1 < 0) state results

in an eased cross-slip configuration in terms of σG2. This is a somewhat puzzling observation,

as one would think that the higher energy configurations induced by the Escaig stress might

be relaxed by spreading on the cross-slip plane. However, we have checked this observation

by simulating equivalent dislocation geometries using molecular dynamics and the atomistic

28



FIG. 9: Three-dimensional stress map for the cross-slip of a perfect screw dislocation from the

primary to the secondary plane according to Figure 7 when Escaig stress is applied on both planes

and glide stress is only applied on the primary plane. All stresses are normalized to the value of the

shear modulus µ. Positive values of σE1 or σE2 indicate constriction stress. Note how σE1 ranges

from the value for runaway partials of −0.0079µ to 0.0316µ at which full constriction is attained

(shaded plane).

results are consistent with the DD simulations: the stability of the equilibrium configuration

appears to provide a slight barrier to cross-slip, which is diminished at once by a deviation

in either direction from the equilibrium structure.

As for the previous case, the maximum value of σE1 is that for which full partial disloca-

tion constriction is attained and, hence, the plane σE1 = 0.0316µ marks the transition from

Fleischer to Friedel-Escaig for any non-zero value of σG2.
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FIG. 10: Three-dimensional stress map for the cross-slip of a perfect screw dislocation from the

primary to the secondary plane according to Figure 7 when glide stress is applied on both planes

and Escaig stress is only applied on the primary plane. All stresses are normalized to the value

of the shear modulus µ. The shaded plane marks the divide between cross-slip by Fleischer and

Friedel-Escaig mechanisms.

3. Escaig stress on primary plane; glide and Escaig stress on secondary plane.

The σE1-σG2-σE2 map is plotted in Figure 11. In this case, the curves exhibit only one

symmetry plane (σG2 = 0), at which they intersect. This means that for certain combina-

tions of σE1 and σE2 that satisfy the relation σE2 > f(σE1)|σG2=0, cross-slip by a Fleischer

mechanism always occurs regardless of the value of σG2.

The same effect observed in Section IIID 1 regarding Escaig stress on the secondary plane
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is also seen here. The sign of σE2 cannot be interpreted in terms of constriction/separation

but rather as assisting in inducing acute or obtuse cross-slip. For acute cross-slip (the only

one possible) to occur when σE2 < 0, increasing amounts of glide stress on the secondary

plane must be applied to overcome the obtuse cross-slip tendency created by the secondary

Escaig stress. Consequently, the cross-slip forces on each partial due to the stress components

acting on the secondary plane are additive in one case and opposing in the other, akin to

the mechanism shown in Figure 8. Therefore the mathematical condition for cross-slip by a

Fleischer mechanism is simply: (|σG2| + σE2 > 0, ∀ σE1). Here we also capture the repulsive

effect caused by constricted partials on cross-slipped configurations, i.e. the higher the value

of |σE1|, the lower the value of the glide stress on the secondary plane needed to provoke

cross-slip.

Here too σE1 ranges between −0.0079µ and 0.0316µ, beyond which, respectively, we have

runaway partials and Friedel-Escaig cross-slip. The mathematical condition required for

Friedel-Escaig cross-slip in this case is: (σE1 > 0.0316µ, ∀ σE2, σG2 > 0).

4. Glide stress on primary plane; glide and Escaig stress on secondary plane.

The stress surface corresponding to the σG1-σG2-σE2 map is shown in Figure 12. Here

again two planes of symmetry exist, as corresponds to having both glide components active.

With this stress combination, no cross-slip by a Friedel-Escaig mechanism can ever occur, as,

in the absence of any σE1, the orthogonality conditions 10 prevent any constricting stresses

to develop on the primary plane.

In this case, the effect of having Escaig stress on the secondary plane is also to direct

cross-slip in the acute (σE2 > 0) or obtuse (σE2 < 0) senses. Since obtuse cross-slip is

forbidden, a negative σE2 must be overcome by the secondary glide stress acting in the

opposite direction so that acute cross-slip can occur. That is why the surfaces exhibit an

increasing trend for negative values of the secondary Escaig stress. At (σG1, σE2 = 0), σG2

takes the calibrated value of 2122.6 MPa (0.034µ). With respect to the σG1-σE2 dependency,

similar to the case in Section IIID 1, there is only a very weak coupling between these two

stress components.

Lastly, the σG2 = f (σG1) relation is of hyperbolic type, such that for increasingly larger

values of |σG1|, |σG2| must be increased to overcome the inertial resistance of the dislocation
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FIG. 11: Three-dimensional stress map for the cross-slip of a perfect screw dislocation from the

primary to the secondary plane according to Figure 7 when Escaig stress is applied on both planes

and glide stress is only applied on the cross-slip plane. All stresses are normalized to the value of

the shear modulus µ. The shaded plane indicates the divide between cross-slip by Fleischer and

Friedel-Escaig mechanisms.

to cross-slip. As for the previous cases where σE2 is present, the cross-slip mechanism in

this case is a combination of glide and Escaig on each partial, synergistic for one of them

and competing for the other (Figure 8).
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FIG. 12: Three-dimensional stress map for the cross-slip of a perfect screw dislocation from the

primary to the secondary plane according to Figure 7 when glide stress is applied on both planes

and Escaig stress is only applied on the cross-slip plane. All stresses are normalized to the value

of the shear modulus µ.

IV. DISCUSSION

Brief discussions of the methods and the results for each section have been provided in

Section III. Below we elaborate on the implications extracted form this work in terms of

the fitting procedure, the dislocation junctions considered and cross-slip.
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A. Fitting procedure and Shockley partial separation distance

The only material parameters present in our method are the shear modulus, µ, the

stacking fault energy, γ, and the dislocation core width, a, extracted from the non-singular

elastic formulation described in Section IA. To obtain appropriate values for µ, γ and

a, commensurate with the type of calculations that we have carried out, we have devised

a fitting procedure based upon atomistic simulations designed around a state-of-the-art

interatomic potential for Cu. Ostensibly, the main objective of the fitting procedure is not

to produce accurate values for the materials parameters (although this may very well occur

as an indirect consequence of the fitting), but to provide a meaningful physical framework

within which to parameterize our methodology. Here, the shear modulus and stacking fault

energy are simply taken from experimental values (via the interatomic potential), and have

not required any further treatment except the rotation of µ to the specific geometry of fcc

slip. The core width, on the other hand, is amenable to several types of fitting schemes,

all requiring atomistic approaches of one kind or another to deal with core non-linearities.

For example, a very common practice is to take a as twice the distance over which ± b
4

is

seen to spread, although the criterion to estimate the core width is generally quite arbitrary

and there is no established way to do it. In any case, here we have chosen a two-fold fitting

process:

• First, a is chosen so as to ensure consistency between DD and MD calculations of

Shockley partial equilibrium separation (Figure 3).

• Secondly, once the value of a was established to 1.75b, we calculated the corresponding

core energies for all possible dislocation partials

In this fashion, by rotating µ to our particular geometry, we are able to introduce a

certain degree of ’anisotropy’ in our simulations. Similarly, by including core energetics in

our simulations we have taken the step towards fully incorporating core effects in dislocation

dynamics. At present, core energies are simply used to fit an analytical expression that gives

a non-glide self-force on each segment25. In calculating the specific values for each type of

dislocation, we now have a more accurate representation of the forces governing the line

stiffness.
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A direct validation of our fit is provided by the equlibrium separation distance at zero

Escaig stress in Figure 3, with the DD curves almost exactly matching the MD result of

2.0087 nm. Another useful validity check is shown in Figure 4. In it we plot the Shockley

partial separation curves for pure edge, 60o and 30o mixed dislocations as obtained with the

fitted values for the perfect screw. The zero-stress crossings can be compared to the MD

results by Henager and Hoagland35 with satisfactory agreement.

B. Dislocation junctions

Current models for the strain hardening of crystals in multislip conditions are based on the

properties of junctions, which has resulted in considerable efforts to study the dislocation

reactions leading to junction formation and characterize their relative strengths. In fcc

crystals, the well-known scaling law between the stress and the square root of the dislocation

density is found to hold experimentally over a fairly large stress range, even in conditions

where the dislocation density is heterogeneous and patterns are formed7. This law hinges on

a set of hardening coefficients (see equation 6) that can be either be calculated directly by a

number of methods or can be inferred from plasticity experiments and large-scale dislocation

dynamics simulations. In this sense, our calculations in Section IIIB suggest that, for the

conditions chosen in our study, the co-linear junction is the strongest, followed by the co-

planar, Lomer-Cottrell and Hirth locks. Nevertheless, the strength of a particular type of

lock does not necessarily correlate with its relative importance in terms of plastic hardening,

as other factors such as loading condition, occurrence, reacting geometry, etc., have a strong

effect on the plastic relevance of each junction. The appropriate method to estimate the true

importance of each junction is to separate their relative contribution to the total hardening

(as measured via equation 6) in large-scale DD plasticity simulations. This has been the

approach employed by a number of workers, most notably Madec et al.44 and Devincre et

al.18, who have come up with self-consistent ways to differentiate among each fcc lock in their

simulations. Their conclusions, interestingly, confirm the first-order assumption (which also

emanates from our results) that there might be a direct correspondance between junction

strength and their comparative contribution to hardening.

Of course, each junction is only fully characterized by way of its yield curve, which gives

the junction strength in some stress space, usually pure glide in the glide and forest planes.
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Here we have only computed three points of the yield curve, the most representative in

our view, and thus our findings are framed within this simplified representation of the fcc

locks. Yield curves using elastic models have been published13,17, with reasonable qualitative

agreement with our results. Dupuy and Fivel13 have computed the yield curves for the

Lomer-Cottrell, glissile and Hirth locks and find that the glissile (co-planar) junction is

weaker than the Lomer-Cottrell for a number of geometries explored. Interestingly, they give

a closed co-planar yield curve, something inconsistent with our definition for this junction

(see Figure 5), which presumes that it is always stable with respect to any stresses on the

forest plane and can only be dissolved when the stress applioed on the glide plane overcomes

the glissile tendency of the junction on the forest plane.

Another important aspect to consider is the fact that the rate of work hardening in stage

II deformation, θII, appears to be approximately universal and equal to ∼ µ

300
. Despite the

large uncertainties present in these empirical relations, these models are formulated inde-

pendently of the stacking fault energy of the material or the zipping length over which the

junction occurs. In other words, what this suggests, indirectly, is that all ths is needed

to study stage II hardening are purely elastic models that neglect core effects and/or dis-

location dissociation into partials. Quite to the contrary, recent DD simulations49, seem

to provide evidence that the core’s contribution to the nodal self-energy has an important

effect on the strength of junctions. The only way to shed more light on this is by performing

studies of junction formation and dissolution with methods that resolve the dislocation core

explicitely, e.g methods capable of atomistic resolution. Indeed, there have been numerous

works focusing on one specific type of junction tha explicitely account for core energetics and

structure12,42,43,50, the disadvantage being that these studies are numerically quite expen-

sive. Hence, our method suggests itself as an intermediate solution between fully-resolved

but costly atomistic calculations and more coarsened approaches that usually disregard core

energetics.

C. Cross-slip

In fcc materials, the traditional view is that cross-slip is enabled when the stress buildup

arising from forest and precipitation hardening is high enough for screw dislocations to escape

their obstacles by gliding on a plane different than their original slip plane (the so-called
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stage III). Because dislocations are dissociated on {111} planes in fcc systems, cross-slip has

relatively high activation energies and volumes, and efforts to calculate them have generally

not been very successful until recently with the advent of atomistic methods.

Jackson51 and, more recently, Püschl32 (and references therein) have published compre-

hensive reviews covering the theoretical and experimental aspects of cross-slip in fcc metals.

Invariably in these works, the inherent limitations of linear elasticity at distances close to

the dislocation core are identified as the cause why continuum analytical models have failed

to provide an accurate description of cross-slip, both in terms of the computed activation

parameters, and also in the range of geometries explored. In response to this shortcomings,

and with the advent of reliable interatomic potentials, atomistic methods have been recently

used to study cross-slip in some aspect or another. The most notable works have been by

Duesbery52, Rao et al.53 and Rasmussen et al.54,55. The advantage of using atomistics is

that these methods provide very detailed insights into the transition paths conducive to

cross-slip without too many a priori assumptions. However, difficulties still remain, mostly

associated to the treatment of far-reaching dislocation stress fields and the quality of the

potentials employed. Whichever the case, however, we are not aware of any published work

in the available literature that provides a comprehensive picture of cross slip as a function

of the relevant stress components.

In this sense, because our methodology makes use of a non-singular elastic formulation

fitted to atomistic data, it does not suffer from the short-range elastic divergence found

in other linear elastic models. This, combined with the dislocation dissociation scheme

developed here, has allowed us to study in detail the dynamics of cross-slip and discern among

the different mechanisms being considered in the literature. Aided by the computational

expediency of DD —when compared to atomistic methods—, we have been able to obtain

the detailed stress maps shown in Figs. 10 to 12, which, for the first time, provide a simple

and effective criterion for cross-slip solely in terms of the remote stress state. However, in

addition to their inherent numerical value, two important physics findings emanate from

these stress maps. Firstly, we have discovered that the application of Escaig stress is an

impediment, albeit small, to cross-slip by a Fleischer mechanism, irrespective of the sign of

σE1. In other words, there exist minima at σE1 = 0 in the relations of the primary Escaig

stress with the secondary stress components σG2 and σE2. We argue that this is due to the

relative stability of stress-free dislocations vs. their constricted or extended configurations.
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More calculations are needed, however, to prove or disprove this extent. Secondly, our results

may narrow down the number of possible pathways for dislocation annihilation in Kubin et

al.’s recent study on plastic recovery56 by removing the plausability for obtuse cross-slip. As

shown in Sections III B and IIB, we have demonstrated both using MD and DD simulations

that, at least for Cu, the energy cost of creating extrinsic faults precludes the formation of

inverse junctions (e.g. obtuse Lomer-Cottrell or acute Hirth locks) and obtuse cross-slip.

However, it is still difficult at this point to identify a direct means to validate our simu-

lations, other than perhaps using atomistic results where available. Ultimately, these stress

maps will have to be incorporated into large-scale DD crystal plasticity simulations and the

results benchmarked against existing experimental databases.

The remaining, and final, issue concerning cross-slip in fcc metals is to produce a full

energy landscape of the cross-slip process as a function of stress so that thermal effects can

be incorporated into the simulations. This can in principle be achieved by way of atomistic

calculations (the atomistic works referenced in the previous paragraphs are essentially zero-

stress calculations of these energies), although the associated computational cost can be

daunting, or, now that we possess information about core energies (Table I), using fast

DD simulations to calculate configuration energies as a function of dislocation position and

character.

V. CONCLUSIONS

In summary, we have extended the discrete dislocation dynamics methodology as devel-

oped by Bulatov and co-workers25 to fcc systems by explicitely considering all dislocation

dissociations and reactions among partials. To this end, we have derived simple continuity

laws that enable the treatment of stacking faults and partial dislocation nodes. In addi-

tion, we have added appropriate topological rules to account for the specific transformations

relevant to fcc slip, e.g., dislocation dissociation, junction formation, cross-slip, etc. Our

dislocation dynamics methodology has been fitted to atomistic results in Cu, including core

energetics, and has withstood the test of several simple validation checks. We show that,

consistent with real crystals, the parameter governing dislocation dissociation is the stacking

fault energy.

We have obtained the dissolution strengths of the main four dislocation junctions in fcc
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metals, namely the Lomer-Cottrell, Hirth, co-linear and co-planar junctions, and find that,

in agreement with the current state-of-the-art in DD simulations, the co-linear junction is

clearly the strongest.

We have characterized the four-dimensional cross-slip surface by mapping threefold stress

subspaces and have extracted simple mathematical rules to implement the different cross-

slip mechanisms considered. Based on atomistic simulations, our model does not include

cross-slip into obtuse planes, as the stress required for this process is significantly larger than

for the acute case. The thermally-activated nature of cross-slip has not been treated here

and our stress surfaces provide a cross-slip map in zero-temperature equivalent conditions.

Future work includes computing the cross-slip energy landscape as a function of the applied

stress so that thermal effects can be accounted for.
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TABLE II: Geometry and strength of the Lomer-Cottrell, Hirth and co-planar junctions. The

relative geometries are given in terms of the Thompson tetrahedron. The values for the strength

correspond to the σ1 points of the yield curve for which no stress is applied on the forest plane

(σ2 = 0). point in the yield curve for the Lomer-Cottrell, Hirth and co-linear junctions, and the

(σ1, 0) point for the co-planar junction (see text). The b and γn reactions are also shown for

reference.

Junction type Reactions Strength (µ)

Lomer-Cottrell

(geometry) b1

1n

n2

b2

0.0071

(b reaction) 1
2 [1̄10] + 1

2 [101] → 1
2 [011]

(γn acute reaction) 1√
3
[1̄1̄1̄] + 1√

3
[11̄1̄] → 1√

3
[02̄2̄]

Hirth

(geometry) b1

1nn2

b2

0.0042

(b reaction) 1
2 [1̄10] + 1

2 [1̄1̄0] → 1
6 [2̄11̄] + 1

6 [2̄1̄1] + 1
3 [1̄00]

(γn obtuse reaction) 1√
3
[1̄1̄1] + 1√

3
[11̄1̄] → 1√

3
[02̄0]

Co-planar

(geometry) b1

1n

n2

b2

0.0104

(b reaction) 1
2 [11̄0] + 1

2 [1̄01̄] → 1
6 [112] + 1

6 [1̄21]

(γn acute reaction) 1√
3
[1̄1̄1̄] + 1√

3
[1̄1̄1] → 1√

3
[2̄2̄0]

Co-linear

(geometry)

b1

1n

n2

b2 0.0155

(b reaction) 1
2 [11̄0] + 1

2 [1̄10] → local annihilation

(γn acute reaction) 1√
3
[1̄1̄1̄] + 1√

3
[1̄1̄1] → 1√

3
[2̄2̄0]
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