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The Challenges to Coupling Dynamic Geospatial Models

ABSTRACT

Many applications of modeling spatial dynamic systems focus on a single system and a single 

process, ignoring the geographic and systemic context of the processes being modeled.  A 

solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling 

is challenging for both technical reasons, as well as conceptual reasons. This paper explores the 

benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, 

where information transfer between models is done by hand, to tight coupling, where two (or 

more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization 

and Wildfire Risk is presented.  This model, called Vesta, was applied to the Santa Barbara, 

California region (using real geospatial data), where Urbanization and Wildfires occur and recur, 

respectively. The preliminary results of the model coupling illustrate that coupled modeling can 

lead to insight into the consequences of processes acting on their own.
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Introduction

Dynamic Geospatial Models (DGM) is a broad term used to refer to computational models of a 

problem’s or process’ change over the earth in a specified period of time. Since their inception 

DGM’s have been used in virtually all disciplines to express spatiotemporal behavior of entities 

from the micro to macro scale.  In a geographic context, DGM’s have had wide applications in 

the sciences, particularly those with environmental emphases.  

There are a number of benefits and challenges to using and creating DGM’s for both 

theoretical and applied purposes. The benefits to including a DGM in one’s analytical or applied 

work is that the process or problem studied can readily be visualized either in a GIS or a 

graphical output. As computation and technology has improved, the quality and sophistication of 

the visual analysis has increased dramatically.  A second benefit to the incorporation of a DGM 

is that it can be used as a forecasting tool for policy and scenario testing.  Through various model 

parameterizations and seeding of DGM’s, multiple realizations of environmental, social, and 

policy processes can be created. This in turn leads to yet another benefit of DGM’s; through their 

forecasting ability and  visualization tools, DGM’s can add knowledge to the process of 

understanding an event or process by stakeholders and scientists alike. 

However profound the benefits to using DGM’s, their inherent challenges should not be 

overlooked. These include the formalization of the process to be modeled, understanding the 

results of the simulation, and the context of the modeling approach. A significant first step in 

using a DGM is in the formalization of the modeling problem itself. This is an issue at both ends 

of the theoretical- applied modeling spectrum.  In theoretical modeling, one begins with theories 

and then creates a modeling framework that represents the simplest “universe” of that theory, 

ignoring the rich tapestry of the “real world”.  In applied modeling, one generalizes the 
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infinitesimally complex and complicated components of the “real world” into a computer 

formalization. 

A similarly significant problem with creating and using a DGM is in understanding and 

modeling the context of the problem.  Usually models are created to analyze, forecast or 

visualize one system, and the “environment”, or anything external to the model is simplified or 

ignored.  The formalization process of the model necessitates the identification of the problem 

definition and boundaries. For many modeling exercises this may be an appropriate approach. 

Yet for many modeling contexts, the “single system” approach can be viewed as myopic, as the 

environment is not static and evolves or changes as well as the modeled process.

There are many situations where modeling both a single system and the environment (or 

another system) adds significant value.  For example, a simple stream-flow model can tell the 

user what the impact of a large rainstorm can have on a watershed. All one needs for a simple 

model is the slope, soil type and stream fetch for the watershed, and some deterministic, physics-

based formulae on fluid dynamics. But if one was to use the same model to render a year’s or 

century’s worth of storms, the model would quickly resemble a cartoon.  One would need to be 

concerned with the geology of the region, the vegetation on the landscape, and any man-made 

structures in the channel. In essence, a simple stream model can aid in rendering a simple 

process, but more is needed to understand the evolution of the stream’s hydrological and 

geological system. 

Coupled dual- or multi-system DGM’s can be useful in understanding a single DGM’s 

evolutionary context, and can lead to understanding of whole systems, rather than simple 

processes.  This is not to suggest that all processes and components should be incorporated in a 
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model; this leads to confusion and obfuscation, as explained later. Rather, there are some sets of 

problems that can benefit from coupling DGM’s together.

One set of problems which has been developing rapidly is the linking of human and 

natural system modeling. In these instances, a human-driven system is linked to a natural 

process-driven system and the potential conflicts and resolutions are used o drive decision-

making processes.  This work will use the example of Land-Use Change, in the form of 

urbanization, and wildfire propagation, as an example of a human-natural system model. First, 

the complexities of linking dynamic models will be explored.

Approaches to coupled dynamic spatial modeling

The significant problems of coupling DGM’s can be laid out as twofold; the technical linking of 

two separate models, and the semantic logic of the linking of the models (Abel et al 1994). As it 

becomes easier to couple models through common GIS packages, these are increasingly likely; 

the easier it is for a modeler to link two software process models, the less concern they may have 

about what exactly they are doing, and the easier it is to link two models in an incorrect way. The 

worst-case scenario is in a modeler linking two models, while the common elements of each 

model are incompatible. An often overlooked error is in an incorrect matching of spatial or 

temporal resolution. Generalizing a model to fit another’s native resolution makes assumptions 

that the outputs and the model are scalable, when in fact different processes may be at work at 

different spatial and temporal scales. For example, a fine grain wind model at 1 meter resolution 

and 1 second timesteps cannot be simply generalized to a 1km grid cell at 1 day intervals, or vice 

versa. One potential solution to this problem is using Cellular Automata (CA) as components of 

spatial models, as they are standardized in their spatial grain, and their temporal resolution can 
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be made flexible, depending on the differences of the temporal patterns of each of the models 

(Park and Wagner 1997).

Coupling models occurs on a continuum from “isolated” to “loose” to “tight” to 

“integrated” (Nyerges 1992).  An isolated model coupling consists of a hands-on manual 

translation of information from one model to the other. Data often need to be “massaged” in a 

GIS or via simple transformation or conflation to render one model’s outputs into the other’s 

inputs. A loosely coupled model still involves a user’s data interaction in the data sharing, 

however with little or no translation of the data. A tightly coupled model uses a “Master 

Component” to coordinate the communication of data and parameters between the models, 

through a series of macros. An integrated coupled model may swap data through common 

interfaces, without the user’s assistance. An integrated coupled model is viewed as one model, in 

one programming language, with no data passing; all information is stored internally. The 

advantage of fully integrated models is that they can run faster and more efficiently than looser 

coupled models. The challenge is that fully integrating two models necessitates an understanding 

of each model and the processes they represent, as well as intimate knowledge of the desired 

programming language. Yet the practical benefits of tightly coupled integrated modeling will 

improve along with computation speed, cross-platform emulators and the flexibility of software 

packages, like IDRISI, ARC/INFO and GRASS-GIS, for example.

Wildfire-Landuse Coupled modeling

Wildfire is an expensive, devastating, and persistent problem in the United States, especially as 

urbanization and residential development encroaches on fire adapted natural systems. On 

average, over the past decade, the US has spent about a billion dollars per year in wildfire 
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suppression costs to fight the thousands of wildfire each year, a majority of which are triggered 

or initiated by humans (www.nifc.gov, accessed 12-1-06). Concurrently, the pressure of cities to 

expand has pushed new development into regions previously managed as wildlands. Both 

entities, wildfires and urban growth, have been the subject of computer models for decades, 

originating as aspatial spreadsheet-style models of demography or empirical wildfire spread, and 

evolving into sophisticated DGM’s rendering urban growth and landuse change and wildfire 

regimes, wildfire risk and fire behavior into GIS-ready tools for policy and scientific analyses. 

To create a coupled model that could incorporate the individual internal and external 

feedbacks of both natural and fire-adapted natural systems, the key aspects of increased wildfire 

risk in developing communities was identified. The coupled model had to incorporate policy 

changes to urbanization and wildland/wildfire management while allowing feedbacks between 

the two systems to be increased or decreased. To this end, the SLEUTH model of Urban Growth 

was chosen to be linked to a wildfire risk model. 

The SLEUTH urban growth model uses a modified CA to model the spread of landuse 

change across an urban landscape (Clarke et al 1998).  Its name comes from the GIS data layers 

that are incorporated into the model; Slope, Landuse, Exclusion (where growth is prohibitive, 

like a lake), Urban, Transportation, and Hillshade (for visualization).  In a typical SLEUTH run, 

a region is calibrated with historical urban data, and then run into the future to produce a 

probabilistic map of urban propagation.  While numerous wildfire spread and regime models 

have been created for aiding forest managers in their policy making (Li et al 1997), these models 

do not apply to the Wildland-urban interface (WUI), where the driving factor of wildfires is 

anthropogenic, and structures burn as well as wildland fuels. The Vesta model was created as a 

method to link the SLEUTH model to a Wildfire Risk Model that incorporated the urban fabric, 
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as well as the feedbacks of a fire-adapted natural system, and policy options for potential 

stakeholders.

The Vesta Model of Coupled Urban Growth and Wildfire Risk

The Vesta model of Urban Growth and Wildfire Risk takes the approach that coupled 

models need to be linked in a way where each system can be fairly represented, and their 

interactions have meanings in the other system. As a result, Vesta is a model of dynamic wildfire 

risk, and is not a wildfire spread model. Cities and urban managers, make decisions based on 

short-horizon events, like large wildfires and floods, but also keep in mind a memory, albeit a 

fallible memory, of the historical legacy from natural disasters. Creating a model of a single 

fire’s spread that incorporates the urban setting would not represent the natural environment in 

an appropriate manner for long-term urban planning. Modeling wildfire regimes is a better idea, 

but in Southern California (and similar climates), fire return intervals and fuel age do not 

represent the occurrence or intensity of wildfires, as human –caused ignition is the major cause 

of wildfires, often occurring during extreme weather events (Moritz et al 2004).  Viewing the 

occurrence of wildfires along a continuum of risk, that is, the possibility of loss of property or 

vegetation due to fire couches the natural environment in a domain that can be planned for, and 

mitigated against.

Vesta is comprised of two components, SLEUTH, and the Wildfire Risk Component 

(WRC) (for more details on the Vesta model, refer to Goldstein 2005).  In each year, the WRC 

generates risk by accounting for the probability of a pixel burning by the formula: Risk or π = 

µρ, where µ (or P_ig) is the probability of a fire occurring in the region of a pixel, and ρ ( or 

P_burn) is the probability of a pixel igniting should such a fire occur (Fried et al 1999).  In this 
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model, ρ is a function of the fuel content of the pixel, be it a road (zero), a building (medium), or 

vegetation (very high).  The probability of a pixel encountering a wildfire,µ is a distance-decay 

function from highly-ignitable regions. 

INSERT FIGURE 1 HERE

One temporal iteration of Vesta operates as follows (Figure 1).  First, SLEUTH is 

initialized with data for an urban area, in this case Santa Barbara. Next, the WRC is run and a 

predicted model of wildfires is calculated.  The subset of the pixels that have a high probability 

to burn will be “burnt” and, given the predominant slope and modeled wind direction, will 

“burn” its surrounding pixels within a probability threshold.  The newly burned urban areas will 

be removed from SLEUTH's Urban layer and added to SLEUTH's Exclusion layer and then 

SLEUTH will be run for one year.  This will happen iteratively, over a specified number of 

timesteps, and a large number of Monte Carlo iterations. Three alternative modes of Vesta are 

available. The first, Urban Impacts (UI) removes the urban pixels that “Burned”. The second, 

Urban and Exclusion Adaptation (UEA) removes “Burned” urban pixels, and adds any “Burned” 

pixels to the Excluded layer. The third mode, No Adaptation (NA) does neither, and essentially 

runs SLEUTH in parallel with the WRC, never interacting. The new (if desired) urban and 

Excluded layer are then passed to SLEUTH, which runs for one annual timestep. Each annual 

SLEUTH run has its own exclusion layer and unique urban start layer. Vesta is then run for a 

specified number of timesteps (years) and repeatable over any number of Monte Carlo iterations. 

INSERT FIGURE 2 HERE

The Santa Barbara region was chosen due to its high urbanization pressure, its history of 

large wildfires in the chaparral-laden Santa Ynez Mountains that abut the region, and the rich 

data availability (Goldstein 2005) (Figure 2). The three modes of the Vesta Santa Barbara 
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simulations were run from the year 2001 to the year 2030 for 25 Monte Carlo iterations.  The 

results are summarized below.

INSERT FIGURE 3 HERE

Model Results
Discerning the differences between the results of all three modes of Vesta for Santa 

Barbara through visual inspection is challenging (see Figure 3), as the characteristics of each 

mode is subtle and small.  Additionally, summarizing 25 Monte Carlo runs can "wash out" or 

generalize the fine details of each run.  However, some general observations can be made.  Most 

new urban development was forecasted for the low-lying mountain regions, which was no 

surprise.  The UEA mode of Vesta forecasted slightly less urbanization than the other two 

modes, as the urbanization pressure was removed from the high-risk regions, and focused on the 

available agricultural lands. There were fewer forecasted fires in the UEA mode, but the UI and 

NA modes behaved similarly, with respect to the number of wildfires (Table 1).  The UI mode 

forecasted larger wildfires, when they happened, when, in theory, the opposite was expected 

from the model. 

INSERT TABLE 1 HERE

Conclusions
This paper demonstrated the need for coupled Dynamic Geospatial Models, using the 

Vesta model of Urban Growth and Wildfire Risk as an illustrative example. The Vesta model 

was demonstrated on the Santa Barbara County South Coast region, which was chosen for need, 

data availability, and receptive local stakeholders. However, using Santa Barbara for Vesta 

modeling may not have been the best choice due to its built-up nature, as most developable land 

has been built on, and all growth is constrained between the Pacific Ocean to the South and the 

mountains to the North. Vesta may find better results and utility in a less-constrained growing 
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regions, of which there are many in the Western US.  Vesta represents a linked model of natural 

processes and human decision / policy making. Even if the results are not convincing or self-

evident, it can be used as a discussion starter between different groups of decision makers to see 

a single conflict as having impact in multiple systems, and encouraging an open decision-making 

process.

Once the technical and ontological obstacles are identified, understood, and rectified, coupling 

DGM’s can lead to insights about each system, both in terms of the internal logical and nature of 

each model, but to a broader perspective on a single DGM’s context in both a natural and social 

landscape.  DGM’s do not predict reality; Rather they are tools that can allow users and 

stakeholders to understand key components about the systems and processes they aim to explore 

and ideally understand the world at a faster and deeper level.
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Figure 1. Flow of data from the Wildfire Risk Component to SLEUTH.
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Figure 2 Fuel map of the Santa Barbara South Coast region. Data Source: California Department 
of Fire (frap.cdf.ca.gov)
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Figure 3. Map of the Vesta Model output for the “No Growth” scenario for Santa Barbara after 
25 Monte Carlo iterations, for the year 2020. A. NA mode B. UI mode. C. UEA mode. The black 
regions are the seeded urban extent of the year 2000. The Blue regions represent area of little or 
no urbanization (like the ocean and high mountains). The red regions represent area that have a 
high probability of urbanization. Most of the differences between the runs are in the low 
probability regions in the foothills of the Santa Ynez Mountains. 
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Mode of Vesta
No 

Adaptation
Urban 
Impact

Urban and Exclusion 
Adaptation

Average final new urban growth (and 
standard deviation) in hectares

1429.47
29.07

1430.19
25.74

1425.24
22.41

Average number of fires 3.09 3.19 2.92
Average total burned urban size for non-

zero burn years 40.32 44 39.52

Table 1 – Summary table of the three modes of Vesta model runs for the No Growth Scenario of 

the Santa Barbara South Coast region.




