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Evaluating the potential for optical detection of the products of interactions of 

energetic electrons or other particles with the background atmosphere depends on 

predictions of change in atmospheric concentrations of species which would generate 

detectable spectral signals within the range of observation.  The solar blind region of the 

spectrum, in the ultra violet, would be the logical band for outdoor detection (see Figure 

1). The chemistry relevant to these processes is composed of ion-molecule reactions 

involving the initially created N2
+ and O2

+ ions, and their subsequent interactions with 

ambient trace atmospheric constituents. 

Effective modeling of the atmospheric chemical system acted upon by energetic 

particles requires knowledge of the dominant mechanism that exchange charge and 

associate it with atmospheric constituents, kinetic parameters of the individual processes 

(see e.g. Brasseur and Solomon, 1995), and a solver for the coupled differential equations 

that is accurate for the very stiff set of time constants involved. The LLNL box model, 

VOLVO , simulates the diel cycle of trace constituent photochemistry for any point on 

the globe over the wide range of time scales present using a stiff Gear-type ODE solver, 

i.e. LSODE. It has been applied to problems such as tropospheric and stratospheric 

nitrogen oxides, stratospheric ozone production and loss, and tropospheric hydrocarbon 

oxidation.  For this study we have included the appropriate ion flux. 

The LLNL box model can flexibly accommodate a large number of chemical 

species and thermal and photolytic reactions. Here we have included 103 chemical 

species and a chemical mechanism consisting of over 200 reactions.  Code for the 

specific photochemical mechanisms is produced by a code generator with human 

modeler-friendly inputs and interface, with flexible start times (midnight, noon or other). 

Photolysis frequencies are updated (using a lookup-table module) on the variable time 



 

 2

step of the solver. Overhead ozone abundance and temperature can be climatological or 

retrieved from other model simulations. Output times are flexible and user-defined. 

For this study the box chemistry model has constant temperature and pressure, 

with initial conditions taken from our existing higher dimensional atmospheric model 

(Rotman, et al, 2004). Physical and constituent variables can also be modeler-specified. 

We have utilized this feature in order to vary the flux of ion pairs entering the system. 

Initial conditions and can incorporate terms representing transport, deposition, and/or 

emissions. In the studies presented in this paper, the model did not include diffusion into 

or out of the irradiated volume nor did it include surface emissions or deposition that may 

be present in an in situ environment. The model can be run at all locations on the globe 

for any season.  

In our first modeling experiment we have prescribed the surface pressure at an 

ambient temperature of 300K and a relative humidity of roughly 100 percent.  The 

incoming solar radiation for photolysis is representative of noon at low latitudes.  There 

is an ionizing radiation flux of 1.05x10^9 ion pairs per cm3.  The computed 

concentrations of select species with respect to time are shown in Figure 2a and b.  Figure 

2a illustrates the effect of ionizing radiation on the abundances of select nitrogen, oxygen 

and hydrogen species, while Figure 2b shows the photochemistry under the same 

atmospheric conditions without ionizing radiation.   Comparison shows that there is a 

significant effect on nitrogen, oxygen and hydrogen containing species when ionizing 

radiation is added, with the concentrations of most species changing by at least one order 

of magnitude.  The major species showing largest increases in concentration in the solar 

blind region are HNO3, NO2, and N2O5. This will be discussed further below.  

Moss et al (1999) have performed a similar study using an ion chemistry model 

developed for the mesosphere.  They include ionic and stable species of nitrogen oxygen 

and hydrogen only. Where possible we have chosen similar physical parameters in this 

experiment.  Our results are not expected to mirror those of Moss et al (1999), because 

we are starting our model runs with typical background concentrations of many more 

chemical species, and an ion background of zero. This model uses  a chemical 

mechanism appropriate to the actual outside air at the surface.  The LLNL model includes 

hydrocarbons, bromine and chlorine species, all of which the hydrogen oxygen and 
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nitrogen species react.  As stated above, we initialize the concentrations of all species 

according to monthly average background concentrations.  It is not clear what initial 

concentrations used in the Moss et al (1999)work.  Our model assumes, according to 

Brasseur and Solomon (1995), that due to their relatively high concentrations in the 

atmosphere, all of the ionization occurs on N2 and O2 molecules.  The relative fractions 

of dissociative ionization are .185 and .076 respectively.  

If one compares the results, of our Figure 2a to Figure 1 of Moss et al (1999) we 

see that the LLNL we have only run our experiment for 1 day  (order 10^4 seconds. Moss 

et al (1999) have run their simulation to 10^6 seconds).  The change in concentrations of 

species show similar trends. The ozone concentration determined in this model study 

appears to be similar to Moss et al. (1999).  The O3 concentration increases by roughly 1 

order of magnitude and then decreases then quasi equilibrium has been achieved. Unlike 

Moss et al., our simulation shows little change in the N2O concentration.  This result is 

expected since N2O has a relatively high background concentration, and a very long time 

constant in the troposphere making it virtually chemically inert near the surface. Like 

Moss et al (1999) our HNO3 concentration increases by several orders of magnitude. One 

notable difference between the two studies is the response of the species H2O2.  This 

study shows a steady decrease in the H2O2 concentration, whereas the Moss study starts 

at a much lower initial concentration, increase and then decreases.  The difference in final 

concentrations is significant.  This is most likely due to differences in initial 

concentrations, the kinetic reaction rates used, and differences in the chemical 

mechanisms between the models.  

The solar blind region, shown in Figure1, would be the logical region for remote 

detection. Nitric Acid, N2O5, and NO2 and NO  being the most prominently observed 

products, would be the prime candidates of spectral bands for measurement purposes.  

Absorption bands of N2O5 and HNO3 in the region where NO fluoresces will decrease 

any available uv signal in the solar blind region. 

 In a second model experiment we compared the influence of air pollution on the 

detectablity of ionization.  In these runs the model was initialized by our 3-dimensional 

model (Rotman, et al 2004) for two locations one representative of a clean air remote site 

the second a polluted urban site.  Figures 3a and b show simulations for the clean air site. 
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Figure 3a represents the atmospheric concentrations with ionizing radiation, while Figure 

3b includes no ionization.  Figure 4a and b are representative of a polluted regime with 

and without ionization respectively.  These runs were performed using the diel cycle 

whereas the previous experiment was performed with constant sunlight. The affect of 

varying sunlight is small compared to the ionization effect.  When comparing these 

simulations it is clear to determine that the effect of ionizing radiation is the dominant 

process in both regimes. 

 Figures 5 and 6 represent the results of our third model experiment.  They 

illustrate the concentration of species after 5 hours at various distances up to 3 cm from 

an alpha radiation source and up to 12 cm for a beta source respectively.  Figures 5a, b, 

and c show values for 0.1, 1.0 and 100 microCi Po210 alpha source while Figures 6a, b 

and c represent the same for a 0.1, 1.0 and 100 microCi Sr90 beta source out to 10 cm.   

When comparing figures 5a, b, and c it can be seen that the trends in concentration with 

distance from the sources are of similar shape. The magnitude and radial distances from 

the source where changes from the initial conditions are detected increase with increasing 

activity as expected. The same can be said regarding the beta source in Figures 6.  Results 

here suggest source strengths of less than 0.1 microCi Po210 alpha source and less than 

1.0 microCi Sr90 beta source are unlikely to be distinguished from the background by a 

remote sensing method. 

 The concluding results of this model study suggest that detecting radiation 

through remote uv detection under normal atmospheric conditions is unlikely to be 

successful. 
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Figure1.  Solar spectrum with NO and N2 Absorption and Fluorescence bands. 
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Figure 2. Molecular species concentrations (mole fraction vs. seconds).  [a] with 1.05e9 

ion pairs /cm^3 flux. [b] without ionization. 
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Figure 3. Molecular species concentrations (mole fraction vs. seconds)in a clean 

background regime, full solar cycle.  [a] with ionizing radition [b] without ionization  
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Figure 4. Molecular species concentrations (mole fraction vs. seconds)in a polluted 

background regime, full solar cycle.  [a] with ionizing radition [b] without ionization 
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Figure 5. Molecular species concentrations (mole fraction vs. cm) for [a] 0.1 micro Ci, 

[b] 1.0 micro Ci, and [c] 100 micro Po210 alpha source. 
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Figure 6. Molecular species concentrations (mole fraction vs. cm) for [a] 0.1 micro Ci, 

[b] 1.0 micro Ci, and [c] 100 micro Ci Sr90 beta source. 
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