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Abstract

Various combinations of reactor type and fuel composition have been characterized using 

principle components analysis (PCA) of the concentrations of 9 U and Pu isotopes in the 

fuel as a function of burnup.  The use of PCA allows the reduction of the 9-dimensional 10

data (isotopic concentrations) into a 3-dimensional approximation, giving a visual 

representation of the changes in nuclear fuel composition with burnup. Real-world 

variation in the concentrations of 234U and 236U in the fresh (unirradiated) fuel was 

accounted for.  The effects of reprocessing were also simulated.  The results suggest that,

even after reprocessing, Pu isotopes can be used to determine both the type of reactor and 15

the initial fuel composition with good discrimination.  Finally, partial least squares 

discriminant analysis (PSLDA) was investigated as a substitute for PCA.  Our results 

suggest that PLSDA is a better tool for this application where separation between known 

classes is most important.
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1. Introduction
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Multivariate data from samples of known class can be used to generate plots against which 

data from unknown samples can be visually referenced. If the multivariate data clusters

spatially according to class (reactor type and fuel composition in this case), then the 25

unknown sample may be classified according to its distance from the data clusters of each 

known class (Duda, Hart, & Stork, 2001).  For systems with 3 or fewer dimensions, raw or 

normalized data can be graphed directly to reveal trends that would not be apparent from 

examination of the raw data.  For systems of greater than 3 dimensions, such as the 

evolution of nuclear fuel composition, plotting all of the data together in a comprehensible 30

form is impossible.  However, it is often possible to capture most of the information 

contained in higher dimensional systems (such as the 9-dimensional system considered 

here) and recast it in a meaningful 2-D or 3-D plot, as long as there is significant 

correlation between parameters. Principle Components Analysis (PCA) is a popular data 

reduction method which exploits this correlation to compress higher dimensional systems 35

into fewer dimensions while retaining most of the information (Duda, Hart, & Stork, 

2001).  

The variation of isotopic concentrations versus burnup can be characteristic of a particular 

reactor type and fuel composition.  Previous work (Nicolaou, 2006) used the data-40

reduction power of PCA to capture a large percentage (typically over 95%) of the 

information in the 9 U and Pu isotopic concentrations (234U, 235U, 236U, 238U, 238Pu, 239Pu, 

240Pu, 241Pu, and 242Pu), i.e., a 9-dimensional system, using only 3 principle components 

(dimensions), allowing relatively easy visualization and sample classification.  This 

investigation extends these analyses to account for realistic variation in fresh fuel 45

composition.  When building a PCA map as a reference against which unknowns are 

queried, variability in fuel composition translates to uncertainty, smearing out the classes 



over the model space.  This uncertainty needs to be accounted for in a realistic, 

comprehensive ‘PCA map’ which consists of reactor-fuel characteristic scatter plots.

50

Fresh UO2 contains four isotopes of U in significant quantities –234U, 235U, 236U, and 238U.  

Even in fresh fuels of the same enrichment, 234U and 236U concentrations vary 

considerably.  The natural abundance of 234U varies slightly in uranium ores due to a 

combination of nuclear decay (234U is produced in the decay chain of 238U), chemical, and 

hydrologic factors (Bourdon, Henderson, Lundstrom, & Turner, 2003). Naturally 55

occurring 236U is almost non-existent (Zhao, 1994).  However, the 236U isotope is produced 

by transmutation of 235U in an operating reactor. And while reprocessing was halted in the 

U.S. in the late 1970’s, it has continued in Europe and Japan.  Due to the global nature of 

the nuclear fuel industry, significant amounts of reprocessed U end up in almost all reactor 

fuel, leading to a variability of 236U concentration in fresh fuel.60

We first describe the changes in the PCA analysis of a single reactor type-fuel combination 

after including the variability of 234U and 236U in fresh fuel; the variability in 234U and 236U 

is graphically represented in 3-dimensional PCA plots.  We then investigate the way in 

which this variability impacts the spatial separation between the PCA data from various 65

reactor type-fuel combinations.  In particular, we examine the ability to discriminate 

between trends for reactors of similar type and enrichment.  By analyzing the U and Pu 

isotopes independently, we address the ability to discriminate between reactor types after 

reprocessing (separation of the U and Pu isotopes).  The analysis of only U or only Pu 

isotopic concentrations simulates the challenge of determining the history and source of a 70

sample of isolated, reprocessed U or Pu.  Finally, we compare the discrimination 

performance of PLSDA to that of PCA for identical cases.



2. Materials and Methods

75

To perform these analyses, a database of fuel composition vs. burnup for a wide range of 

reactor types at various intervals in the burnup cycle was required.  It is impractical to 

obtain such data from real nuclear fuel sample analyses.  Instead, the ORIGEN-ARP code 

package (Bowman, 2000) was used to predict U and Pu isotopic compositions at various 

burnup values.  ORIGEN-ARP uses the matrix exponential method to perform depletion 80

and generation calculations.  The ARP component specifically interpolates between pre-

generated, burnup dependent, cross section libraries.  Because the cross section libraries 

are pre-generated, ORIGEN-ARP is very fast, making it possible to run a large number of 

cases in a very short time on a desktop personal computer.  We exploited this speed by 

running closely spaced burnup intervals, 20 for each case.85

Key information about the types of reactors simulated is shown in Table 1. These reactors 

types were chosen to represent a broad spectrum of existing designs in use.  The GE 

Boiling Water Reactor (BWR) and the Westinghouse Pressurized Water Reactor (PWR) 

are the primary power reactor types operating in the U.S.  The Canadian Deuterium 90

(CANDU) reactor, used in Canada and abroad, is notable for its ability to run on natural 

(not enriched in 235U) uranium.  The MAGNOX reactor, named after the magnesium based 

alloy fuel cladding, is a British design notable for its use of CO2 as a coolant and graphite 

as a moderator.  It is also fueled by natural U and was selected for comparison to the 

CANDU.  The AGR (Advanced Gas Reactor) is similar to the MAGNOX design, but runs 95

at higher temperatures (for improved thermal efficiency) and with higher enrichment fuel.  

The MOX-fueled PWR uses a mixture of natural U and reprocessed Pu.  The VVER 



Russian reactors were chosen to represent a major non-U.S. PWR design.  The availability 

of models for these reactor types in ORIGEN-ARP version 5.00 was a key requirement. 

For simplicity, all reactors were simulated at 100% power for the entire burnup.  The 100

effects of decay after the end of irradiation were not incorporated into the data presented 

here.  We did confirm the previous claim (Nicolaou, 2006) that a 10 year cooling time of 

an unknown sample does not change the origin determination. 

Actual quality assurance sample data provided by various nuclear fuel vendors as well as 105

minimum and maximum concentrations from our own analysis of ~17 lots of fresh fuel 

were used to determine reasonable ranges for the 234U and 236U concentrations in real fuel.  

We also considered the ASTM specifications for the minimum and maximum 

concentrations of these isotopes in uranium dioxide fuel (ASTM, 2003), but we found that 

these limits were much broader than the actual concentrations measured in nuclear fuel by 110

either the manufacturers or ourselves.  Consequently, it was unclear to what extent these 

regulatory limits would reflect actual fuel composition.  The min-max values used for this 

study (see table 2) are not intended to represent statistically rigorous limits, then, but rather 

an attempt to provide a good, conservative basis for assessing the feasibility of this 

statistical analysis method for discrimination, given real-world variability in fresh fuel 115

composition.

PCA and PLSDA analyses were performed using PLS_Toolbox, a MATLAB add-on from 

Eigenvector Research (Wise et al., 2005).  Plots were generated using MATLAB version 

7.2 (MATLAB, 2006).  120

3. Results and Discussion



We achieved qualitative reproduction of previous work (Nicolaou, 2006).  However, 

because of updates and improvements to the models in ORIGEN-ARP, Nicolaou’s results, 125

which were obtained using ORIGEN2, could not be exactly replicated.  For example, the 

liquid metal fast breeder reactor (LMFBR) model, which was included in ORIGEN2, is not 

included in ORIGEN-ARP.  Also, for CANDU models, ORIGEN2 over-predicts the total 

Pu/U ratio by 13% as compared to 1% for ORIGEN-S, the ORIGEN component of 

ORIGEN-ARP (Gauld & Litwin, 1995).  Finally, there are no appropriate MOX cross 130

section libraries for ORIGEN2.  The latest code package is more accurate, supports more 

reactor/fuel types (but not LMFBR), and benefits from more rigorous benchmarking (I. 

Gauld, personal communication, 2007).  

[figure 1]

Some trends are immediately apparent from the PCA results shown in Figure 1.  Similar 135

reactor types with the same starting fuel composition are tightly grouped, particularly 

toward the beginning of irradiation; they all start at the same point.  Principle Component 3 

(PC3) is most important in discriminating between cases which start with identical fuel.  

Principle Component 2 (PC2) is clearly reflective of enrichment as shown in Figure 2a. In 

2-dimensional plots, such as those in Figure 2, the importance of each nuclide 140

concentration to each principle component (its “loading”) is plotted graphically as a «, the 

importance being proportional to distance from the origin.  For example, in Figure 2b, 238U

is seen to have little influence on PC3, while 239Pu has the greatest effect.  

[figure 2]

We next looked at how variability in 234U and 236U concentrations manifest in PC space.  145

First, for a single reactor, certain trends become apparent.  Varying the concentration of a 

single isotope (in this case, 234U) in the fresh fuel produces a new curve which runs



approximately parallel (in 3 dimensions) to the original throughout core life.  Furthermore, 

fine variation from the lower to the upper limit for this isotopic concentration produces a 

pattern of parallel curves that can be accurately represented by a single surface connecting 150

the two extremes of isotopic variability.  Variation of a second isotope (236U) produces

similar results, only along a different plane.  Varying both 234U and 236U produces a pattern 

of curving parallel lines whose outer limits are accurately represented by a closed volume

resembling an extrusion with four flat sides and a parallelogram cross section, as shown in 

Figure 3 below.155

[figure 3]

[figure 4]

[figure 5]

Simulated Reprocessing

160

Spent fuel from power reactors that use enriched fuel contains 235U in concentrations

significantly higher than naturally occurring U.  Spent fuel also contains significant levels 

of fissile Pu from the transmutation of 238U in the operating reactor. Several countries use 

spent fuel reprocessing to recover these fissile isotopes.  Chemical reprocessing of nuclear 

fuel consists of dissolving spent reactor fuel in acid and chemically separating the U and 165

Pu from the highly radioactive fission products.  The separated U and Pu can then be 

recycled for use in power reactors.

Figure 6 shows the PCA analysis using only the U isotopic concentrations; Figure 7 shows 

the PCA analysis using only the Pu isotopic concentrations.  As shown in these two 170

figures, reducing the number of input parameters to the PCA analysis does not necessarily 

degrade the ability to differentiate between reactor types.  In the case shown in figure 7, 



elimination of a number of input parameters (all of the U isotopes) has actually improved

the differentiation.  

[figure 6]175

[figure 7]

PCA selects orthogonal axes to best describe the entire range of data input to the analysis.  

The first Principle Component axis is calculated to encompass the greatest variation in the 

data; subsequent axes are constrained to be orthogonal to the preceding axis. Removal of 

the U isotopic concentrations from the PCA analysis results in determination of PC’s that 180

capture the greatest variance in the Pu data.  Since the generation of the Pu isotopes is most 

strongly affected by reactor type, i.e., neutron spectrum, using only Pu isotopic 

concentrations for PCA reveals more of the differences between reactor type-fuel 

combinations than PCA of all 9 isotopes.  Essentially, much of the U data acts as a sort of 

background, obscuring the distinguishing characteristics of the different reactors.  By 185

removing the U data, one simply improves the “signal-to-noise” ratio.

This result is not surprising, because the goal of PCA is to determine the set of orthogonal 

axes that best describe the entire higher dimensional system with fewer dimensions.  

However, if one’s goal is not to describe, but to differentiate, between data groups190

(classes), PCA will not necessarily choose the optimal axes. In this case, removal of the U 

isotopes causes PCA to choose axes with a different orientation –one that is better suited 

for differentiating between reactor types.   

Partial Least Squares Discriminant Analysis195



Finally, we investigated the use of Partial Least Squares Discriminant Analysis (PLSDA),

an alternative dimension reduction tool.  PLSDA selects axes that maximize discrimination 

between classes, as opposed to PCA, which selects axes to best represent the entire data 

cluster (Barker & Rayens, 2003).   Analyses of 5 reactor types starting with identical fuel 200

are shown in Figure 8.  Note that each reactor has 4 data points at each burnup stage, but 

only two are clearly visible in this projection. The latent variables (LV) in PLSDA are 

analogous to PC’s in PCA.

[figure 8]

These two analyses use Pu isotopic concentrations only1.  This example illustrates the 205

superiority of PLSDA over PCA for resolving classes. 

4. Conclusion

The higher dimensional systems describing nuclear fuel isotopics vs. burnup were reduced 210

to 3 dimensions using Principle Components Analysis.  Because the generation and 

depletion of many isotopes is highly correlated, a large percentage of the total variance is 

captured by the first 3 Principle Components.  Accounting for realistic variability in 234U

and 236U present in fresh fuel causes some overlap between cases, particularly early in core 

life and for similar reactor types with similar fuel.  This overlap between reactor type-fuel 215

combinations represents potential uncertainty in the identification of an unknown sample.  

However, as shown by the simulated post-reprocessing analyses, strategic selection of 

nuclides input to the database can improve between-case separation distance substantially.  

This specific result reflects a fundamental shortcoming of Principle Components Analysis 

  
1 The reader should not conclude, based on these plots, that the VVER-440 is easily distinguished from the 
other PWR’s; the VVER-440 model used to generate this data is reported to give high values for Pu-239 
(Murphy, 2004).  



as applied to discrimination.  Partial Least Squares Discriminant Analysis appears to be a 220

more effective tool for the ultimate objective of generating a comprehensive map of 

reactor/fuel characteristics in 2 or 3 dimensions by compressing information from an 

arbitrary number of parameters.
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Table 1. Reactor types simulated in ORIGEN-ARP

Reactor Type Enrichment [weight %] Burnup [GWd/MTU]

GE BWR, 8x8 1.5 – 5a 15 to 50 b

Westinghouse PWR, 17x17 1.5 – 5a 15 to 50b

CANDU-28, -37, natural U 0.711 10

CANDU-28, -37, slightly 

enriched

1.2 10

MAGNOX, natural U 0.711 10

AGR 1.5, 2.5, 3 15 to 30b

MOX PWR, 17x17 4.7c 50

VVER 440 (Russian PWR) 1.5 – 5a 15 to 50b

VVER 1000 1.5 – 5a 15 to 50b

a Enrichment was incremented from 1.5% to 5% in 0.5% steps. 270

b Burnup was varied with enrichment using the thumb-rule: 10 GWd / % enrichment.

c For MOX, % fissile (235U, 239Pu, and 241Pu) is considered equivalent to % 235U. 

Table 2. Example of min-max values for 234U and 236U from vendor data and our own 

analysis.  These values were used for the 3% enriched LWR fuel in burnup 275

simulations. 

Isotope Lower concentration limit 

(ppm)

Upper concentration limit (ppm)

234U 172 300

236U 4 622



Figure 1. Plots of various reactor-fuel combinations showing how each combination 

changes with burnup (a single curve) and how the data for different reactor-fuel 

combinations relate to each other.  In this case, 98.5% of the information described by the 280

variation in 9 isotopes with burnup is compressed to 3 dimensions. The MAGNOX and 

CANDU reactors start with identical natural uranium fuel.  All other reactors shown were 

loaded with 3% enriched UO2 of identical composition.  



(a)285

(b)

Figure 2. 2-D plots of the same reactor-fuel burnup curves shown in Figure 1.  The 

overlay of scores (plotted data in PC space) and loadings (weighting of different isotopes 

within each principle component, indicated by a «) shows how the PC plot is related to the 290

underlying isotopic concentrations.  



Figure 3. PCA of 3 reactors with 3% enriched UO2.  Variability in the concentration of 295

234U and 236U in fresh fuel, based on manufacturers’ QA data, defines a 3D region. The 

four corners of the cross-section correspond to the extremes of 234U and 236U concentration 

in the fresh fuel.  The shading corresponds to burnup; shading grows lighter with burnup.

300

305



Figure 4.  Analysis expanded to explore the effects of varying enrichment.  Increments of 

0.5% in enrichment are still well resolved in 3 dimensions, despite uncertainty in both 234U310

and 236U.

315
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Figure 5. The same trends shown in Figure 4, but rotated to show separation of reactor 330

types early in burnup.  All 3 reactors start with identical fuel composition.



335

Figure 6. PCA of uranium isotopes only.  AGR remains well resolved, but PWR and BWR 

trends overlap throughout core life.

340
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(a)



(b)

Figure 7. PCA of Pu isotopes only.  All reactor type/fuel combinations are well resolved 350

starting very early in core life.  Figure 7b is the same plot rotated.



(a)
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(b)

Figure 8.  PCA (a) vs. PLSDA (b) of same 5 reactor types using only Pu isotopic 

concentrations as inputs.  Note that these plots account for variability in 234U and 236U.  


