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ABSTRACT

Some gamma-ray burst (GRB) afterglow light curves show significant variability, which
often includes episodes of rebrightening. Such temporal variability had been attributed in sev-
eral cases to large fluctuations in the external density, or density "bumps". Here we carefully
examine the effect of a sharp increase in the external density on the afterglow light curve by
considering, for the first time, a full treatment of both the hydrodynamic evolution and the ra-
diation in this scenario. To this end we develop a semi-analytic model for the light curve and
carry out several elaborate numerical simulations using a one dimensional hydrodynamic code
together with a synchrotron radiation code. Two spherically symmetric cases are explored in
detail – a density jump in a uniform external medium, and a wind termination shock. The ef-
fect of density clumps is also constrained. Contrary to previous works, we find that even a very
sharp (modeled as a step function) and large (by a factor of a

�
1) increase in the external

density does not produce sharp features in the light curve, and cannot account for signifi-
cant temporal variability in GRB afterglows. For a wind termination shock, the light curve
smoothly transitions between the asymptotic power laws over about one decade in time, and
there is no rebrightening in the optical or X-rays that could serve as a clear observational sig-
nature. For a sharp jump in a uniform density profile we find that the maximal deviation ��� max
of the temporal decay index � from its asymptotic value (at early and late times), is bounded
(e.g, ��� max � 0 � 4 for a = 10); ��� max slowly increases with a, converging to ��� max � 1 at
very large a values. Therefore, no optical rebrightening is expected in this case as well. In
the X-rays, while the asymptotic flux is unaffected by the density jump, the fluctuations in �
are found to be comparable to those in the optical. Finally, we discuss the implications of our
results for the origin of the observed fluctuations in several GRB afterglows.
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1 INTRODUCTION

Gamma-ray bursts (GRBs) are produced by a relativistic out-
flow from a compact source. The outflow sweeps up the external
medium and drives a strong relativistic shock into it. Eventually
the outflow is decelerated (by pdV work across the contact discon-
tinuity that separates the ejecta and the shocked external medium)
and most of the kinetic energy is transferred to the shocked external
medium (for recent reviews see Piran 2005; Meszaros 2006). The
shocked external medium produces long lived afterglow emission
that is detected in the X-rays, optical, and radio for days, weeks,
and months, respectively, after the GRB. The afterglow emission
is thought to be predominantly synchrotron radiation. This is sup-
ported both by the broad band spectrum and by the detection of
linear polarization at the level of a few percent in the optical (or
near infrared) afterglow of several GRBs (see Covino 2003, and
references therein). Inverse-Compton scattering of the synchrotron

photons might dominate the observed flux in the X-rays in some
cases (Panaitescu & Kumar 2000; Sari & Esin 2001; Harrison et al.
2001).

In the pre-Swift era the best monitoring of GRB afterglow
light curves was, by far, in the optical. Most afterglow light
curves showed a smooth power law decay (Stanek et al. 1999;
Laursen, & Stanek 2003; Gorosabel et al. 2006), and often also a
smooth achromatic transition to a steeper power law decay that
is attributed to the outflow being collimated into a narrow jet
(Rhoads 1999; Sari, Piran & Halpern 1999). It has been argued
(Wang & Loeb 2000) that the smoothness of the afterglow light
curve is directly related to (and thus enables to constrain) the
smoothness of the external density field. Nevertheless, some op-
tical afterglows have shown significant temporal variability, with
strong deviations from the more typical smooth power law be-
havior. The best examples are GRBs 021004 (Pandey et al. 2002;
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Fox et al. 2003; Bersier et al. 2003) and 030329 (Matheson et al.
2003; Sato et al. 2003; Uemura et al. 2004; Lipkin et al. 2004).

Possible explanations for such temporal variability in GRB
afterglow light curves include variations in the external density
(Wang & Loeb 2000; Lazzati et al. 2002; Nakar, Piran & Granot
2003), or in the energy of the afterglow shock. The lat-
ter includes energy injection by “refreshed shocks” – slower
shells of ejecta that catch up with the afterglow shock
on long time scales (Rees & Mészáros 1998; Kumar & Piran
2000a; Sari & Mészáros 2000; Ramirez-Ruiz, Merloni & Rees
2001; Granot, Nakar & Piran 2003) or a “patchy shell” – angu-
lar inhomogeneities within the outflow ( Kumar & Piran 2000b;
Nakar, Piran & Granot 2003; Heyl & Perna 2003; Nakar & Oren
2004). Another possible cause for variability in the afterglow light
curve, although it is expected to be quite rare, is microlensing by an
intervening star in a galaxy that happens to be close to our line of
sight. GRB 000301C exhibited an achromatic bump in its optical
to NIR light curves that peaked after � 4 days (Sagar et al. 2000;
Berger et al. 2000) which had been interpreted as such a microlens-
ing event (Garnavich, Loeb & Stanek 2000; Gaudi, Granot & Loeb
2001; Baltz & Hui 2005), although other interpretations such as a
bump in the external density have also been suggested(Berger et al.
2000).

Recent observations by Swift have found flares in the early X-
ray afterglows of many GRBs (Burrows et al. 2005; Nousek et al.
2006; Falcone et al. 2006; O’brien et al. 2006) which are proba-
bly due to late time activity of the central source (Nousek et al.
2006; Zhang et al. 2006). Early optical variability also appears to
be more common than previously thought (e.g., Stanek et al. 2006),
although it is not yet clear if it is caused by similar mechanisms as
the late time optical variability that had been detected before Swift.

The most natural forms of variations in the external density
are either clumps on top of a smooth background density distri-
bution, or a global abrupt change in density with radius. The latter
can be, e.g., the termination shock of the wind from the massive star
progenitor of a long-soft GRB (Wijers 2001). Such a stellar wind
environment may have a richer structure and can include an abrupt
increase in density with radius at the contact discontinuity between
shocked wind from two different evolutionary stages of the pro-
genitor star, as well as clumps that are formed due to Rayleigh-
Taylor instability (Ramirez-Ruiz et al. 2005; Eldridge et al. 2006)1 .
Density clumps with a mild density contrast may also be formed
due to turbulence in the external medium. Furthermore, the ex-
ternal density profile is expected to vary between different pro-
genitor models (Fryer, Rockefeller & Young 2006). The variabil-
ity that had been observed in optical afterglows was attributed
to density clumps in the external medium (Lazzati et al. 2002;
Nakar, Piran & Granot 2003). The expected observational signa-
tures of the afterglow shock running into the wind termination
shock of the massive star progenitor have also been considered
(Wijers 2001; Ramirez-Ruiz et al. 2001, 2005; Eldridge et al. 2006;
Pe’er & Wijers 2006). In all these cases it has been argued that
there would be a clear observational signature in the form of a
rebrightening in the afterglow light curve, before approaching the

1 Ramirez-Ruiz et al. (2005) find that the clump formation may also in-
volve the Vishniac instability, and once such clumps are formed they stand
a reasonable chance to survive until the time of the core collapse of the
progenitor star.

new shallower decay slope corresponding to the uniform density of
the shocked wind.

Here we revisit the effect of density fluctuations on the af-
terglow light curve by solving in detail the case of a spherically
symmetric external density with a single density jump (by a fac-
tor of a

�
1) at some radius R0 , while the density at smaller and

larger radii is a (generally different) power law in radius. This is
done by constructing a semi-analytic model for the observed flux
due to synchrotron emission at different power law segments of
the spectrum and by carrying out numerical simulations. The semi-
analytic model takes into account the effect of the reverse shock on
the hydrodynamicsand on the emissivity, as well as the effect of the
spherical geometry on the arrival time of photons to the observer.
Being semi-analytic, however, this model uses some approxima-
tions for the hydrodynamic evolution and the resulting radiation.
Therefore, we also perform numerical simulations in which the
light curves are calculated using a hydrodynamic+radiation numer-
ical code. This code self-consistently calculates the radiation and
evolves the electron distribution in every fluid element, which cor-
responds to a computational cell of the one dimensional Lagrangian
hydrodynamic code. The results of this code are used to obtain light
curves in cases of special interest and near spectral break frequen-
cies, as well as to verify the quality of the semi-analytic model,
which is found to agree well with the numerical results. These cal-
culations are much more accurate than those presented in previous
works, and our results are significantly different. In all cases we find
a very smooth transition to the new asymptotic power law, with no
rebrightening for an initially decaying light curve.

In §2 we develop the semi-analytic model. First, in §2.1 a
simple analytic model is constructed for the hydrodynamics, which
agrees very well with our numerical results. Then, in §2.2 we con-
struct a semi-analytic model for the observed flux density. Specific
case studies (§3) are then analyzed in detail, for a wind termination
shock (§3.1) and for a spherical density jump in a uniform medium
(§3.2). The light curves for these cases are also calculated using
the numerical code (described in Appendix A). The effect of prox-
imity to a break frequency around the time of the density jump is
investigated in §3.3, and our main conclusions are found to remain
valid also in the vicinity of the break frequencies. §4 is devoted
to a discussion of the expected observational signatures of density
clumps on top of a smooth underlying external density distribution.
Such density clumps are found to have a very weak observational
signature which would be very hard to detect. In §5 we discuss the
implications of our results for the origin of the observed fluctua-
tions in several GRB afterglows. Our conclusions are discussed in
§6.

2 SEMI-ANALYTIC MODEL FOR A SPHERICAL JUMP
IN THE EXTERNAL DENSITY

In this section we model a spherical relativistic blast wave that
propagates into a power-law external density profile ( � ext = Ar−k

with k � 3) which has a single sharp density jump (by a factor
a

�
1) at some radius r = R0. The power law index, k, of the exter-

nal density is allowed to be different at r � R0 (k0) and at r
�

R0

(k1).
The hydrodynamic evolution, as well as the resulting contribu-

tion to the light curves, can be roughly separated into three phases
corresponding to the following ranges of the radius R of the forward
shock: (i) at R � R0 the blast-wave follows a self-similar evolution

�
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(Blandford & McKee 1976, BM hereafter), (ii) at R = R0 a reverse
shock forms which crosses most of the shell of previously shocked
material (that had been swept up at r � R0) at R = R1 , while the for-
ward shock continues ahead of the density jump but with a reduced
Lorentz factor, (iii) at R

�
R1 the forward shock relaxes into a new

self-similar evolution corresponding to the new density profile at
r

�
R0 . In the following we first approximate the hydrodynamic

evolution of the different shocks during these three phases and then
calculate the resulting light curves.

2.1 Hydrodynamics

Consider a spherical ultra-relativistic blast wave (identified with
the afterglow shock), which is well described by the self-similar
BM solution at R � R0 , that propagates into the following external
density profile:

� ext =

�� � A0r−k0 r � R0 �
A1r−k1 r

�
R0 � (1)

The amplitude of the density jump, i.e. the factor by which the den-
sity increases at r = R0, is given by

a � lim��� 0

� ext[(1 + 	 )R0]
� ext[(1 − 	 )R0]

=
A1

A0
Rk0−k1

0 � (2)

and is assumed to be larger than unity. The afterglow shock en-
counters the jump in the external density profile at a lab frame time
t0 = [1+1 
 2(4−k0) � 2

4]R0 
 c � R0 
 c, where c is the speed of light , � 4

is the Lorentz factor of the shock front just before it encounters the
density bump at r = R0 , and the corresponding Lorentz factor of the
fluid just behind the shock is denoted by 
 4 = � 4 
�� 2. At t � t0 there
are three regions: the region behind the afterglow shock (subscript
‘4’) is described by the BM solution with (A � k) = (A0 � k0), and the
two regions of cold unperturbed external medium (subscripts ‘0’
and ‘1’ at r � R0 and r

�
R0, respectively).

When the afterglow shock encounters the jump in the exter-
nal density a reverse shock is driven into the hot BM shell, while
a forward shock propagates into the cold higher density external
medium at r

�
R0 . At this stage region ‘0’ no longer exists, but

two new regions are formed so that altogether there are four re-
gions: (i) the cold unperturbed external medium ahead of the for-
ward shock with a density � ext = A1r−k1 , (ii) the shocked external
medium originating from r

�
R0, (iii) the portion of the BM shell

that has been shocked by the reverse shock (corresponding to dou-
bly shocked external medium originating at r � R0), and (iv) the
unperturbed portion of the BM solution which has not yet been
shocked by the reverse shock (i.e. singly shocked external medium
originating from r � R0). These regions are denoted by subscripts
‘1’ through ‘4’, respectively. Regions 2 and 3 are separated by a
contact discontinuity.

Immediately after t0 [or more precisely, at 0 � (t − t0) 
 t0 �
a−1 � 2] the reverse shock reaches only a very small part of the BM
profile (just behind the contact discontinuity) which corresponds
to values � − 1 � 1 of the self similar variable, � (defined in
Blandford & McKee 1976), so that at this early stage the conditions
in this region may be approximated as being constant with the val-
ues just behind the shock for the BM profile with (A � k) = (A0 � k0)
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Figure 1. The Lorentz factor of the forward shock as function of radius
for three different density profiles that are described by Eq. (1) (see leg-
end for the parameters of each profile). The solid lines show our analytic
approximation (Eq. [6]) while the dots are the results of a hydrodynamic
simulation.

at t = t0 (i.e. when the shock radius is R = R0). Since we are in-
terested in a small range in radius, � R � R0, we can use a pla-
nar geometry and solve the relevant Riemann problem. Region
4 is described by the BM solution while in region 1 we have

� 1 = w1 
 c2 = n1mp = A1r−k1 , p1 = e1 = 0 and 
 1 = 1, where mp is
the proton mass. The pressure p, internal energy density e, enthalpy
density w, rest mass density � , and number density n are measured
in the proper frame (i.e. the fluid rest frame). We consider a rel-
ativistic afterglow shock, 
 4 � 1, and a density contrast which is
not too large such that even after the afterglow shock crosses the
density bump it will still be relativistic (i.e. 
 4 ��� � a1 � 4 , see
equation [3]). Under these conditions, in regions 2 and 3 the fluid
is relativistically hot, � 2c2 � p2 and � 3c2 � p3. Therefore, the adi-
abatic index in regions 2, 3 and 4 is 4 
 3, implying pi = ei 
 3 = wi 
 4
in these regions. This leaves eight unknown quantities: 
 , n and
e in regions 2 and 3, as well as the Lorentz factors of the reverse
shock, � r, and of the forward shock, � f . Correspondingly, there are
eight constraints: three from the shock jump conditions at each of
the two shocks, and two at the contact discontinuity: e2 = e3 and
 2 = 
 3. The shock jump conditions simply state the conservation
of energy, momentum, and particle number across the shock, which
is equivalent to the continuity of their corresponding fluxes. At the
rest frame of the shock front they correspond to the continuity of
w 
 2v, w 
 2(v 
 c)2 + p, and n 
 v, respectively, across the shock (where
v is the fluid velocity measured in that frame, while p, n, and w are
measured in the rest frame of the fluid). Unless stated otherwise,
all velocities and Lorentz factors are measured in the rest frame of
the unperturbed external medium, which is identified with the lab
frame where the flow is spherical.

Under the above assumptions and for 
 2 = 
 3 � 1 we obtain� 
 4
 3 � 2 � � 2 =
3a − 4�

12
a (a − 1) − 1

� (3)

In the limit of a relativistic reverse shock (a � 1) Eq. (3) reduces
to � = 
 4 
�
 3 � (3a 
 4)1 � 4 .

The Lorentz factor, 
 , of the fluid behind the forward shock

,
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as a function of 2 �R � R 
 R0 is 
 ( �R � 1) = 
 4
�R(3−k0 ) � 2 before the

density jump and 
 = � −1 
 4 immediately after the density jump. A
simple and useful analytic model for 
 ( �R � 1) is obtained using the
energy conservation equation while replacing the mass collected
up to R0, M0 = 4 � A0R3−k0

0 
 (3 − k0), by an effective mass Meff � 0 =� 2M0 . The reasoning behind the factor of � 2 is to account for the
fact that just after the density jump the bulk Lorentz factor and the
average particle random Lorentz factor in region 4 ( 
 4) is a factor
of � higher than that in region 2 ( 
 2 = 
 3), so that the energy in
region 4 is � M0 
 2

4 = � 2M0 
 2 . As a result the expression for energy
conservation at R

�
R0 is approximated by

E =
�
C0 � 2M0 +C1M1(R) � 
 2(R)c2 = const � (4)

where Ci = 4(3 − ki) 
 (17 − 4ki) (this is valid for ki � 3), and

M1 = � R

R0

4 � r2dr � ext(r) = M0

�
3 − k0

3 − k1 � a � �R3−k1 − 1 � � (5)

According to our simple model,


 ( �R �
1) = 
 4 � � 2 +

�
17 − 4k0

17 − 4k1 � a � �R3−k1 − 1 �
	 −1 � 2 � (6)

Figure 1 shows a comparison of our simple analytic expression
with the results of a hydrodynamic simulation (see appendix A for
the simulation details). It depicts the forward shock Lorentz factor
as a function of radius for a spherical ultra-relativistic blast-wave
that propagates into three different density profiles of the external
medium that are described by equation (1). Two of the density pro-
files are uniform both below and above R0 (k0 = k1 = 0) with density
jumps of a = 10 and a = 100 at R0. The third density profile presents
a wind termination shock, for which k0 = 2, k1 = 0, and a = 4. Figure
1 demonstrates that despite the simplicity of our analytic approxi-
mation, it provides an excellent description of the accurate solution.

Once the reverse shock reaches ��� 2, it samples most of the
energy in the BM radial profile. At this stage a good fraction of
the total energy is already in region 2, and a similar energy is in
region 3. A rough estimate for the radius, R1 = R0 + � R, at which
this occurs may be obtained by using the conditions in region 2 that
have been calculated above according to the shock jump conditions
for a uniform shell, and checking when most of the energy will
be in region 2. This occurs after a mass � � 2M0 is swept from
r

�
R0, i.e. when the two terms in Eq. 6 become comparable, which

corresponds to ( �R3−k1 − 1) = a−1 � 2[(17 − 4k1) 
 (17 − 4k0)] � a−1 � 2, or

�R1 = � 1 + � 2

a

�
17 − 4k1

17 − 4k0 � 	 1 � (3−k1 ) � (7)

For a � 1 this simplifies to � R 
 R0 � a−1 � 2 � 3(17 − 4k1) 
 [2(17 −
4k0)(3 − k1)] � a−1 � 2 � 1. Once E 
�
 2c2 = C0 � 2M0 + C1M1 = Meff

becomes comparable to the mass that would have been swept up at
the same radius if the outer density profile was valid everywhere,
4 � A1R3−k1 
 (3−k1), the dynamics approach the new BM self similar
solution for (A � k) = (A1 � k1). By this time Meff (R) is dominated by

2 For convenience we work throughout the paper in dimensionless vari-
ables. Unless specified otherwise, 
x � x � x(R0).

the second term in Eq. 4, and therefore the new BM solution is
approached when �R3−k1 − 1 becomes comparable to �R3−k1 , i.e. when�R � �RBM = 21 � (3−k1 ) .

2.2 The Resulting Light Curve

Here the simplified description of the hydrodynamics presented
above is used in order to obtain a semi-analytic expression for the
resulting light curve. We obtain explicit expressions for the three
most relevant power-law segments (PLSs) of the synchrotron spec-
trum: � ��� m ��� c, � m ��� ��� c, and � �

max( � m � � c), where � m is
the typical synchrotron frequency and � c is the cooling frequency.
The first two PLSs appear in the slow cooling regime ( � m ��� c)
while the last PLS also appears in the fast cooling regime ( � m

� � c).
Two useful time scales for calculating the observed radi-

ation are the radial time, Tr(R) = t − R 
 c, and the angular time,
T� (R) = R 
 2c 
 2. The radial time is the arrival time of a photon
emitted at the shock front at radius R along the line of sight (at�

= 0) relative to a photon emitted at t = 0 at R = 0. The angular
time is the arrival time of a photon emitted at the shock front at
an angle of

�
= 
 −1 from the line of sight relative to a photon

emitted at the shock front at the same radius R along the line
of sight. For convenience we normalize the observed time by
T0 = Tr(R0) = R0 
 4(4 − k0)c 
 2

4 , �T � T 
 T0. In our simple model the
radial and angular times are given by

�Tr( �R � 1) = 1 + � � 2 −
�

17 − 4k0

17 − 4k1 � a 	 (4 − k0) � �R − 1 �
+
�

4 − k0

4 − k1 � �
17 − 4k0

17 − 4k1 � a � �R4−k1 − 1 � � (8)

�T� ( �R � 1) = 2(4 − k0) �R � � 2 +
�

17 − 4k0

17 − 4k1 � a � �R3−k1 − 1 � 	 � (9)

while

�Tr( �R � 1) = �R4−k0 � �T� ( �R � 1) = 2(4 − k0) �R4−k0 � (10)

Following Nakar & Piran (2003), we express the observed
flux as an integral over the radius R of the forward shock. It is
convenient to express the integrand, which represents the contribu-
tion from a given radius R to the observed flux at a given observed
time T , as the product of two terms3 : the total emissivity (per unit
frequency) of the blast-wave between R and R + dR, A � (R), and
a weight function, g( � ��� ), where � = d logF� 
 d log � is the spec-
tral slope, which takes into account the relative contribution from a
given radius R to the observed flux at a given observed time T :

�F� ( �T ) = C( � ) ���Rmax ( �T )

0

d �R �A � g( � ��� ) � (11)

For convenience all variables are normalized by their value at
T0 or R0: �F� ( �T ) � F� (T = �TT0) 
 F� (T0) and �A � ( �R) � A � (R =�RR0) 
 A � (R0). The normalization constant C( � ) may be obtained

3 This separation is accurate during the self-similar phase (see
Nakar & Piran 2003) and serves here as a useful approximation.
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by the requirement that �F� ( �T = 1) = 1, while �Rmax( �T ) is given by
Tr[ �Rmax( �T )] = �T and may be obtained by inverting equation 8 for�R. The weight function g( � ��� ) depends on the the dimensionless
“time” variable

� ( �R � �T ) � �T − �Tr( �R)�T� ( �R)
� (12)

and on the PLS where the observed frequency � is in, which is
specified by the value of the spectral index � (F��� � � ). In princi-
ple, during the self-similar phase, for � ��� c, g has a complicated
form and it also depends on the power law index, k, of the exter-
nal density (Nakar & Piran 2003). However, the whole approach
that is adopted here (of separating the integrand into the product
of A � and a relatively simple g where the time dependence is only
through � ) is anyway not strictly valid during the non-self-similar
phase. Therefore, we choose to use the simplest expression of g at
all PLSs, which is the expression obtained in the thin emitting re-
gion approximation (which is accurate for � � � c),

g( � ��� ) = (1 + � )
�

−2 � (13)

An approximation for �A � ( �R) is obtained by considering three
different phases of emission: �R � 1, 1 � �R � �R1 , and �R � �R1 (similar
to the approach taken by Pe’er & Wijers 2006). For �R � 1 the blast-
wave is self-similar and �A � ( �R � 1) is similar to the one calculated
in Nakar & Piran (2003):

�A � ( �R � 1) =

������
����
� �R1−k0 � ��� m ��� c �
�R2−3p+k0 (3p−5) � 4 � m � � ��� c �
�R1−3p+k0 (3p−2) � 4 � �

max( � m � � c) � (14)

For 1 � �R � �R1 the reverse shock is crossing the hot BM shell
and �A � is approximated by evaluating the contribution from the
three emitting regions: �A � � 2 – the shocked external medium origi-
nating from R

�
R0 , �A � � 3 – the portion of the BM shell that has been

shocked by the reverse shock, and �A � � 4 – the unperturbed portion
of the BM solution which has not yet been crossed by the reverse
shock.

Regions 2 and 3 can be approximated as being uniform with
the Lorentz factor given by equation (6). For a relativistic reverse
shock, which occurs for a large density bump (a � 10), we have� � (3a 
 4)1 � 4 � a1 � 4 . The ratio of the density behind the for-
ward shock, n2 � 4 
 3n1 , to that behind the reverse shock, n3 �
4( 
 4 
 2 
 3)4 
 4n0 = 8( 
 2

4 
�
 3)n0 , is n2 
 n3 � a 
 2 � 2 � � a 
 3 � a1 � 2 .
Since when both shocks are relativistic the velocity of both shocks
relative to the contact discontinuity is the same, c 
 3, the width and
the volume of regions 2 and 3 is the same (in the contact disconti-
nuity rest frame), so that their (proper) density ratio is also the ratio
of the rest mass and the total number of electrons Ne in the two
shocked regions. Since � m � 
 B 
 2

m and 
 m � e 
 n where e2 = e3 we
have 
 m2 
�
 m3 = n3 
 n2 � � 3 
 a � a−1 � 2 and � m2 
 � m3 � 3 
 a � a−1,

where B � 	 1 � 2
B e1 � 2 is the magnetic field measured in the fluid rest

frame and it is assumed that the fraction of the internal energy in
the magnetic field, 	 B = B2 
 8 � e, is the same everywhere. More gen-

erally, for any value of a
�

1, we have�
n3

n4 � 2

=
a(3a + � 2)� 2(a + 3 � 2)

� n2

n4
=

a� � (15)

and therefore

� m3� m2
=

�
n2

n3 � 2

=
a(a + 3 � 2)

3a + � 2
��� � (16)

Since F� �max � 
 BNe we have F� �max3 
 F� �max2 = n3 
 n2 = � −1 � 2 ��
3 
 a � a−1 � 2. Therefore, for � � � m � � c or � m � � � � c, F���

F� �max �	�mm and

�A � � 3�A � � 2 (1 � �R � �R1) =

�
n2

n3 � 2 �m−1

= � �m−1 � 2 � (17)

For � �
max( � m � � c) the ratio of the spectral emissivity between

regions 2 and 3 is equal to the ratio of the energy flux through
the forward and reverse shocks, respectively, that goes into elec-
trons with a synchrotron frequency close to the observed frequency,� syn( 
 e) ��� . Since the magnetic field in the two regions is similar
and so is the total energy flux 4, the same electron Lorentz factor 
 e

is required for � syn( 
 e) ��� , and

�A � � 3�A � � 2 (1 � �R � �R1) =

� 
 m � 3
 m � 2 � p−2

= � (p−2) � 2 � � max( � m � � c) �
(18)

Region 4 contributes only to � � � c. The conditions in this region
still follow the BM solution, since it does not yet know about the
density jump, but the fraction of the BM profile that has still not
passed through the reverse shock decreaseswith time. This fraction,
f , is 1 at �R = 1 and � 0 at �R1. We parameterize f ( �R) using a linear
transition with radius,

f ( �R) =
�R1 − �R�R1 − 1

� (19)

Summing the contributions from all the different re-
gions and evaluating the contribution from region 2 as
F� � F� �max � �mm � M �M 
 �
 � ��extR �r we obtain:

�A � (1 � �R � �R1)g( � ��� ) = � ( � c − � ) f ( �R) �A � � �R 
 1( �R)g �R 
 1( � ��� )

+a �� �R �r−1−k1 �� � 1 + � �m−1 � 2 � � 3−k0
3−k1

a � �R3−k1 − 1 � � �M
� � � 2 + 17−4k0

17−4k1
a � �R3−k1 − 1 � � − �
 � 2 g �R � 1( � ��� ) � (20)

where � (x) is the Heaviside step function, and the values of the

4 The energy flux is equal in the limit of a relativistic reverse shock, where
the velocities of both shocks relative regions 2 and 3 is the same (c � 3).
However, even in the limit of a Newtonian reverse shock (a − 1 � 1) the
velocity of the reverse shock relative to region 3 approaches c ��� 3 (the
sound speed) which is only a factor of � 3 larger than the velocity of the
forward shock relative to region 2 (c � 3).
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PLS �M �r �m �� �������
m
���

c 1 0 −1 � 3 2 � 3 1 � 3�
m
�������

c 1 0 (p − 1) � 2 2p (p + 1) � 4��� max( � m 	 � c) 0 2 (p − 1) � 2 2p (p + 2) � 4
Table 1. The values of the exponents in equations (20) and (21) for different
power law segments of the spectrum.

exponents for the relevant PLSs are given in Table 1. The subscript�R � 1 or �R �
1 means that the expressions for these �R values should

be used, even if the actual value of �R does not fall within this range.
At the third phase, R

�
R1 , the reverse shock has finished

crossing the hot BM shell so that only regions 2 and 3 contribute
to the emission. Region 2 gradually relaxes into a self-similar
profile, while region 3 expands and cools at its tail. The con-
tribution from region 2 remains the same as in the previous
phase (i.e. at R0 � R � R1). Region 3 does not contribute at� � � c, while below � c its contribution can be approximated
by assuming that its hydrodynamic evolution follows that of
a fluid element within the tail of the BM profile, for which� m( � ) 
 � m( � = 1) = � −(37−5k1 ) � 6(4−k1 ) and the peak spectral emissivity
per electron scales as P� � e �max( � ) 
 P� � e �max ( � = 1) = � −(29−7k1 ) � 6(4−k1 ).
Since during the self-similar evolution � � R4−k1 while the number
of emitting electrons in region 3 is constant (Ne = M0 
 mp), we
obtain

�A � ( �R � �R1) = a �� �R �r−1−k1 ��
� � 2 + 17−4k0

17−4k1
a � �R3−k1 − 1 � � − �
 � 2

�



3−k0
3−k1

a � �R3−k1 − 1 + � �R3−k1
1 − 1 � � �m−1 � 2 � �R�R1

� �� 	
� �M � (21)

where �� = − 1
6

[29 − 7k1 +

�
m(37 − 5k1)] � (22)

and the power-law indices for the three different PLSs is listed in
Table 1.

3 CASE STUDIES OF SPHERICALLY SYMMETRIC
JUMPS IN THE EXTERNAL DENSITY

In this section we study two spherically symmetric external density
profiles which are of special interest for GRB afterglows: a wind
termination shock, and a density jump in a uniform medium.

3.1 A Wind Termination Shock

The semi-analytic model for the light curve that has been developed
in §2.2 is now applied to a wind termination shock, for which k0 = 2,
k1 = 0, and a = 4. We also compare the results of this semi-analytic
model to the numerical model that is described in Appendix A5.
The resulting light curves are displayed in Figures 2-4 for the three

5 This code assumes optically thin synchrotron emission and does not take
into account opacity related effects such as synchrotron self-absorption or
synchrotron self-Compton.
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Figure 2. The light curve (upper panel) and the evolution of the temporal
decay index � (lower panel) for the synchrotron emission from a spherical
relativistic blast wave running into a wind termination shock (k0 = 2, k1 = 0,
a = 4 in Eq. [1]), in the frequency range ����� m

���
c. Shown are the results

of the semi-analytic model described is §2.2 (solid thick blue line) and of the
numerical code described in Appendix A (black dots) for a wind termination
shock. The semi-analytic result for the same wind without a termination
shock (where � ext = A0r−k0 at all radii; red thin line) is added for reference.

most relevant power law segments (PLSs) of the spectrum. The re-
sults of the semi-analytic model nicely agree with the numerical
results. Some differences do exist but the qualitative behavior (i.e.
variation time scales and amplitudes) is similar, and even the quan-
titative differences are not very large. The main differences between
the semi-analytic model and the numerical simulations are a small
initial dip before the rise in the flux for � ��� c , a difference in
the exact starting time for the change in the temporal decay index
for � m ��� ��� c and � � max( � m � � c), and a slightly different nor-
malization of the asymptotic flux at T � T 0 for � � � c. The latter
arises since we neglect the dependence of the function g on k in
these PLSs (g does not depend on k for � � � c) in the semi-analytic
model. This causes a deviation (by a factor of the order of unity)
in the normalization of the asymptotic flux calculated by the semi-
analytic model, compared to its true value, in cases where k0 �= k1.

The light-curves show a smooth transition between the asymp-
totic power law behavior at T � T0 and at T � T0 . There is no
rebrightening in PLSs where the flux decays at T � T 0 ( � � � m),
and no sharp feature in the light curve which might serve as a clear
observational signature. The transition between the two asymptotic
curves (T � T0 & T � T0) is continuous with the temporal decay
index rising slowly for � � � c and mildly fluctuating for � � � c. The
values of the temporal index � � d logF��
 d log � during its rising
or fluctuating phase do not exceed its asymptotic value at T � T 0 by
more than 0 � 1, at any time. Therefore, the only observable signature
of a wind termination shock is a continuous break (with ��� = 0 � 5)
below � c. Above � c there is no change in the asymptotic value of
the temporal index � , and it only slowly fluctuates with a very
small amplitude ( � 0 � 1), which is extremely hard to detect. Note
that these results are applicable for a case where the blast-wave re-
mains relativistic also after it encounters the termination shock (i.e.
 3 � 0 � 72 
 4 � 3).
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Figure 3. Same as Figure 2 but for the spectral range � m
����� �

c. We use
p = 2 � 5.

The break in the light curve (the shallowing of the flux decay
for � m ��� ��� c or the transition from constant to rising flux for� � � m ��� c) occurs over about one decade in time. Initially there
is very little difference relative to the case where there is no wind
termination shock (and � ext = A0r−k0 at all radii), or even a small
dip at � � max( � m � � c), while a rise in the relative flux starts at �T =
T 
 T0 � 2 − 4. The light curve approaches its asymptotic late time
power law behavior at about �T � 10 − 102. This can be understood
as follows.

The contribution to the observed flux from within a given an-
gle
�

around the line of sight does not change drastically across the
density jump. However, there is a sudden decrease in the Lorentz
factor of the shocked material behind the forward shock, so that the
effective visible region increases from

��� 
 −1
4 to

��� 
 −1
3 = � 
�
 4.

This is responsible for most of the observable signature, and it starts
affecting the light curve noticeably only when photons emitted just
after R0 from an angle

� � 
 −1
4 arrive to the observer, namely at

� T� (R0 � −) = 4T0 where

T� (R0 � � ) � lim��� 0
T� [(1 � 	 )R0 ] � (23)

This full angular effect becomes apparent when photons from
the same radius and an angle of

�
� 
 −1

3 reach the observer,
at � T� (R0 � +) = 2(4 − k0) � 2T0 � 8T0 . The radial time is smaller
than the angular time, and therefore the radial effect would only
slightly increase the time when the total effect becomes promi-
nent. The light curve approaches its asymptotic power law be-
havior when the dynamics approach the new self similar evolu-
tion, at � �RBM = 21 � (3−k1 ). Since [ 
 4 
�
 ( �RBM)]2 � 4 and therefore�T� ( �RBM) � 16, while �Tr( �RBM) � 2 � 6, this corresponds to �T � 20.
Obviously, this is a rough estimate, but it agrees reasonably well
with the numerical results.

Our main result for the light curves from a wind termination
shock is that there is no prominent readily detectable signature in
the light curve. This is very different from the results of previous
papers that explored a wind termination shock (Ramirez-Ruiz et al.
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Figure 4. Same as Figure 3 but for the spectral range � � max( � m 	 � c), and
with an additional panel for the ratio of the flux with and without a wind
termination shock.

2001, 2005; Dai & Lu 2002; Eldridge et al. 2006; Pe’er & Wijers
2006) which predicted a clear observational signature (including
optical rebrightening also when the termination shock is at a suffi-
ciently small radius so that the blast-wave is still relativistic when
it runs into it). In some of these works (Ramirez-Ruiz et al. 2001,
2005) the forward shock becomes non-relativistic after hitting the
density jump, which might account for some differences compared
to our results which are valid for the case when the forward shock
remains relativistic after running into the density jump. In other
works (Dai & Lu 2002; Eldridge et al. 2006; Pe’er & Wijers 2006),
however, the forward shock is assumed to remain relativistic after
encountering the density jump, similar to our assumption. The main
reason for the discrepancy relative to the latter works is that they did
not consider either the effect of the reverse shock on the dynamics
(Eldridge et al. 2006) or did not properly account for the effect of
different photon arrival times from different angles relative to the
line of sight from any given radius (Dai & Lu 2002; Pe’er & Wijers
2006). Both effects tend to smooth out the resulting variability in
the light curve.

3.2 Spherical Jump in a Uniform External Medium

Next we explore the light curve that results from a spherical rela-
tivistic blast-wave running into a uniform external density with a
jump at some radius R0 (i.e., k0 = k1 = 0 and a

�
1). Such a density

profile can be generated, for example, by the contact discontinuity
between shocked winds from two evolutionary phases of the mas-
sive star progenitor. This configuration also serves as an approxi-
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Figure 5. The light curve (upper panel), the ratio of the flux with and with-
out a density jump (middle panel), and the evolution of the temporal index� (lower panel) for the synchrotron emission from a spherical relativis-
tic blast wave propagating into a medium with a step like density profile
(k0 = k1 = 0 in Eq. [1]), in the frequency range ����� m

� �
c. Shown are the

results of the semi-analytic model described is §2.2 for four different den-
sity contrasts (a = 2 	 10 	 100 & 1000) and of the numerical code described
in Appendix A for two cases (a = 10 & 100). We use here p = 2 � 5.

mation for a large density clump, and constrains the observational
signature from a small density clump (see §4).

Figures 5-7 depict the light curves from our semi-analytic
model (described in §2.2) for four different density contrasts (a =
2 � 10 � 100 � 1000), as well as the results of the numerical simulation
(described in Appendix A) for two of these cases (a = 10 � 100).
The agreement between the semi-analytic model and the results of
the simulation is satisfactory. In all cases (all the different PLSs
and a values) the semi-analytic model qualitatively follows the nu-
merical results and recovers the main features (i.e. the correct time
scales and amplitudes of the variations and their derivatives). In
most cases the quantitative comparison is also impressive (better
than 10%). The main differences between the semi-analytic model
and the simulation results are the small initial dip before the rise
in the flux for � ��� m ��� c (observed also in the wind-termination
sock) and an over-shoot for a = 100 in this PLS. The semi-analytic
model predicts an initial dip for � m ��� � � c, which also appears,
although less prominently, in the results of the numerical simula-
tions.

The main result that emerges from Figures 5-7 is that no
sharp features appear in any of the light curves, no matter how
high the density contrast (at least as long as 
 3 = 
 4 
 � � 1 where� � (3a 
 4)1 � 4 for a � 1). Moreover, the maximal deviation of the
temporal decay index, � , from its asymptotic value (which is the
same for T � T0 and T � T0, since k0 = k1) is not large ( � 1 in all
PLSs at all times), and as we show for � m � � � � c it approaches
an asymptotic value at large a.
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�������

c .

Observationally, the most interesting PLS is � m � � � � c,
since it typically includes the optical. In this PLS the flux enhance-
ment, f (T ) � F� (T ) 
 F� (T � a = 1), is asymptotically f (T � T0) =
a1 � 2 , but the transition to this asymptotic value is very gradual.
Figure 8 depicts the value of the maximal deviation of the tem-
poral index � from its asymptotic value, ��� max, as a function of
a for two values of p. We emphasize the behavior of ��� since it
is perhaps the easiest quantity to observe. The inability of density
fluctuations to produce sharp features in the light curve is demon-
strated by the low values of ��� max that we find. Some examples are
0 � 1 � 0 � 4 (0 � 35) � 0 � 75 (0 � 65) & 0 � 95 for a = 2 � 10 � 100 & 1000, re-
spectively, where the values in brackets correspond to the results of
the numerical simulation. Furthermore, for very large values of a,��� max saturates at a value of � 1. Since � (T � T0) = −3(p−1) 
 4 �
−1, no rebrightening (i.e., � �

0) is observed. Moreover, at first
(just after T0) a mild dip, is apparent in the light-curve. The depth
of this dip increases with a. Another constraining observable is the
time over which ��� max is obtained. Thus, we consider the ratio of
the time when ��� max is obtained and the time when ��� �

0 once
it recovers from its initial dip. We find this time ratio to be � 5 for
any reasonable values of a and p.

Our results can be understood as follows. The contribution
to the emission per unit area of the shock front along the line of
sight, from a radius R to an observer time T , increases with the
energy density of the shocked fluid and with its bulk Lorentz fac-
tor. A density jump immediately increases the energy density of
the freshly shocked fluid (by a factor a � −2 � 1) while reducing its
Lorentz factor (by a factor � −1 � 1). The net effect is such that
the decrement in the Lorentz factor dominates by a small margin,
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Figure 7. Same as Figure 5 but for the spectral range � m 	 � c
��� . For clarity

we omitted the a = 2 curve.

and the line-of-sight emission actually drops at R0 . This drop in-
creases with a and is the source of the observed dip right after T0.
The same drop in 
 is also the origin of the flux increase that fol-
lows. With a lower 
 the largest angle

�
(from the line of sight)

that contributes to the observed emission increases. This contri-
bution becomes apparent only when emission from

� � 1 
�
 4 ar-
rives to the observer, at � T� (R0 � −) = 8T0, and is completed when
emission from

� � 1 
�
 3 is observed, at � T� (R0 � +) = � 2T� (R0 � −) �
a1 � 2 T� (R0 � −). The transition to the asymptotic value continues up
to TBM � a1 � 2T� (R0 � +) � 10aT0. These time scales explain why
the transition is so gradual, and so is the convergence of � to its
asymptotic value at T � T0, for large a. Our results show that
the maximal value of � is observed around T� (R0 � +), and that for
a � 1, f [T� (R0 � +)] � (0 � 1−0 � 4)a1 � 2 . Now ��� can be approximated
by log � f [T� (R0 � +)] ��
 log[T� (R0 � +) 
 T� (R0 � −)] which approaches 1 at
large a.

It is generally accepted that the main signature of density fluc-
tuations in the external medium are chromatic fluctuations in the
afterglow light curve, where sharp features are expected below � c

(which typically includes the optical bands) and no (or very weak)
variability is expected above � c (which typically includes the X-
rays). This conclusion relies on the fact that a change in the exter-
nal density effects the asymptotic light-curve (at T � T0 compared
to T � T0) only below � c, but not above � c. A comparison between
Figures 6 & 7 shows that while the behavior in these two PLSs is
indeed different, the general concept described above is inaccurate
and the differences are more subtle. Both PLSs show smooth fluc-
tuations in the temporal index � with a comparable amplitude. The
main difference is in the flux normalization of the asymptotic light
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Figure 8. The maximal deviation of the temporal index ( ���
d logF� � d logT ) from its asymptotic value, ��� max , as a function of the
density contrast a, for electron power-law indexes p = 2 � 5 (solid line)
and p = 2 � 1 (dashed line). The results of the numerical simulations for
a = 10 & 100 (in which p = 2 � 5) are marked as dots.

curve at T � T0 compared to T � T0 . Above � c the asymptotic light
curve does not change and the observed flux fluctuates around this
asymptotic power law decay, while below � c the normalization for
the asymptotic light curve at T � T0 is larger than that at T � T0 by
a factor of a1 � 2 , and therefore the flux continuously increase rela-
tive to the case where there is no density jump (a = 1). This type of
difference in the behavior is, however, much harder to detect (com-
pared to variations in � ) since, obviously, the reference light-curve
(for a = 1) cannot be observed.

Several previous works have explored the light curves aris-
ing from such a density profile (Lazzati et al. 2002; Dai & Lu
2002; Nakar, Piran & Granot 2003; Nakar & Piran 2003) and all
of them predicted much sharper features with an observable re-
brightening at � m ��� ��� c (i.e. � � 0) which does not exist in
the results presented here. In several works (Lazzati et al. 2002;
Nakar, Piran & Granot 2003; Nakar & Piran 2003) the main cause
for the discrepancy is that the effect of the reverse shock on the dy-
namics was neglected. As we show here, even if the reverse shock
in only mildly relativistic (a � 2), its effect on the dynamics cannot
be neglected. The reason for this is that even if the emission from
the reverse shock itself is negligible, the abrupt drop in 
 , which is
the Lorentz factor of the shocked material behind both the reverse
and the forward shocks, prevents very significant variations in �
also from the forward shock emission. Dai & Lu (2002) included a
partial consideration of the reverse shock, however they neglected
the strong effect that angular smoothing has on the light curve.

3.3 The Effects of Proximity to a Break Frequency

So far we have assumed that the observed frequency � is very far
from the break frequencies ( � m and � c) and therefore remains in
the same power law segment (PLS) of the synchrotron spectrum
throughout the hydrodynamic transitions that we have investigated.
Under that assumption the flux density normalized by its value at
T0 is independent of frequency within each PLS. In this subsection
we examine the effect on the light curve if the observed frequency
is in the vicinity of a break frequency around the time of the hydro-
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Figure 9. The temporal evolution of the typical synchrotron frequency � m

(dotted line), which is defined as the frequency at which the spectral in-
dex � is midway between its value at � � �

m ( � 1 = 1 � 3) and at ��� �
m

[ � 2 = (1 − p) � 2], � = ( � 1 + � 2) � 2. We use p = 2 � 5. The shaded region shows
the frequency range where 80% of the change in � occurs (between 10%
and 90% of ��� = � 1 − � 2). The frequencywhere the asymptotic power laws
well above and below � m meet is marked with filled squares. For clarity, all
frequencies are normalized by � m � 0 = � m(T0) and multiplied by the appro-
priate power of 
T = T � T0 which takes out the asymptotic time dependence
of � m at early and late times. The different panels are for different spherical
density profiles with a sharp density jump that have been studied in §3.1 –
a wind termination shock (upper panel), and in §3.2 – a spherical density
jump by a factor of a = 10 (middle panel) and a = 100 (lower panel) in a
uniform medium.

dynamic transition. For this purpose we use our numerical code6

and consider the cases that have been studied numerically in §3.1
(a wind termination shock) and in §3.2 (a spherical density jump
by a factor of a = 10 or a = 100 in a uniform medium).

Figures 9 and 10 show the temporal evolution of the spec-
tral break frequencies � m and � c, respectively, around the time
of the density jump. The break frequencies are defined as7 � b =
min � ��� � ( � ) � 0 � 5� 1 + 0 � 5� 2 � , where � 1 and � 2 are the asymp-
totic values of the spectral index � at � � � b and � � � b, respec-
tively, and b = m � c. The shaded region shows the frequency range� 10% � � � � 90% where � 10% = min � ��� � ( � ) � 0 � 9 � 1 + 0 � 1 � 2 � and� 90% = max � ��� � ( � ) � 0 � 1� 1 +0 � 9� 2 � , i.e. where 80% of the change
in � across the spectral break occurs.

The typical synchrotron frequency � m fluctuates around its

6 Since our semi-analytic model was designed only for the case where the
observed frequency remains in the same PLS, it is not appropriate for this
purpose.
7 Defining instead � b = max � ��� � ( � ) � 0 � 5 � 1 +0 � 5 � 2 	 makes no noticeable
difference.
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Figure 10. The temporal evolution of the cooling break frequency, � c, in the
same format as Figure 9; here � 1 = (1− p) � 2, � 2 = −p � 2, and again p = 2 � 5.
For a wind termination shock (upper panel) the asymptotic temporal index
at T � T0 ( � 1 = 1 � 2; left dashed line) is different from that at T � T0

( � 2 = −1 � 2; right dashed line), and therefore the normalized frequencies
are not multiplied by (T � T0)1 � 2 as in the other two panels (that are for a
density jump in a uniform medium for which � 1 = � 2 = −1 � 2).

asymptotic T −3 � 2 power law decay, which does not depend on the
power law index k of the external density. Furthermore, even for a
wind termination shock there is no observable change in the asymp-
totic normalization (i.e. the asymptotic value of T 3 � 2 � m) and only
a very small change in the width of the spectral break which is de-
picted by the shaded region (in agreement with the semi-analytic
results of Granot & Sari 2002). For a density jump in a uniform
medium there is no change in the asymptotic normalization or in
the asymptotic shape of the spectral break, again as expected from
analytic calculations. Both the amplitude and the typical time scale
of the fluctuations in T 3 � 2 � m increase with the density contrast a,
where the amplitude scales roughly as a1 � 2 and the time scale is
roughly linear in a. There is a sharp feature in � m which occurs first
for � m � 10%, then for � m, and finally for � m � 90% . This can be under-
stood as follows. Immediately after the forward shock encounters
the density jump � m decreases in region 2 and increases in region 3,
by a factor of � a1 � 2 in both cases. Therefore, as long as the region
3 contributes significantly to the observed spectrum, the break is a
superposition of two peaks (corresponding to � m � 2 and � m � 3), sepa-
rated by a factor of � a in frequency, and thus its width increases
significantly. Moreover, it causes � ( � ) to be non-monotonic, and
the definitions of � m � 10%, � m, and � m � 90% cause these frequencies to
have a finite jump when the extremum in � ( � ) crosses the appropri-
ate value of � , which occurs later for higher frequencies. Given the
complex structure of the spectral break around � m we also present
in figure 9 the evolution of the frequency where the asymptotic
power laws well above and below the break meet (which can serve
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Figure 11. The light curves for frequencies that are in the vicinity of � m at
the time of the density jump, for the same hydrodynamic transitions that are
shown in Figure 9 (with p = 2 � 5). The solid thick line is for ��� � m(T0), the
dashed thick line is for ��� � m � 10%(T0), and the dotted thick line is for ����

m � 90%(T0). The remaining curves are spaced by a factor of 2.5 in frequency
in the middle panel and 3 in the top and bottom panels.

as an alternative definition for the location of the break frequency,
as was done in Granot & Sari 2002). This frequency evolves very
smoothly and shows very mild fluctuations in all cases, since it is
less effected by the transient broadening of the spectral break dur-
ing the hydrodynamic transition.

The evolution of the cooling break frequency, � c, is shown
in Figure 10. For a wind termination shock the temporal index� has different asymptotic values at T � T0 ( � 1 = 1 
 2) and at
T � T0 ( � 2 = −1 
 2); � c transitions rather smoothly between these
two asymptotic limits, with a slight overshoot (i.e. d log � c 
 d logT
dips below −1 
 2) due to the increase in density across the jump
(the asymptotic value of � c decreases with increasing density).
The asymptotic behavior of � c is marked with dashed lines show-
ing that for practical purposes (e.g., analytic calculation) it can be
well approximated as a sharp temporal transition between � 1 and� 2 at T � 1 � 5T0, while keeping in mind that the spectral break
itself is very smooth at any time. For a density jump in a uni-
form medium the asymptotic value of the temporal index does
not change ( � 1 = � 2 = −1 
 2), but the asymptotic normalization of
T 1 � 2 � c at T � T0 is a factor of a lower than at T � T0 . The transi-
tion between the two asymptotic limits is fairly smooth. The shaded
region which corresponds to 80% of the change in � across the
break is significantly larger for � c compared to � m, corresponding
to a smoother break, in agreement with semi-analytic calculations
(Granot & Sari 2002). The transition to the late time asymptotic be-
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Figure 12. The light curves for frequencies near � c at the time of the density
jump, for the same hydrodynamic transitions that are shown in Figure 10
(with p = 2 � 5). The normalized flux is multiplied by (T � T 0)(3p−2) � 4 � 
T 1 � 375

in order to eliminate asymptotic time dependence at T � T0 for a uniform
medium. The solid thick line is for ��� � c(T0), the dashed thick line is for��� �

c � 10%(T0), and the dotted thick line is for ��� � c � 90%(T0). The remain-
ing curves are spaced by a factor of � 15 in frequency in the top panel and
� 8 in the middle and bottom panels.

havior stretches over a larger factor in time, which increases with
a.

Figures 11 and 12 show light curves for frequencies that are
in the proximity of � m and � c, respectively, around the time of the
density jump. There is a smooth transition between the light curves
for frequencies that are well below the break frequency and those
for frequencies well above the break frequency around the time of
the density jump. Our main conclusions from sections §§3.1 and
3.2 remain valid also when the observed frequency is near a break
frequency around the time of the density jump. In particular, there
is no rebrightening at � � � m, and the observed features in the
light curve are very smooth. Therefore, our main results are rather
robust.

4 A CLUMP IN THE EXTERNAL DENSITY

In this section we estimate the effect of a clump in the external
density on the light curve. By a clump we refer to a well localized
region of typical size lcl which is overdense by a factor of a

� 1
relative to the uniform background external density. For a given
clump size lcl and overdensity a (well within the clump, near its
center) the effect on the light curve is expected to be larger if the
clump has sharper edges, i.e. the smaller the length scale � l over
which the density rises by a factor of � a relative to the background
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Figure 13. The ratio of the flux with and without a density jump at R � R 0,
within a finite angle � � � max around the line of sight, for three differ-
ent density contrasts (a = 10 	 100 	 1000) and three different angular sizes
(� 4 � max = 1 � 3 	 1 	�� ). This serves as an approximate upper limit for the
effect of a clump in the external medium on the light curve. The differ-
ent panels are for the most relevant power law segments of the synchrotron
spectrum.

density. While in practice one might, in many cases, expect � l �
lcl , we consider the limit of a sharp edged clump with � l � lcl, in
order to maximize the effect on the light curve.

Because of relativistic beaming, most of the contribution to
the observed light curve from a given radius R is from within an
angle of

��� 
 −1 around the line of sight, which corresponds to a
lateral size of � R 
�
 . Therefore, a clump in the external density of
size8 lcl � R 
�
 would not differ considerably from a spherically
symmetric density jump that was considered in §2. If the surface
of the clump is not normal to the line of sight (e.g. if the line of
sight to the central source does not pass through the center of a
spherical clump), this is expected to reduce the effect of the clump
on the light curve (similar to what is expected if the clump does not
have very sharp edges, � l � lcl rather than � lcl). Therefore the
results of §2 can be viewed as a rough upper limit on the effect of
“big” clumps (lcl

�
R0 
�
 3). Small to intermediate clumps, of size

lcl
�

R0 
�
 3 are expected to have a smaller effect on the light curve
and are investigated below.

The results of the previous section, and in particular the semi-

8 Here � is the Lorentz factor inside the clump, which is smaller than that
before the afterglow shock hits the clump, by a factor � that is given in
equation (3).
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Figure 14. Similar to Figure 13 but for a fixed density contrast, a = 100, and
for three clumps along the line of sight together with a clump that is at the
side of the visible region at the time of collision, centered around � 4 � � 1.

analytic model for the light curve that was derived in §2.2, can be
used to put an approximate upper limit on the effect that a den-
sity clump could have on the observed light curve. Such a limit
is achieved by using the spherical model from §2.2 within a fi-
nite solid angle:

�
min �

�
�
�

max and � min ��� ��� max in spheri-
cal coordinates, while in the radial direction the clump extends out
to R � R0 . In practice we expect the radial extent of the clump
to be � R � lcl, similar to its extent in the

�
direction ( � R0 � �

where � � =
�

max −
�

min) and in the � direction ( � R0 �
� ��� where��� = � max − � min and �

�
= [
�

min +
�

max] 
 2). In our coarse approxi-
mation the clump has no upper bound in the radial direction, and
its lateral size scales linearly with radius. Obviously, this sets an
(approximate) upper limit for the effect on the light curve of a
clump with a size lcl in all directions (which is roughly given by
lcl � R0 � � � R0 �

� ��� � � R in spherical coordinates).
Figure 13 shows the results of this model for a density clump

that lies along the line of sight,
�

min = 0 and 
 4
�

max = 1 
 3 � 1 �
	
while ��� = 2 � , for three different values of the density contrast
(a = 10 � 100 � 1000) and for the three most relevant power law seg-
ments of the spectrum (that were modeled in §2.2). The smaller
the angular extent of the clump, the smaller the amplitude of the
change in the flux relative to its value for the smooth underlying
density distribution without the clump (a = 1), and the smaller the
factor in time over which it effects the flux significantly (e.g., the
full width at half maximum of the relative flux). This behavior is
expected since both the amplitude and the duration of the fluctu-
ation depends on the size of the clump (Ioka, Kobayashi & Zhang
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2005). The amplitude depend on the ratio in size between the per-
turbed region (of length scale lcl ) and the unperturbed region (of
length scale R 
�
 ) of the blast wave, and thus increase with lcl . The
duration depends on the delay in the arrival time of photons emit-
ted from the perturbed region, which again increase with the size
of this region.

As can be seen in Figure 13, the amplitude of the fluctuation
in the relative flux increases with the density contrast a. There is a
sharp transition in the light curve at �T = 1+2(4−k0)( 
 4

�
max)2 , when

the radiation from the outer edge of the clump at R = R0 reaches
the observer, which corresponds to the peak in the relative flux for
 3
�

max = 
 4
�

max � −1 � 1. Such sharp features (see also Figure 14)
are caused by the over-simplified clump model that we use here,
and are expected to be smoothed out in more realistic models of
clumps. Above � m a clump can produce a dip or a bump in the
relative flux with a relatively small amplitude (depending on its
size and density contrast), while below � m it produces a bump in
the relative flux with a larger amplitude.

Figure 14 shows the relative flux for a fixed density contrast,
a = 100, for three clumps along the line of sight with different an-
gular sizes ( ��� = 2 � ,

�
min = 0 and 
 4

�
max = 0 � 1 � 1 
 3 � 1), as well

as for a clump close to the edge of the visible region at the time
of the collision, 
 4(

�
min � � max ) = (2 
 3 � 4 
 3) and ��� = � 
 6, which

occupies the same solid angle as the clump along the line of sight
with 
 4

�
max = 1 
 3. The effect of a given clump on the light curve is

maximal when it is along the line of sight, and it becomes smaller
the further it is from the line of sight (i.e., its effect is significant
over a shorter time scale and the amplitude of the change in the
relative flux is somewhat reduced).

Overall, a fairly large clump of size lcl � R 
�
 with a suffi-
ciently large density contrast (a � 10 − 102) is required in order to
produce an observable signature in the light curve, and even then
the most prominent signal would be below � m, which is typically
relevant for the radio. In the optical, which is typically above � m,
there would only be a small dip or bump in the relative flux, which
would be hard to detect.

5 IMPLICATIONS TO GRBS 021004, 000301C, 030329
AND SHB 060313

Next we reconsider the cause for the fluctuations in the optical af-
terglow light curves of the long-soft GRBs 021004, 000301C, and
030329, as well as the very recent short-hard GRB 060313, in light
of our results. GRB 021004 showed significant variability in its op-
tical afterglow (Pandey et al. 2002; Fox et al. 2003; Bersier et al.
2003; Uemura et al. 2003) which included three distinct episodes
of mild rebrightening ( � � 0) at T � 0 � 05 days, � 0 � 8 days, and

� 2 � 6 days. Just before the first of these epochs, � � −0 � 7, and it
then became positive over a factor of � 2 − 3 in time. Such a large
increase in � over a relatively small factor in time is hard to ac-
commodate by a jump in the external density: ��� � 1 requires
a � 102 and even then it is hard to achieve such an increase in �
over a factor of � 2 − 3 in time. The second rebrightening episode
lies within the tail of the first, and is therefore not a very “clean”
case to study. The third rebrightening epoch at � 2 � 6 days is some-
what more isolated, and has � � � 1 where most of the increase in� is within about a factor of � 1 � 5 in time. This is extremely hard
to achieve by variations in the external density. On the other hand,
angular fluctuations in the energy per solid angle within the jet (a
“patchy shell”) nicely account for both the fluctuations in the light

curve and the variability in the linear polarization of this afterglow
(Granot & Königl 2003; Nakar & Oren 2004).

GRB 000301C displayed a largely achromatic bump in its
optical to NIR light curves (Sagar et al. 2000; Berger et al. 2000)
peaking at T � 3 � 8 days. Before the bump � � −(1 � 2 − 1 � 3) and
during the rise to the bump � became slightly positive, so that��� � 1 � 5, where most of the increase in � occurred over a fac-
tor of � 1 � 5 in time. We find that this cannot be produced by
a sudden change in the external density (as has been suggested
by Berger et al. 2000). The decay just after the peak of the bump
is very sharp, � � −(3 � 5 − 4), and since � − � � 2 (Sagar et al.
2000, find � = −0 � 96 � 0 � 08 during the decay just after the peak,
at T = 4 � 8 days) this requires a deviation from spherical symme-
try (Kumar & Panaitescu 2000), and might not be easy to achieve
with angular fluctuations in the energy per solid angle within the
jet (a “patchy shell”) or aspherical refreshed shocks. In this case an
alternative microlensing interpretation (Garnavich, Loeb & Stanek
2000) was shown to be able to nicely reproduce the shape of the
bump (Gaudi, Granot & Loeb 2001).

GRB 030329 has one of the best monitored and densely sam-
pled optical afterglow light curves to date. It is presented in great
detail by Lipkin et al. (2004) who clearly show that the light curve
contains several rebrightening ( � � 0) episodes in which � � � 2.
All of these episodes have a similar structure and occur over a small
factor in time ( � T � T ). In previous works it has been suggested
that some of these rebrightening episodes are a result of density
fluctuations. Pe’er & Wijers (2006) have suggested that the first
(and largest) rebrightening episode is the signature of a wind termi-
nation shock. Sheth et al. (2003) have followed Berger et al. (2003)
in attributing the first rebrightening episode to a two-component
jet, but argued that the subsequent rebrightening episodes could
be explained by variations in the external density. Our results
clearly show that none of the bumps in the optical light curve of
GRB 030329 can be a result of density bumps. This implies that
the two-jet model of Berger et al. (2003) and Sheth et al. (2003)
fails to account for most of the observed light-curve fluctuations.
Excluding density fluctuations as the possible source of any of
the major bumps, together with the similarity in the shapes of the
bumps (Lipkin et al. 2004), support a sequence of similar episodes
in which the energy of the jet fluctuates, such as a late time energy
injection by “refreshed shocks” (Granot, Nakar & Piran 2003).

The afterglow of the very recent short-hard GRB 060313
has been monitored both by the X-ray telescope (XRT) and
by the optical/ultra-violate telescope (UVOT) on board Swift
(Roming et al. 2006). The optical/UV light curve showed three
sharp bumps/flares at T � 1 � 7 hr, � 3 � 2 hr, and � 6 � 6 hr, with an
amplitude of more than a factor of 2 in flux and a very short rise
time of � T

�
0 � 1T . During the same time the X-ray light curve

showed a smooth (and steeper) power law decay. This was inter-
preted by Roming et al. (2006) as the result of variations in the ex-
ternal density by a factor of � 2, where the lack of variability in
the X-rays was attributed to � c being between the optical/UV and
the X-rays. Our results clearly show that such sharp rebrightening
episodes as were seen in the optical/UV afterglow light curve of
GRB 060313 cannot be the result of variations in the external den-
sity. Therefore, there must be some other cause for this variability,
such as late time internal shocks with a very soft spectrum, as was
suggested by Roming et al. (2006) as an alternative mechanism.
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6 CONCLUSIONS

We have presented a semi-analytic model for the light-curve result-
ing from synchrotron emission by a spherical relativistic blast-wave
that propagates into a power law external density profile with a sin-
gle sharp density jump at some radius R0 . Our solution is general
enough to include a transition in the density power-law index (k)
at R0 , but is limited to cases in which the blast-wave remains rel-
ativistic after it encounters the density jump. This model has been
used to explore in detail two density profiles that are most rele-
vant to GRB afterglows: a wind termination shock, and a sharp
density jump between two regions of uniform density. The latter
results are also used to constrain the signature of density clumps
in a uniform medium. We have also carried out detailed numerical
simulations for several of the cases which we have studied in detail.
These numerical results serve three purposes. First, they are used
in order to obtain more accurate light curves for the cases which
are of special interest. Second, they are appropriate for calculating
the light curves in the vicinity of a spectral break frequency (§3.3).
Third, they serve as a test for the quality of our simple semi-analytic
model, which is found to give a very good qualitative description
and reasonable quantitative description of the light curve.

Our main result is that density jumps do not produce sharp
features in the light curve, regardless of their density con-
trast! The results of our specific case studies are as follows.

A wind termination shock:

� The light curve shows a smooth transition, which lasts for
about one decade in time, between the asymptotic power-law be-
havior at T � T0 and at T � T0.

� There is no rebrightening or any other sharp feature that can
be used as a clear observational signature.

� Above the cooling frequency, � c, there is no change in the
asymptotic value of the temporal index, � , and it only fluctuates
with a small amplitude ( ��� � 0 � 1).

� The only observable signatures of a wind termination shock
are a smooth break, with an increase of ��� = 0 � 5 in � , below � c

and a transition in the temporal evolution of � c.

A density jump between two uniform density regions:

� The light curve shows a smooth transition between the two
asymptotic power laws (at T � T0 and T � T0).

� The transition time increases with the density contrast, a, and
is about � 10aT0.

� The maximal deviation, ��� max, of the temporal index � from
its asymptotic value (at T � T0 and T � T0) is small. For example,��� max(a = 10) � 0 � 4; ��� max depends weakly on a and approaches� 1 at very large a values. Therefore, a density jump cannot pro-
duce an optical rebrightening when � optical

� � m.
� The light curve fluctuates also above � c (typically including

the X-ray band). While the asymptotic flux (at T � T 0) above � c is
unaffected by the density jump, the fluctuations in � are compara-
ble to those below � c.

An overdense clump on top of a uniform density background:

� Only a fairly large clump (lcl � R 
�
 ) with a sufficiently large
density contrast (a � 10 − 102) produces a significant fluctuation in
the light curve.

� The effect of a clump on the light curve is significantly larger
when it is located along the line of sight, than at an angle of � 1 
�

from the line of sight.

� The signature of a clump is most apparent at � � � m ��� c.
� Above � m a clump can actually cause a small dip in the light

curve, while below � m it causes a (larger) bump.

For a spherical density jump our conclusions are based on accu-
rate results, while in the case of a density clump we obtain only
an approximate upper limit for its effect on the light-curve. There-
fore, our results for density clumps should be taken only as rough
guidelines. Our main results remain valid also when the observed
frequency is close to a spectral break frequency around the time of
the density jump.

Our conclusions are very different from those of previous
works, which predicted a significant optical rebrightening, and
rather sharp features in the afterglow light curve. The main cause
for this difference is our careful consideration of both the effect of
the reverse shock on the dynamics (which we find cannot be ne-
glected even when a � 2), and the arrival time of the photons to the
observer from different parts of the emitting regions. Both of these
effects tend to smoothen the light curve significantly.

Finally, we considered the implications of our results for the
origin of the fluctuations in the highly variable light curves of four
GRBs (3 long-soft GRBs and one short-hard GRB). We find that
density variations are unlikely to be the source of the fluctuations
in any of these bursts.
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APPENDIX A: A ONE DIMENSIONAL SPECIAL
RELATIVISTIC HYDRODYNAMICS AND RADIATION
CODE

In order to obtain accurate light curves while relying on a minimal
number of approximations we use a one dimensional special rela-
tivistic hydrodynamic code and combine it with an optically thin
synchrotron radiation module. This is the same code that was used

before in Nakar & Piran (2004). We use a one dimensional hydro-
dynamic code that was generously provided to us by Re’em Sari
and Shiho Kobayashi. It is a Lagrangian code based on a second-
order Gudanov method with an exact ultra-relativistic Riemann
solver and it is described and used in Kobayashi et al. (1999) and
Kobayashi & Sari (2000). On top of this code we have constructed
a module that calculates the resulting optically thin synchrotron ra-
diation. The code does not include the synchrotron self-absorption
or synchrotron self-Compton processes. The effect of the radiation
on the hydrodynamics is neglected. Below we describe the physics
that is included in the radiation module.

Having the full hydrodynamic evolution of the fluid (from the
hydrodynamic code) we first identify the time steps in which a
given fluid element is shocked by finding episodes of increase in
its entropy. The same fluid element can be shocked many times.
Once a fluid element is shocked all its electrons are assumed to be
instantly accelerated into a power-law energy distribution with an
index p, dN 
 d 
 e � 
 −p

e for 
 e
� 
 min. The energy in the electrons is

taken as a constant fraction, 	 e, of the internal energy, and this con-
dition determines 
 min (it is assumed that p

�
2). From this point

on, and until the same fluid element is shocked again, the electron
energy distribution decouples from the internal energy and evolves
through radiative cooling and adiabatic cooling or heating (PdV
work). The magnetic energy in each fluid element is taken to be a
constant fraction, 	 B, of the internal energy at all times.

One of the main difficulties in calculating the synchrotron ra-
diation at high frequencies is the short cooling time, which may be
much shorter than the hydrodynamic time steps. In order to over-
come this difficulty, we calculate the radiation during any hydro-
dynamic time step analytically, in the following way. Immediately
after a fluid element crosses a shock, its initial electron energy dis-
tribution is taken to be a power-law (with index p) between 
 min and
 max = 	 . The total emissivity of the fluid element at a given fre-
quency in its own rest frame, during a time step, is obtained by inte-
grating the spectral power of individual electrons over the evolving
electron distribution, where each electron is tagged by the value of
its initial Lorentz factor. The emission of each electron is obtained
by time integration over its instantaneous emissivity9, which in turn
depends on the evolution of its Lorentz factor (and thus on its initial
Lorentz factor) during the time step. This evolution is calculated by
considering its radiative losses and its adiabatic cooling or heating.
In particular, we calculate the evolution of an electron with initial
Lorentz factor 
 min and of an electron with initial Lorentz factor
 max . Their values at the end of the time step are taken as the initial
values for the next step in which the initial distribution of electrons
Lorentz factors is taken again as a power-law between the new val-
ues of 
 min and 
 max. From the point where 
 max becomes compara-
ble to 
 min (within a factor of 2) the electron energy distribution is
taken as a delta function.

Since we use a one dimensional code in spherical coordinates,
which explicitly assumes spherical symmetry, each fluid element
represents a thin spherical shell. Once the rest frame spectral power
of a fluid element is calculated, we integrate over the contribution
of this shell to the observed flux at a given observer time and ob-
server frequency. This calculation takes into account the appropri-

9 The synchrotron spectral power [erg/Hz/sec] of each electron is approx-
imated in the usual manner (Rybicki & Lightman 1986): P��� � ( � syn −� ) � 1 � 3 .
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ate Lorentz transformation of the radiation field and photon arrival
time from each point along the shell.

,
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