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Design for a High Energy Density Kelvin-Helmholtz Experiment

O. A. Hurricane
Lawrence Livermore National Laboratory
P.O. Box 808, Livermore, CA 94551

(UCRL-JRNL-XXXXXX, February 2007)∗

While many high energy density physics (HEDP) Rayleigh-Taylor and Richtmyer-Meshkov insta-
bility experiments have been fielded as part of basic HEDP and astrophysics studies, not one HEDP
Kelvin-Helmholtz (KH) experiment has been successfully performed. Herein, a design for a novel
HEDP x-ray driven KH experiment is presented along with supporting radiation-hydrodynamic
simulation and theory.

PACS numbers: 52.58.Lq,52.59.Hq,52.65.Kj

INTRODUCTION

Motivated by the need to better understand the in-
stability processes that occur in inertial confinement fu-
sion (ICF) and supernovae, and the need to gauge the
quality of the computer simulations that are used to
model the these processes, the field of high energy den-
sity physics (HEDP) has developed. HEDP experiments,
used to compare to simulation predictions, characteris-
tically deposit 10’s of kiloJoules of energy in millimeter
scale targets on timescales of nanoseconds thus generat-
ing plasmas at megabar pressures. The resulting flows
emulate, by design, important unstable processes and
can often be self-similarly scaled to astrophysics con-
texts [1–4]. A number of experiments that explore accel-
eration driven Rayleigh-Taylor instability [5] and shock
driven Richtmyer-Meshkov instability [6] have been ex-
plored previously. While a shear flow driven experiment
has been attempted [7], whether Kelvin-Helmholtz insta-
bility actually resulted was not evident.

In 2002, a very elegant Kelvin-Helmholtz target was
designed for the National Ignition Facility (NIF) Early
Light (NEL) experiment. In fact, this design was the
leading candidate for NEL until it became clear that
the NEL configuration could not accommodate the long
backlighter delay required for the experiments success.
The key feature to the design, was to utilize the large
vorticity generation mechanism that is associated with
maximizing the cross product of pressure gradient and
a density gradient (baroclinic vorticity production) that
occurs when a shock wave passes laterally across a per-
turbed material interface, that is, with shock velocity
perpendicular to the surface normal. While this design
generated a great deal of interest at the time, as calcula-
tions showed that it was not only scientifically valuable
but visually impressive, the design has been filed away
since 2003, to be fielded at a future date.

The basic configuration consists of a sandwich of an
opaque high density plastic (CHBr4.3%) and a low den-
sity CRF foam all of which is contained in a rectangular
cross-section shock tube, made from Be in order to radio-

graph through it (see Fig. 1). In the original NEL design,
the laser energy (a “quad” of NIF at energy 7.5 kJ in a
1.25 ns pulse @ 3 ω) would be delivered to a 1 square mm
spot on an ablator covering the low density foam part of
the target. In this way, a strong shock is launched into
the low density foam such that the pressure gradient at
the leading edge of the shock would essentially be a right
angles to the density gradient at the interface of the two
dissimilar materials. The interface between the two ma-
terials is perturbed by a sinusoidal contour with ampli-
tude (a) and wavelength (λ) chosen such that a number
of large vortices’s would develop nonlinear structure in
the expected field of view in the duration of the experi-
ment (limited by the backlighter delay time). In the case
of Fig. 1, a = 60µm and λ = 400µm. The asymmet-
ric target design was selected to maximize the amount of
laser energy that could be delivered to the low density
foam. For Fig. 1 the target length is 4 mm and the total
target height is 2.0 mm.

DESIGN THEORY

From the curl of the momentum equation, the vorticity
equation is,

dω

dt
+ ω∇ · v + ω · ∇v =

∇ρ × ∇P

ρ2
(1)

where d/dt is the advective time derivative and ω = ∇×
v is the vorticity. In situations where the velocity is
invariant along a coordinate direction, the third term on
the left vanishes identically. Thus the two dimensional
(2D) vorticity equation is,

dω

dt
+ ω∇ · v =

∇ρ × ∇P

ρ2
(2)

the baroclinic vorticity term being the term on the right
hand side.

Since we are interested in dynamics on timescales that
are long compared to the time it takes the shockwave
to transit over a wavelength of the perturbation between
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(a)

t = 0. t = 7.0 ns

(b)

FIG. 1: (a) The t = 0 geometry of the target as seen in
a synthetic x-ray image. The high density CHBr4.3% is the
dark region on the bottom half of the frame, while the low
density foam is on the top half. The wall of the beryllium
shock tube bounding the foam is clearly visible on top, while
the same wall on the bottom is harder to see, but present. A
30 µm plastic ablator is barely visible as a dark line on the
left of the target. (b) Early in the targets evolution, at t = 7
ns, the shock generated by the laser pulse is moving from left
to right at 7.5 cm/µs. The pressure gradient across the shock,
which at this time is 6.5 Mbars, is nearly orthogonal to the
density gradient as designed.

the material interfaces, it is appropriate to treat the baro-
clinic vorticity generation term as a source term at t = 0.
That is, any subsequent gradients in density or pressure
that might produce vorticity will be treated as insignifi-
cant compared to the vorticity generated by the passage
of the shockwave.

In order to model the baroclinic vorticity term, the
shock wave is treated as a discrete jump pressure moving
at the shock speed, and the perturbed material interface
is treated as a discrete jump in density (see Fig. 2). That
is,

P = ∆PH(ust − x) + P0 (3)

ρ = (ρL − ρH)H(y − yI(x)) + ρH (4)

where P0 is the pressure in the low density (ρL) material
before the passage of the shock, ∆P is the pressure jump
of the shock front, us is the shock speed, yI(x) is the
contour of the perturbed interface between the low and
high density (ρH) materials, and H is the Heaviside step
function.

Assuming that the imposed perturbation of the inter-
face is yI = y0 + a sin(kx), where the wavelength of the
perturbation is λ = 2π/k, it is straight forward to show
that the unit normal to the interface is given by

n̂ =
ŷ − ka cos(kx)x̂

√

1 + (ka)2 cos2(kx)
. (5)

The initial gradients of pressure and density can now be
expressed as,

∇ρ = (ρL − ρH)δ(y − yI(x))n̂ (6)

∇p = ∆Pδ(ust − x)x̂ (7)

post−shock flow

Transmitted shock
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FIG. 2: A laser driven shock travels to the right in the low
density material creating a moving pressure jump. This shock
traverses a perturbed interface at nearly right angles to the
density gradient. It is unavoidable that a shock is transmitted
into the high density material, but at an angle such that the
transmitted pressure gradient forms a small angle with the
interfaces density gradient.

where δ is the usual Dirac δ-function. Eqs. [6] and [7]
are needed to construct the baroclinic vorticity term in
Eq. [2].

In order to calculate the rate at which we expect the
interface vortex to overturn, the circulation, Γ =

∮

ω ·dA
(the integral being over area) is a convenient concept.
Using Eqs. [2], [6], and [7] along with the definition of
the circulation we then have

Γ =

∫

∆ρδ [y − yI(x)] ∆Pδ(ust − x)dxdydt

[∆ρH(y − yI(x)) + ρH ]
2 √

1 + (ka)2 cos2(kx)
.

(8)
where ∆ρ = ρH − ρL. Upon performing the spatial inte-
grations one finds

Γ =
4A∆P

(ρH + ρL)

∫ 2π/(kus)

0

dt
√

1 + (ka)2 cos2(kust)
, (9)

where A = ∆ρ/(ρH + ρL) is the Atwood number. The
time integral solution of Eq. [9] is a special function, the
Elliptic-K function,

Γ =
16A∆P

(ρH + ρL)

K

(

ka√
1+(ka)2

)

kus

√

1 + (ka)2
. (10)

Eq. (10) is the circulation per vortex. Equating
Eq.(10) to the alternate definition of vorticity

∮

v · dl al-
lows one to calculate the eddy turnover speed and there-
fore eddy turnover frequency, ΩBV E = k2Γ/2π3, by as-
suming that the diameter of the vortex is the wavelength
of the initial perturbation. For the parameters of the sim-
ulation (see the next section), ∆P ∼ 1.3 Mb, ρL ∼ 0.1
g/cc, ρH ∼ 1.4 g/cc, and v ∼ 3.5 cm/µs one finds
ΩBV E ∼ 2.8 revolutions in 100 ns consistent with the
observed behavior of the simulation.

As can be found in many classical fluid dynamics books
[9] the complex potential can be related to the vorticity
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through the residue theorem. For an array of infinite
vortex lines the complex potential is [10]

w(z) =

∞
∑

n=−∞

(

i
Γ

2π

)

ln(z−nλ+
λ

2
) =

iΓ

2π
ln sin

(πz

λ
+

π

2

)

(11)
where z = x+iy is the complex coordinate and vx−ivy =
dw/dz relates the components of the flow velocity to the
complex potential. The differential equations for the flow
field are then

dx

dt
=

Γ

4λ

sinh
(

2πy
λ

)

cos2
(

πx
λ

)

+ sinh2
(

πy
λ

) (12)

dy

dt
=

Γ

4λ

sin
(

2πx
λ

)

cos2
(

πx
λ

)

+ sinh2
(

πy
λ

) . (13)

Taylor expanding Eqs. (12) and (13) about x = 0 and
y = 0, retaining the leading term of each, and eliminat-
ing x in the expressions results in a simple differential
equation d2y/dt2 = γ2

BV Ey, where γBV E = k2Γ/8π is
the linear growth rate. The typical linear growth rate for
Kelvin-Helmholtz instability is γKH =

√
ρHρLkv/(ρH +

ρL) which is clearly different than γBV E hence the dis-
tinction. That is, Taylor expanding Eq.[10] in ka and
applying the Rankin-Hugoniot shock relations one finds

γBV E

γKH
≈ 2

γL + 1
A

√

ρL

ρH

cH

cL

[

1 − 1

4
(ka)2 +

9

64
(ka)4 + . . .

]

(14)
where γL(H) is the polytropic index of the low (high)
density material and cL(H) is the pre-shock sound speed
of the low (high) density material.

Taking the ratio of Eqs. (13) and (12) yields an equa-
tion for dy/dx that is separable and trivially solvable –
one obtains

cosh

(

2πy

λ

)

−cosh

(

2πy0

λ

)

= cos

(

2πx0

λ

)

−cos

(

2πx

λ

)

.

(15)
Eq. (15) describes, for all time, the “orbit” that a mass-
less particle suspended in the fluid would take when
starting out at position (x0, y0) at t = 0. A plot of
the “phase portrait” of the differential equations Eqs.
(12) and (13) is provided by Eq. (15) and is shown in
Fig. 3. A separatrix bounds an inner flow region where
fluid continually overturns and an outer transiting flow.
The equation describing the separatrix is given by Eq.
(15) with x0 = 0 and y0 = 0 from which one can find
that the maximum y extent of the overturning region is
cosh−1(3)λ/(2π) ≈ 0.281λ.

DESIGN SIMULATION

Simulations of the proposed target were performed
with the Lawrence Livermore National Laboratory

y

λ

λ

FIG. 3: The figure displays the phase portrait given by Eq.
(15). The outer flowing region is clearly distinct from the
inner vortex region. The form of this phase portrait is inde-
pendent of time. The rate that the vortex overturns is directly
proportional to the circulation, Γ, which interestingly is the
only place where the amplitude of the perturbation comes into
play.

(LLNL) code CALE (C-based Arbitrary Lagrangian Eu-
lerian) [8]. The simulation includes direct laser depo-
sition of energy at a surface determined by the elec-
tron plasma frequency, tabulated material equations of
state, tabulated opacity, ionization, electron heat con-
duction, and radiation diffusion. The laser source in-
tensity is prescribed by a super-Gaussian profile I(y) =
I0 exp[−(y−y0)/σ]N , with N = 5 and σ = 400µm (ranges
of N = 3 − 7 and σ = 300 − 500µm were simulated to
test target sensitivity and none was observed).

In CALE, hydrodynamics are solved at second order
accuracy except at shocks where the accuracy is first or-
der. The mesh in the initial setup of the problem is
conformal to the material interfaces, but as the prob-
lem evolves materials will eventually advect through the
mesh. That is, the simulation starts off Lagrangian with
the mesh following the flows, but inevitably as the mesh
distorts, material is allowed to partially slip through the
mesh in a more Eulerian sense. In the simulations shown
here, the resolution is 901 zones along x and 301 zones
along y. At lower resolutions the desired vortex structure
is numerically diffused away in CALE.

The six frames of Fig. 4 show the evolution of the
target as would be seen radiographically (synthetic ra-
diograph images are calculated using the cold material
opacities at the photon frequency of an iron backlighter).
The first frame shows the state of the target at t = 10
ns, where the shock has only crossed over the first two
wavelengths of the perturbation. At t = 10 ns, the sec-
ond wavelength of the perturbation has sharpened into
a wave that is on the verge of breaking. The next five
frames of the figure show the target state at 20, 30, 40,
50, and 60 ns. As the shock moves downs the target shock
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t = 10 ns t = 20 ns

t = 30 ns t = 40 ns

t = 50 ns t = 60 ns

FIG. 4: The six frames show the target evolution, in syn-
thetic radiograph, from t = 10 ns to t = 60 ns in 10 ns incre-
ments. As the main shock in the low density foam moves down
the target from left to right, cylindrical shock reflections are
produced at the perturbed interface. These shock reflections
propagate upward through the post-shock foam and imprint
structure on the Be shock tubes inner surface. After the pas-
sage of the main shock, it takes about 20 ns for the vortex
structure of a wavelength of the perturbation to grow into a
distinct roll-up.

reflections are observed in the post-shock flow in the low
density foam. These reflections imprint structure on the
inner wall of the beryllium shock tube. Vortex structures
are evident by 30 ns. The center of each vortex is centered
on the locations of the crests of the imposed perturba-
tion with the diameter of each vortex corresponding to
the wavelength of the initial perturbation.

By the time the main flow-driving shock exits the tar-
get on the right (Fig. 5), at t = 74 ns the first distinct
vortex has turned over approximately 3 times. Due to
the flow pattern setup by the shock that was transmit-
ted into the high density plastic, the vortex is stretched
in y as it evolves which is why the extent of the vortex,
in y, is larger than the 0.281λ analytic result following
Eq. (15).

FIG. 5: By the time the main shock exits the target on the
right (74 ns), the left-most vortex structure has overturned
about 3 times, while the right-most is just starting to spin.
In this way, a “snap-shot” of the entire target at this stage
reveals the entire temporal vortex evolution.

Based upon calculation of the Reynolds number,
the vortex sheet shown in Fig. 5, may transi-
tion into turbulence in a few eddy turn-over times.
Using the Spitzer ion-ion collision frequency, νii =√

2πZ4e4ni ln Λ/
√

miT 3
i one may estimate the viscosity

ν = v2
t /(3νii), where Z is the average atomic charge, e is

the electron charge, ni is the average ion density, mi is
the average ion mass, Ti is the ion temperature, and vt is
the ion thermal speed. One obtains ν ∼ 3× 10−6 cm2/s.
Using a length-scale, L ∼ 10 µm, indicative of the thick-
ness of the arms of the wound vortex, one finds that the
Reynolds number, Re = Lv/ν ∼ 3× 106 which is a value
that is characteristic of the transition to turbulence.

CONCLUSION

Arguably, shear-flow instabilities are a stiffer test of
computer simulations than buoyancy driven instabilities
especially for simulations that have a Lagrangian nature
in that mesh follows the flow. HEPD experiments on
Kelvin-Helmholtz can also provide much needed data for
the development of turbulent mix models that attempt
to address shear-flow driven turbulence production.

The experimental design studied in this paper is in-
triguing since it appears to generate a array of vortices’s
that are large and therefore diagnosable. With such ex-
periments, it may be possible to directly observe tran-
sitions to turbulence or deeply non-linear vortex merger
effects [11].

Another interesting possible extension of this platform
involves magnetic field (B) production – namely the Bier-
mann Battery effect. In the limit where electron inertial
can be neglected, electrons obey the equation of motion
∇pe = −|e|ne(E+ve×B), where pe is electron pressure,
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e is the electron charge, ne is the electron density, E is
the electric field, and ve is the electron velocity. When
combined with Faraday’s law of induction one finds and
equation for magnetic field generation,

∂B

∂t
+ve ·∇B+B∇ ·ve = B ·∇ve +

∇Te × ∇ne

|e|ne
(16)

where Te is the electron temperature. What should be
noted is that Eq. [16] is almost identical in form to Eq. [1]
suggesting the possibility that this proposed experiment
may also produce significant magnetic field.
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