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ABSTRACT 

A simple l a t e r a l  f low model adequately explains many of t h e  features 

associated w i t h  the Salton Sea Geothermal. Field. Earthquake swarms, a 

magnetic anomaly, and aspects o f  t h e  g r a v i t y  anomaly are a l l  i n d i r e c t  evidence 

f o r  the igneous a c t i v i t y  which i s  the u l t imate source o f  heat f o r  the system. - 
Heat i s  transferred from t h i s  area o f  i n t r u s i o n  by l a t e r a l  spreading of hot  

water i n  a rese rvo i r  beneath an impermeable cap rock. t 

A two dimensional ana ly t i c  model encompassing t h i s  t ranspor t  mechanism 

matches general features o f  the thermal anomaly and has been used t o  estimate 

t h e  age of t h e  present ly observed thermal system. The age i s  calculated by  

minimizing the  variance between the observed surface heat-flow data and the  

model. Estimates o f  t h e  system age f o r  t h i s  model range from 3,000 t o  20,000 

years . 

*Present address: 

Terra Tek Research 

S a l t  Lake City, Utah 84108 



I I'NTRODUCTI ON 

The Salton Sea Geothermal F i e l d  (SSGF) l i e s  within one o f  the largest  and 

h o t t e s t  hydrothermal systems i n  the world (see Fig. 1). L ike other 

hydrothermal systems i n  t h e  Salton Trough, t h i s  f i e l d  i s  apparently a d i r e c t  

product o f  extension and r e s u l t i n g  magmatic i n t rus ion  associated with t h e  

r i g h t  l a t e r a l  transform boundary o f  t h e  western margin o f  the North American 

p l a t e  (Lomnitz and others, 1970; Elders and others, 1972). Wherever fau l t s  

veer t o  the  r i g h t  i n  t h i s  region, loca l  zones o f  crusta l  extension occur and 

may al low magma t o  in t rude i n t o  the c rus t  and a c t  as a heat source t o  d r i v e  

hydrothermal systems. A few small volcanic buttes on the southeastern shore 

of the Salton Sea are d i r e c t  surface evidence o f  the locat ion o f  one of these 

zones o f  intrusion. 

t -  

The geothermal f i e l d  southeast o f  t he  but tes has been studied by  several 

surface geophysical methods and by deep and shallow d r i l l i n g .  Many Papers 

have sumnarized aspects o f  t h e  geology, geochemistry and geophysics of t h e  

f i e l d  (e.9. Helgeson, 1968; Mu f f l e r  and White, 1969; Randall, 

and others, 1976; McDowell and Elders, 1980; B i r d  and Norton, 

and others, 1982). The f l u i d - f l o w  patterns and heat-transfer 

which heat i s  ca r r i ed  up from the  reg ion o f  i n t rus ion  has not 

1974; Robinson. - 
1981; Younker 

mechanisms by 

been described 

\ 

i n  any deta i l .  We have used the extensive data set  t o  develop a hydrothermal 

system model which describes the heat t ransfer  from t h e  zone o f  intrusion. 

I n  t h i s  paper, the evidence f o r  the nature and locat ion of the heat 

source i s  reviewed. It i s  concluded t h a t  mafic and s i l i c i c  dikes in t rude i n t o  

the area o f  o f f s e t  between t h e  Brawley and San Andreas f a u l t s  and supply heat 

t o  t h e  system. Next, conclusions about t h e  d i s t r i b u t i o n  of permeabil i ty 

around the heat source are reviewed. Strong b a r r i e r s  t o  v e r t i c a l  f l u i d  flow 

P r e l u d e  large-scale v e r t i c a l  convection c e l l s  w i t h i n  t h e  explored region. 

Observations consistent with h igh  l a t e r a l  permeabil i ty support a model i n  
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I ' which the system acts as  a flow-through water heater w i t h  f l u i d  cooling as i t  

carries heat la te ra l ly  from the heat source.. Finally, this conceptual model 
i s  used as a basis for developing an analytical model o f  lateral  convective 

transfer of heat Pn a reservoir bounded vertically by relatively impermeable 

conductive zones. The analytical model i s  developed and compared.to 

geophysical and geothermal f ield measurements. The 'model produces 

temperatures which match observations, and i t  is  simple enough t o  allow 

evaluation of analytical resul ts  for a broad range of parameters so that  

bounds are  placed on the nature of the hydrothermal system. In particular, - - -  
the model i s  used t o  estimate age and flow rates  and t o  rigorously evaluate 

the  limitations i n  our understanding of the system. 

CONCEPTUAL MODEL FOR THE GEOTHERMAL SYSTEM 

Heat Source 

Lomnitz and others (1970) suggested that  the tectonic framework i n  the 

! northern G u l f  o f  California. and Salton Trough could be approximated by a ., 

ser ies  of transform fau l t s  connected by spreading centers. They postulated 

tha t  active ridge segments 'account for  the geothermal anomalies near Cerro 

Prieto and the Salton Buttes. Elders and others (1972) expanded and refined 

the model and proposed tha t  active spreading centers occur i n  tensional zones, 

or  rhombochasms, between en echelon s t r ike  s l i p  faults. They postulate 

spreading centers near t h e  Salton Buttes, Brawley, and Cerro Prieto. Elders 

and Biehler (1975) and Hill and others (1975) label these areas "leaky 

transform faults" i n  order t o  emphasize t h a t  the dominant movement i n  the 

valley is  s t r ike  s l i p  w i t h  t h e  "spreading" t a k i n g  place i n  a rather diffuse 

zone of of fse t  strike sl ip faults.  

Because of the thick sedimentary cover i n  the trough, the rhombochasm 
. .  

leaky transform theory is d i f f i cu l t  t o  verify. Howard (1976) has provided 
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f i e ld  support for the theory by s tudy ing  the analogous San Jacinto f au l t  

system. 

noted the presence of several northeast-trending extensional faul ts  joining 

In the Red Mountain area of the San Jacinto Mountains, Howard has 

the Coyote Creek fau l t  w i t h  the northwest-trending San Jacinto fault. T h e  

extension faul ts  a re  steep normal or reverse faul ts  near the surface b u t  

become moderate-to-shallow-dipping 'normal fau l t s  a t  depth. Sharp (1967) 

related the fau l t s  t o  the dying o u t  of the Coyote Creek fault. The  r i g h t  

lateral  movement near i t s  terminus ' i s  partly absorbed by pervasive deformation 

of the crystall ine rocks and partly absorbed by the northwest-southeast 

extensional movement along the faults.  
- -  

By analogy, i t  m i g h t  be expected that  

the  region connecting the Banning-Mission Creek section of the San Andreas 

f au l t  and the Brawley f au l t  should be cut by extensional faul ts  producing the 

"leaky transform system" described by Elders and Biehler (1975) (Fig. 1). 

Earthquake data, well observations, magnetic anomalies, and a recent 

seismic refraction survey provide f u r t h e r  support for the leaky transform 

model. The area surrounding the Salton Sea Geothermal Field has been the Sit.:! 

of several earthquake swarms. Thatcher and Brune (1971) sumnarized four swarm 

sequences which occurred i n  1963, 1965, 1968, and 1969 i n  the Obsidian Butte 

area. Johnson and Hadley (1976) used observations of an earthquake swarm t o  

locate an offset  of the Imperial f au l t  near Brawley. G i l p i n  and Lee (1978) 

used a portable seismic network t o  locate activity on the north end of the 

Brawley f au l t  near Obsidian butte. They characterize the seismicity of the 

area as 'two t o  three events per day (ML < 3.0) comnonly occurring i n  

clusters along w i t h  intermittent swarm activities." First-motion studies of 

two Swarms indicate both normal fault ing and s t r ike  s l i p  fault ing i n  an area 

between two offset  segments of the Brawley fau l t .  McEuen and others  (1977) 

analfled earthquake occurrence data i n  the Imperial Valley and concluded t h a t  

the main stress-release mechanism near the Salton Sea F.ield is s t r ike  S l i p  
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I movement. They confirmed, however, t h a t  l oca l i zed  events (e.9.. t h e  swarm of 

1963 reported by Thatcher and Brune). involved tensional s t r a i n  release. Thus, 

seismic observations support a dominantly s t r i k e  s l i p  motion occasional ly 

interrupted by.tensiona1 s t r a i n  re lease i n  the i n fe r red  leaky transform 

region. Hypocenters associated w i t h  t h e  Brawley swarm vary between 4 and 8 kin . 

(Johnson and Hadley, 1976), p lac ing t h e  depth range from somewhat above the 

c r y s t a l l i n e  basement t o  several k i lometers i n t o  t h e  c r y s t a l l i n e  basement. 

Several l i n e s  of d i r e c t  and i n d i r e c t  evidence ind icate t h a t  the i n fe r red  

leaky transform system i s  associated with t h e  i n t rus ion  o f  d ikes and s i l l s  

i n t o  the basement complex and, perhaps, i n t o  the sedimentary section. 
- 

Robinson and others (1976) repo r t  t h a t  samples o f  subsurface igneous rock were 

recovered from a t  l e a s t  four  we l l s  w i t h i n  the f i e l d .  Mafic and s i l i c i c  rock, 

in terpreted t o  be t h i n  dikes and s i l l s ,  were present a t  depths ranging from 

approximately 1 t o  2 km. I n d i r e c t  evidence f o r  pervasive i n t r u s i o n  i s  

provided by t h e  magnetic and g r a v i t y  anomalies. Griscom and Muff ler (1971) 

have in terpreted the elongated magnetic anomaly t o  be due t o  10-20% dike 

mater ia l  which i s  l ess  than a k i lometer f rom t h e  surface. Biehler and Combs 

. 

(1972) repo r t  t h a t  a t  l e a s t  a po r t i on  o f  the g r a v i t y  anomaly i s  probably due 

t o  the  emplacement of igneous rocks ingo t h e  sedimentary p i l e .  Seismic 

r e f r a c t i o n  data ( F r i t h  1978) ind icates anomalously high-veloci ty material near 

t h e  surface of t h i s  region. This i s  consistent wi th  regions containing both 

hydrothermally a l t e r e d  sediments and igneous intrusions. 

The earthquakes, magnetic anomaly, g r a v i t y  anomaly, and, presumably, t h e  

heat-flow anomaly are a l l  bel ieved t o  be r e l a t e d  t o  the i n t rus ion  of dikes 

i n t o  t h e  sedimentary sect ion along zones b f  extension between o f f s e t  r i g h t  

l a t e r a l  fau l ts .  H i l l  (1977) has formalized the re la t ionship between 

earthquake swarms and d i ke  i n t r u s i o n  and has applied i t  t o  t h e  Brawley swarms 

o f  June 1973 and January 1975. In hi's theory, shear f a i l u r e  occurs along 

I 
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' f a u l t  Planes connecting t i p s  o f  o f f s e t  dikes. 

Lachenbruch and others (1976) and Lachenbruch and Sass (1978) have made 

ca lcu lat ions o f  heat and mass budgets f o r  somewhat s im i la r  volcanic centers. 

They have proposed t h a t  r a p i d  loca l  extension (e.9. , t h a t  which' occurs i n  the 

leaky transform system) controls the  passive r i s e .  o f  basal t  through t h e  

l i thosphere and thereby contro ls  the locat ion , o f  vol'canic centers. I n  the 

fo l lowing sect ion i t  i s  shown t h a t  t h e  dominant mechanism o f  heat t ransfer 

away from t h i s  zone o f  i n t rus ion  can be in fer red from the character is t ics  Of 

t h e  thermal f i e l d .  - - -  

Heat Transfer - Mechanisms 

Most of t h e  heat and mass t ransfer  models constructed f o r  hydrologic 

systems w i t h i n  t h e  Salton Trough have features i n  comon. ( B i r d  and Elders, 

1975; Swanberg, 1975; Black, 1975; Noble, and others; 1977; Kassoy and Goyal, 

1979; Riney and others, 1979; Goyal and Kassoy, 1980; and Elders, and others, 

1980: Elders and others, 1983). These models incorporate f l u i d  heat ing a t  

depth, percolat ion o f  f l u i d  up a h igh  permeabil i ty f rac tu re  o r  f a u l t  zone, 

l a t e r a l  spreading o f  hot  water beneath impermeable layers, and conduction 

dominated heat t rans fe r  from the h o t  f l u i d  through the cap t o  the surface. 

-,! 

Riney and others (1977) present a model for t he  Salton Sea Geothermal F i e l d  

which i s  d i f f e r e n t  from these c i t e d  above. Hot water r i s e s  throughout the  

System, and i s  swept northward by  the  regional hydrologic f l o w .  I n  our paper, 

we develop a simple model t o  ca lcu late the thermal e f f e c t s  o f  the l a t e r a l  flow 

feature of many models discussed above. These e f fec ts  are compared t o  data 

from the Sal ton Sea Geothermal Field. 

I n  a previous paper (Younker, and others, 1982), t h e  observed 

temperature-depth p r o f i l e s  i n  and around the Salton Sea Geothermal F i e l d .  were 

analyzed. Conclusions were drawn about heat transfer mechanisms j n  dif ferent 
I 
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I par ts  of t h e  system. Those conclusions are reviewed here. We d iv ided t h e  

area on the southeast f l ank  of t h e  f i e l d  i n t o  three roughly concentr ic zones 

(Fig. 2). Zone A, nearest t o  t h e  center o f  the geothermal f i e l d ,  i s  marked b y  

near ly constant, moderately h i g h  temperature gradient i n  the upper few hundred 

meters above a near ly isothermal zone. Zone B, most d i s t a n t  from t h e  center, 

i s  characterized by  a much 1ower;'nearly constant temperature gradient 

consistent w i th  t h e  normal reg ional  gradient. Zone C i s  a t r a n s i t i o n  reg ion 

w i th  low near-surface gradient and increasing temperature gradient a t  greater 

depth. The broad uniform gradient region o f  Zone A and the r a p i d  t r a n s i t i o n  

t o  Zone B are r e a d i l y  apparent i n  Fig. 2. Figure 3 shows examples o f  
- 

temperature p r o f i l e s  from t h e  i n t e r i o r  Zone A and the  t r a n s i t i o n  Zone C. 

Analysis o f  equilibrium-temperature p r o f i l e s  for  the wel ls  i n  the  Salton 

Sea Geothermal' F i e l d  ind icates t h a t  heat-transfer mechanisms can be 

q u a l i t a t i v e l y  described i n  terms o f  a three-layer system. The uppermost l a y e r  

i s  a thermal cap. The upper p o r t i o n  o f  the cap i s  impermeable t o  f l u i d  f l o w  

and characterized by a h igh  thermal gradient consistent w i t h  conduction. The ! 

lower p a r t  of t he  thermal cap i s  s t i l l  r e l a t i v e l y  impermeable t o  v e r t i c a l  

flow, but  an increase i n  the percentage of higher conduct iv i ty  sand produces a 

reduced temperature gradient. The re la t ionship .between t h i s  "thermal" cap, 

and Randall 's (1974) l i t h o l o g i c  cap i s  discussed i n  Younker and others, 1982. 

Layer 2 i s  a permeable aqui fer  characterized by low thermal gradients 

consistent w i th  some form of convective flow o f  pore f l u i d .  L i t t l e  i s  known 

about t h e  t h i r d  layer, which i s  assumed t o  be an impermeable base. 

Within the permeable aquifer, v e r t i c a l  permeabil i ty i s  low and ho r i zon ta l  

permeabil i ty i s  high. This d i s t r i b u t i o n  o f  permeabil i ty suggests t h a t  l a t e r a l  

f low o f  pore f l u i d  i s  the dominant mass-transport mechanism w i t h i n  the  

aquifer. Within t h i s  layer, t h e  rock matrix 4n Zone A has been heated t o  a 

f a i r l y  uniform temperature and the on ly  v e r t i c a l  heat t ransfer  i s  steady-state 
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heat flow upward through the cap which bas reached a steady-state temperatwe 

p ro f i l e ,  I n  the prevjous paper, we speculated t h a t  the f l u i d  i n  the aquifer 

flows from Zone A toward Zone B. Outside Zone A, t h e  f l u i d  cools by l o s i n g  

heat t o  the rock matr ix  and the t rans ient  heat f low i n  the cap may not have 

reached t h e  surface. Farther from t h e  source, i n  Zone B, cooled f l u i d  flows 

i n  equi l ibr ium w i t h  the i n i t i a l  temperature d i s t r i b u t i o n  i n  the aqui fer  and 

cap. 

. .  

I n  t h i s  paper, we propose t o  learn about the  evolut ion of t h e  

hydrothermal system from the  heat f low observations using t h i s  r e l a t i v e l y  

simple model i nvo l v ing  on ly  l a t e r a l  flow of f l u i d  through a porous aquifer. 
- - -  

This i s  an unusual approach t o  mode1ing.a geothermal system. Usually one 

Presumes a set  o f  known i n i t i a l  physical conditions, such as temperature and 

permeabil i ty d is t r ibut ions,  and calculates the r e s u l t i n g  f l u i d  f low patterns. 

For example, Lau (1980) has used t h i s  approach t o  mode1 t h e  SSGF. 

This type o f  modeling approach i s  very useful f o r  solv ing the "forward" 

problem: See., given i n i t i a l  condit ions and a speci f ied intrusion, what i s  . ! 
1 

the r e s u l t i n g  thermal f i e l d ?  For several reasons i t  i s  not  SO useful f o r  

" inver t ing"  the observed temperatures t o  determine t h e  i n i t i a l  condit ions 

(Kasameyer , and others , 1963) . .  

1) The observed data I n  t he  SSGF could be e n t i r e l y  w i t h i n  t h e  zone of 

r e l a t i v e l y  uniform hor izonta l  flow, and,therefore not  sample a very la rge p a r t  

of t he  ove ra l l  system modeled. 

2 )  Dramatical ly d i f f e r e n t  s t a r t i n g  models produce very s i m i l a r  flow 

patterns i n  t h i s  upper p a r t  o f  the system. Consequently many of t h e  

Parameters which are necessary t o  speci fy t h e  complete model a re  

undeterminable from the avai lab le data. 

3 )  It i s  d i f f i c u l t  t o  do parameter studies w i th  t h e  complete 2-D 

numerical models, which take considerable computer time. 

1907F 



One observation from t h e  numerical modeling i s  t h a t  once t h e  flow f i e l d  

i s  established, i t  changes slowly compared t o  the evolut ion o f  t he  temperature 

f i e ld .  AS a resul t ,  we can model t h e  area where temperature f i e l d  i s  observed 

w i t h  an e f f i c i e n t  ana ly t i ca l  model assuming a f i x e d  f l u i d  f low pa t te rn  w i t h  

on l y  l a t e r a l  flow. Ignor ing changes i n  thickness through the  f i e l d ,  t h e  

system i s  modeled as a s ing le  aqui fer  bounded above and below by regions of 

conductive heat transfer. Hot water i s  i n jec ted  i n t o  the  aquifer t o  model t h e  

heat put i n t o  the  system by the  intrusions. With these simpl i fy ing 

assumptions, ana ly t i ca l  ca lcu lat ions a r e  made o f  the surface gradient, 

temperature d i s t r i b u t i o n  i n  the cap, and temperature d i s t r i b u t i o n  along a 

f lowl ine for a l l  possible aquifer-cap thickness r a t i o s  and system ages. 

Parameter conbinations which produce temperatures agreeing w i th  observations 

a r e  ident i f ied.  To t e s t  t h e  v a l i d i t y  o f  t h e  model and t o  a r r i v e  a t  an 

estimate o f  the age o f  the system, values o f  parameters consistent w i t h  the 

observed temperature data a re  compared w i t h  independent estimates from 

geophysical data. O f  course, t h i s  mode? does not he lp us understand the 

nature of t he  recharge o f  t h e  hydrothermal system, nor does i t  g i v e  us an 

understanding of the depth or  l a t e r a l  extent o f  the in t rus ion zone. 

- .. 

, !  
I 

QUANTITATIVE MODEL OF THE GEOTHERMAL SYSTEM 

Formul a t  i on 

The heat t ransfer  model i s  based on steady-state f l u i d  f low w i t h i n  a 

hor izonta l  aqui fer  bounded by impermeable cap rock above and by  impermeable 

basement below. Figure 4 shows t h e  model configuration. The density, pr, 

and s p e c i f i c  heat, Cr, of t he  cap rock, aqui fer  rock matrix, and basement 

a r e  assumed t o  be ident ica l .  The thermal conduct iv i ty o f  the cap rock and 

basement rock 1s kr, and the  densi ty  and spec i f i c  heat o f  the rese rvo i r  

f l u i d  are pf and Cf, respectively. The thermal d i f f u s i v i t y  ar = k,./(PrCr). 
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' The reservoir porosity is 9. The dominant heat transfer mechanism i n  layers 

I and I11 i s  vertical conduction and horizontal conduction is ignored. In 

layer 11, the dominant mechanism is  postulated t o  be horizontal f l u i d  

convection. T h e  temperature i n  layer I1 is  assumed t o  be;independent of 

depth, perhaps homogenized by small scale convection 'del 1s (Younker and 

Others, 1982). The i n i t i a l '  temperature of the t o t a l  system is zero, and the 

surface temperature a t  z=O is maintained a t  zero. Starting a t  t = O ,  hot f l u i d  

flows into the aquifer through one boundary, called the i n p u t  boundary of the 

model. - The f l u i d  velocity field c -  v'(x,y) is not determined from the equations. 

Instead, i t  is  assumed t o  be fixed by factors outside this formulation of the 

problem. The f l u i d  is  incompressible, and $(x,y) is assumed stationary, With 
n o  vertical component. With these definitions and constraints, the  governing 

f ie ld  equations for  layers I ,  11, and 111 are given by: 

a2T I 
a, a t  = a,2 

I. 1 aT I -- 

1 aTIII a2TIII 111. -at = 
% a 8  

s o ,  t < c o  TI = TII = TIII  

. !  
I 

A 
The horizontal gradient operator is defined by V2 = ;a, + yay. 

I t  is instructive t o  solve Eqs. ( I )  t o  (3) for the very simple case where 
3 L 

f l u i d  velocity is uniform, 'v = vx, and the bounding layers a re  thermal 

insulators. Then Eq. (2 )  has the form 

j 

i 

1 
- I  

I 

I 
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where 

The parameter b i s  t h e  r a t i o  o f  heat stored i n  t h e  pore f l u i d  t o  heat stored 

i n  the saturated rock o f  the aquifer; Solutions consist  of any function of 

t h e  form T(x,t) = T(x-bvt). A thermal disturbance moves undistorted through 

the aqui fer  a t  a v e l o c i t y  which i s  reduced from f l u i d  v e l o c i t y  by the r a t i o  

b. I f  t h e  i npu t  temperature i s  constant, then the  so lut ion consists o f  two 

regions, one f u l l y  heated t o  the  i n j e c t i o n  temperature and the G h e r  s t i l l  a t  

t h e  i n i t i a l  temperature. Consequently, t o  the  extent t h a t  dispersion and 

hor izontal  conduction can be ignored, the l a t e r a l  f low mechanism could produce 

a narrow t r a n s i t i o n  zone such as observed a t  t h e  Salton Sea. To determine how 

t h i s  abrupt f r o n t  i s  modif ied by  a conducting cap and base, the coupled Eqs. 

(1) t o  (3) must be solved. 

The above f i e l d  equations a r e  cast  w i t h i n  t h e  framework o f  Eulerian 
! 

1 

continuum mechanics which requires the spa t ia l  d i s t r i b u t i o n  o f  f l u i d  v e l o c i t y  

t o  be known. Ul t imately,  such a d i s t r i b u t i o n  e i t h e r  must be calculated based 

on addi t ional  informat ion or, l ack ing  s u f f i c i e n t  information, must be assumed 

t o  be of a given form. An a l te rna te  approach t o  t h e  so lut ion o f  t h e  f i e l d  

equations i s  t o  recast  them i n  terms of a Lagrangian perspective i n  which an 

element of f l u i d  i s  fo l lowed along a streamline. 

The hor izonta l  s p a t i a l  var iab les are replaced by a new t ime var iab le 

t , t h e  f l u i d  residence time. The depth z,  and t h e  t ime t since t h e  problem 

started, remain i n  t h e  equations. Two steps are needed. F i r s t ,  replace X and 
P 

y by the variables E and q, where E i s  t he  distance along a 

streamline (measured from t h e  i npu t  s ide o f  t h e  model) and q determines which 
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' streamline. The term 6 v2 i s  s impl i f ied t o  v(c,rl) 

the v e l o c i t y  along the streamline i s  given by v(C,n) 

the t ime since t h e  f l u i d  p a r t i c l e  a t  C,n entered t h e  

Second, recognize t h a t  a w 
where t (C,n) i s  P 

i npu t  boundary 

( tp(O,n) = 0) Thus, the second term i n  Eqm 2 takes on the form 

and the so lu t i on  does not depend on the choice o f  streamline ( q ) m  In t h i s  

coordinate system, t h e  solut ions depend only  on t and 5. For a given time, 
- .  c -  

t, since f low began, the temperature T(x,y,z)  depends on ly  on how long the  

f l u i d  a t  x and y has been i n  the  system, and not on t h e  d e t a i l s  of i t s  path t o  

tha t  point. Using t h i s  coordinate system, the scaled f i e l d  equations are 

P 
aTI - =  a t  ' 

a2TI 
az; 2 

a*TIII 
2 7 1  2 P 

aTI I I 111. 
I11 

where 
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, The scal ing constants a r e  given by: 

k r  
'IP =- 

The r a t i o  / i s  b, t h e  r a t i o  o f  t he  v e l o c i t y  o f  t he  f l u i d  
t nP 

f r o n t  t o  t h e  v e l o c i t y  o f  t h e  thermal disturbance. The parameter P i s  t he  

r a t i o  o f  t he  heat capacity-thickness products of the saturated aqui fer  and cap 

rock . 
I t  i s  c lear  from t h e  above that,  f o r  a given t ime t '  and f l u i d  residence 

t ime tp', the shape o f  t he  temperature-depth d i s t r i b u t i o n  f o r  the three 

layers depends on ly  upon t h e  s ing le  parameter p and on the  h i s t o r y  o f  t he  

temperature Ti o f  i npu t  f l u i d .  If t h a t  i n j e c t i o n  temperature i s  constant, 

an expression for t h e  temperature f i e l d  w i t h i n  the  cap rock can be obtained b y  

tak ing the Laplace transf.orm o f  Eqs. (4)-(6) and solv ing the r e s u l t i n g  set  of 

1 
I 

equations subject t o  t h e  appropriate i n i t i a l  and boundary conditions. 

Cont inu i ty  o f  temperature across the interfaces separating regions 1-11 and 

11-111 i s ,  of.course, required. The so lut ion is :  

, ? B O  I 1 

s sinh(/s/p) 

= 0, T 5 0  

where 

K(s,p) = 1 + coth (/57-P) 

I 

(7 )  
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Here, s is  the transform variable corresponding t o  T = t '  - tpl and 

<il indicates an  inverse Laplace transformation w i t h  respect t o  s. The 

temperature f ie ld  TI i n  the cap rock is approximated by i n v e r t i n g  Eq (7)  

numerically using a scheme proposed by Stehfest (1969). 

The formulation of  the temperature field t o  this po in t  allows for an 

arbitrary flow configuration. As a result, the solut ion has been obtained i n  

terms o f  f l u i d  residence time w i t h i n  the reservoir, w i t h o u t  having any 

knowledge of the posi t ion 

tp'. Having no knowledge - 
geometry t o  determine the  

form, the f l u i d  residence 

from conservation of mass 

X '  
k r  

t i=CP ~ 

of any f l u i d  element a t  time t '  and residence time 

of the actual flow f ie ld ,  one must assume a flow 

location of the f l u i d  element. In the dimensionless 

times for  radial and linear flow can be determined 

as sumi n g i ncompressi b 1 e f 1 u i d f 1 ow: 

t -  

( r adi a1 ) 

( 1 inear) 

where Qr(mass/time) and Qe(mass/length.time) are the injected mass flow . 

rates for  radial and linear flow, respectively. The dimensionless nunbers 

I" = r/zo and X I  = x/zo are the scaled distances from the Injection 
' '_ 

boundary . 
T h i s  formulation is similar t o  one developed by Avdonin (1964), and 

applied t o  geothermal injection calculations more recently by a variety of 

workers. The main distinctions between the approaches concern assumptions 

about horizontal conduction i n  the aquifer, allowable f l o w  geometric i n  the 

aquifer, and thickness o f  the cap and basement. Our formulation does n o t  

include horizontal conduction i n  the aquifer i n  contrast t o  the Avdonin 

approach. Avdonin imnediately assures radial flow i n  the aquifer, while our 
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' f h i d  residence t ime approach i s  somewhat more general. We assume a given 

surface temperature, which f o r  long t ime periods insures tha t  the temperature 

f i e l d  i n  the  cap rock w i l l  no t  be an image of t h e  temperature f i e l d  i n  the  

basement. Avdonin's formulation, on the other hand, assumes an i n f i n i t e l y  

th i ck  cap and basement. 

General Features o f  the  Model 

The a p p l i c a b i l i t y  of t h i s  model can be i l l u s t r a t e d  b y  comparing model 

ca lcu lat ions w i th  observations o f  the  major character ist ics o f  the thermal 

anomaly. Two samples o f  ca lcu lated temperature f ie lds  for horizontal,  rad ia l ,  
- -  

incompressible f l u i d  f low are shown i n  Fig. 5. The par t i cu la r  parameters fo r  

t h i s  problem are l i s t e d  i n  Table 1. Several propert ies of the observed 

temperature f i e l d  are seen i n  the  model. Figure 5A shows the calculated 

v e r t i c a l  temperature p r o f i l e s  i n  t h e  cap ( layer  I )  a t  various distances from 

the f l u i d  source a f t e r  9340 years. As observed i n  Zone A, the calculated 

gradient i s  near ly  constant w i t h  depth and var ies l i t t l e  wi th  locat ion f o r  

distances o f  0 t o  2.5 km f rom the  source. As observed i n  Zone C, the 

near-surface gradient decreases over a short  distance and the  gradients 

increase not iceably w i t h  depths f o r  distances between 2500 and 3000 m from the  

source. F ina l ly ,  as observed i n  Zone B, calculated temperature p r o f i l e s  

beyond 3 km are no t  y e t  perturbed by  the  hydrothermal system. 

The evolut ion o f  t h e  gradient d i s t r i b u t i o n  a t  t he  surface i s  i l l u s t r a t e d  

i n  Fig. 58. The near-surface gradient is  st rongly  influenced by the 

i nsu la t i ng  nature o f  t h e  cap. During e a r l y  times, before steady-state heat 

f low can be developed anywhere' i n  the  cap, the  heat from the aqui fer  i s  no t  

f u l l y  detectable a t  t h e  surface. A t  l a t e r  times, t h e  gradient gradual ly 

decreases w i t h  distance from the  source when the  heat loss through the cap 

balances the  heat de l i vered  t o  t h e  aqui fer  by  t h e  f l u i d .  However, i n  a f a i r l y  
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I narrow range of intermediate times (in this case, 6,000 - 20;OOO years) the 

gradient does not  change much w i t h  distance near the center b u t  drops off 

rapidly p a s t  some cr i t ica l  distance. 

From this example, i t  i s  seen that for a restricted range of ages, 

results from a simple model match some of the features of the t.emperature 

distribution i n  the Salton Sea Geothermal Field. In the following Section,. we 

determine the  model parameters that  produce the best f i t  t o  the observed 

temper a t  ur e data. 

APPLICATION OF THE MODEL 

Age and Flow Rate Estimates 

The simplicity of the above model makes i t  possible t o  determine the 

ent i re  range of parameters that  provide solutions which match the thermal data 

from the field.  Thus ,  we can identify a range of flow ra tes  and system ages 

consistent w i t h  thermal data and other geophysical measurements in the field.  

The gradient data from Fig .  2 were edited and p u t  i n t o  a one-dimensional ! 

p l o t  which can be compared t o  curves such as those i n  Fig.  58. Lee and Cohen 

(1979) recognize that  a t  l ea s t  four of  their shallow well gradients a re  SO 

large and so different from the deep well values tha t  ,they must be superficial 

phenomena caused by local hydrologic circulation. Because our model does not 

attempt t o  explain variations on this scale, we eliminated these data. A 

regional gradient of O.1l0C/m was subtracted, from the data. Because of the 

roughly semicircular shape o f  the on-shore thermal anomaly, we assumed a 

radial geometry for flow i n  the model. An arbitrary center near the middle of 

the magnetic anomaly was chosen, and the existing surface temperature-gradient 

data were plotted versus distance from th is  center (Fig. 6). Two features a re  

prominent on the plot. First, the two zones (A and B )  referred t o  ear l ie r  can 

be recognized. They a re  separated by a narrow transit ion zone 4 t o  5 km from 

. .  

. .  
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, - the center. Second, a s l i g h t  r i s e  i n  gradient w i th  distance i n  Zone A i s  

observed. This second feature cannot be matched by the simple f low model i n  

beds of  uni form thickness. 

Once r a d i a l  f low i s  assumed, t h e  shape o f  t he  temperature-distance curves 

depends on ly  upon two parameters. One parameter, p, i s  simply the r a t i o  of 

t h e  heat capacity-thickness product o f  t he  aqui fer  t o  t h a t  o f  the  cap rock. 

The other parameter i s  t', the  system age since flow started. The scale 

f a c t o r  f o r  ca lcu la t ing  distance from t I must a lso be estimated. These 

parameters can not  be d i r e c t l y  determined from the measured thermal data. A 

procedure was developed t o  ob jec t ive ly  r e l a t e  t h e  calculated thermal f i e l d  t o  

P 

7 -  

observations. For a given geometry, distance from the heat source can be 

r e l a t e d  t o  t I by Eq. (8) o r  (9). The scale factor i n  t h i s  re la t i onsh ip  i s  P 
estimated from t h e  fo l l ow ing  procedure. The so lu t ion  f o r  temperature (Eq. 7) 

i s  i d e n t i c a l l y  zero i f  t '  - tpB < 0.. Consequently, a t  each time, t', 

the re  i s  a distance rb beyond which t h e  i n i t i a l  temperature f i e l d  i s  

undisturbed. I f  p and t '  are  chosen, t h i s  parameter can be estimated from the. 

thermal data, and i s  used t o  represent the scal ing from t I t o  distance, 

such t h a t  r = r m. Therefore, given a value o f  rbm the  

\ 

P 

b P  
temperature f i e l d  w i t h i n  the  cap can be calculated f o r  any p and t', using Eq. 

(7). 

The thermal breakthrough distance rb represents the  thermal f r o n t  i n  

the aquifer. Because o f  t he  thermal i n e r t i a  of the cap, rb cannot be 

determined v i s u a l l y  f rom the surface.gradient data i n  Fig. 6. An average cap 

thickness zo of 500 m (based on the  thermal data, Younker and others, 1982) 

was chosen. For each p and t', t h e  optimal value o f  rb was found. The 

c r i t e r i o n  used was the sample variance o r  average squared dif ference between 

t h e  f i e l d  data and t h e  ca lcu lated gradients. :Contour p lo t s  of t h e  optimal 
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' 
thermal breakthrough distance and t h e  r e s u l t i n g  variances as a funct ion o f  p 

and t '  are shown i n  Figs. 7 and 8.. 

A trough of low variance extends from t h e  middle o f  . t h e  p l o t  t o  the  lower 

r i g h t .  Models characterized e i t h e r  by h igh values o f  t u  or by  low values of P 

and t '  do not  f i t  the data as we l l  as do models w i t h  parameters-within t h i s  

trough. This i s  i l l u s t r a t e d  by  a 'cmpar ison o f  four  models with d i f ferent  

parameter combinations represented b y  t h e  cases A, 6, C, and 0 i n  Figure 8. 

Figure 9 i s  a p l o t  o f  t he  surface gradient versus the distance f o r  these four 

models characterized b y  d i f f e r e n t  values o f  t '  and p. The gradient data have 

been normalized so the v a l u e ' a t  the center of t he  f i e l d  i s  1 and the value a t  

- 7 -  

i n f i n i t y  i s  0. Models which match t h e  data w e l l  a re  Characterized by a broad 

f l a t  zone o f  h igh  gradient i n  the ,center and by a narrow t r a n s i t i o n  zone t o  

t h e  zone o f  low gradient (Model D). The other models general ly have a more 

gradual t r a n s i t i o n  f rom the zone of h igh  gradient t o  the zone o f  low gradient. 

Using o n l y  t h e  shape o f  t he  p l o t  o f  surface temperature gradient versus 

distance, i t  i s  possible, therefore, t o  Sdenti fy preferred values of t '  and .,' 
p. This space can be f u r t h e r  constrained by imposing t h e  aqui fer  geometry 

i n fe r red  from geophysical data. From equation 6, p i s  approximately h/zoo 

The cap thickness i s  chosen t o  be 500 m, based on the i n te rp re ta t i on  of the 

temperature gradient data i n  deep we l l s  (Younker and others 1982). The 
. .  

maximum thickness o f  the aquifer can be constrained by the depth t o  basement 

in fer red by  F r i t h  (1978) f rom seismic re f ract i .on studies and i s  somewhere 

between 1500 and 4500 m. A l te rna t i ve  constraints on the aqui fer  thickness may 

be provided by  t h e  r e s i s t i v i t y  and magnetic data. Kasameyer (1976), using the 

surface r e s i s t i v i t y  measurements, mapped two r e s i s t i v e  zones in fer red t o  be 

t h e  t o p  and bottom of t h e  hydrothermal system. ' I n  the  main p a r t  o f  t he  f ie ld,  

the top  of the shal low r e s i s t i v e  zone i s  estimated t o  be shallower than 500 ms 

a depth general ly cons is tent  wi th  other estimates o f  t h e  cap thickness. The 
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I t o p  o f  t h e  lower r e s i s t i v e  zone i s  estimated t o  be shallower than 2000, making 

the aqui fer  1500 m th ick.  A s l i g h t l y  th icker  aqui fer  might be i n fe r red  from 

t h e  magnetic data. Griscom and Muff ler (1971) estimate a dike-plutonic 

complex a t  approximately 2500 m on the basis o f  the large magnetic anomaly 

t h a t  runs the  length o f  t he  area. Unless t h i s  mater ia l  Ss extensively 

fractured, t h i s  depth probably represents a maximum depth o f  reservo i r  rock. 

. .  

These estimates al low the  parameter p to '  be constrained t o  values between 

3 and 9. Low model variances are consistent w i t h  t h i s  constraint,  i nd i ca t i ng  

t h a t  t h e  model i s  plausible. 
7 -  

The model can be used t o  draw conclusions about t h e  geothermal system, 

such as estimates of i t s  age and r a t e  o f  f l u i d  i n f l u x  i n t o  the modeled area. 

I n  order t o  do th i s ,  values o f  t h e  heat capacity o f  t he  f l u i d ,  and heat 

capacity, thermal conduct iv i ty  and densi ty o f  the rock must be .chosen. We 

used t h e  values i n  Table 1, which were bel ieved t o  be reasonable f o r  t h e  

sedimentary rocks a t  the SSGF. Errors  r e s u l t i n g  from uncertaint ies i n  the cap 

and aquifer thicknesses, and i n  the  best  parameter f i t  are bel ieved t o  be much 
1 

l a rge r  than the errors  r e s u l t i n g  from uncertaint ies i n  these physical 

proper t i es . 
The model can be used t o  ca lcu late ra tes o f  f l u i d  f l o w  w i t h i n  t h e  

hydrothermal system. A dimensionless f low parameter can be defined as: 

2 
'rb = l o g  - 'Qrcf c = l o g  - e krzo t ' Z 0  

where we have used Eq. (8) and t h e  f a c t  that, a t  thermal breakthrough, 

r = rb and t' = . Figure 10, i s  a contour p l o t  o f  c calculated 

from t h e  optimal rb values i n  Fig. 7. I n  the  preferred por t ion of t h e  p lo t ,  

convective flow var ies from 1 x 10 7 3  m /year t o  3 x 10 7 3  m /year. 
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It i s  poss ib le  t o  use t h e  f l o w  model t o  estimate t h e  system age. I n  

Figure 11, values o f  system age, t, are contoured from 

t ' =  [kr/(prCrpz,)]t. Estimates o f  system age f o r  t h i s  model 

range from 3,000 t o  20,000 years. As a comparison and using t h e  

2 

potassium-argon method Mu f f l e r  and White 1969, the surface volcan.ic rocks have 

been dated a t  16,000 years w i t h  an upper bound OT 56,000 years. Randall 

(1974) argues t h a t  these data r e s u l t  i n  a reasonable estimate f o r  the age Of 

t h e  l a t e s t  geothermal system i n  t h e  area. Dutcher and others (1972) estimate 

the age o f  the steady-state f low system t o  be ,"not longer than 50,000 years 

bu t  probably more than 25,000 years." Their estimate i s  based on the  b r i n e  
- .. 7 -  

composition and on an assumed mechanism f o r  the accumulation o f  dissolved 

minerals i n  t h e  brines. While our system age estimates are somewhat lower 

than those previous estimates, i t  i s  agreed.that the Salton Sea System i s  a 

very young system. 

Comments on Assumptions i n  Model 
\ 

We have assumed t h a t  hor izonta l  conduction can be ignored i n  t h i s  model. 

The assumption t h a t  hor izonta l  conduction i s  much smaller than v e r t i c a l  

conduction i n  layers I and I11 i s  v a l i d  i f  T = 2kJ(Cfq) i s  l ess  than 1 

(Hanson, 1977). The assumption t h a t  hor izontal  conduction i s  smaller than 

hor izontal  convection i n  t h e  aqui fer  i s  v a l i d  i f  Cfq/kf = 2 k,/kfT i s  

larger  than 1. I n  both of these tests,  q i s  the f l u i d  mass f lux-aquifer 

thickness product. Because t h e  rock conduct iv i ty i s  general ly 1 arger than the  

f l u i d  conductivi ty, the f i r s t  t e s t  i s  more r e s t r i c t i v e  than the second. For 

r a d i a l  flow, = Qr/hr. From equation 8, 

. .  

4rz0 t B  41krr 

-2=m=T 'b 
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, For the en t i re  range shown I n  Fig.  7,  -0012 t D / r t  < -027. 

For the f i r s t  assumption t o  be v a l i d  

Therefore, these assumptions a re  Jus t i f ied  because we apply the model t o  an 

area less t h a n  10 km across. 

T h e  upper bound on the age I s  determined primarily from the  width o f  the 

transition zone, which indicates the volume of h o t  material is expanding 

l a t e r 4 1 3  f a n  enough so t h a t  the  cap cannot sfay i n  equilibrium w i t h  i t .  The  

age is essentially estimated by determining the present flow r a t e  from t h a t  

zone and by assuming the flow r a t e  has been constant since the system 

started. The age would be different  i f  the system had pulses o f  f l u i d  flow o r  

if i t  resulted from a single in t rus ion ,  w i t h  the flow r a t e  decaying as  the 

intrusion cools. If the system flow r a t e  i s  decaying monotonically w i t h  time, 

the actual age will be shorter t h a n  estimated. I t  i s  much more d i f f i cu l t  t o  , 

l imit  the age o f  a pulsed system, bu t  a heurist ic argument can be made. 

the f l u i d  flow were t o  temporarily s top ,  ( a  circumstance which may not be 

possible physically), thermal conduction would broaden the transit ion zone, 

and the temperature i n  the aquifer would tend t o  vary slowly from the  center 

t o  the edge of the system. Then, a future upulsen o f  flow would push t h i s  

I 

I f  

smoothed thermal f ront  outwards b u t  would not steepen it. Consequently, t he  

transition zone will r e f l ec t  the smooth character of  the ea r l i e r  pulse, unless 

the pulses are  separated by enough time t o  allow nearly complete cooling of 

the system between pulses.. Consequently, i t  is suggested t h a t  the present 

thermal f i e ld  is the resu l t  o f  a near.ly, continuous pulse of 3,000 t o  20,000 

years duration, t h a t  i t  was preceded by a period of l i t t l e  flow, and t h a t  

information about previous upulsesm i s  not contained i n  t h e  thermal field.  
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One feature o f  t h e  temperature data i s  not matched b y  our model. The 

observed temperature a t  the base o f  the cap (see Younker, and.others, 1982) 

decreases more smoothly w i t h  distance than t h e  calculated temperatures i n  the 

aquifer. This c o n f l i c t  probably i s  caused by the assumption t h a t  the thermal 

cap has uniform thickness throughout t h e  f i e l d .  . 

Comparison w i t h  Other Models o f  Geothermal Systems 

There have been several recent attehpts t o  develop mathematical models of 

the f l u i d  and heat t ransfer i n  spec i f i c  geothermal systems. Garg and Kassoy 

(1981) and Donaldson (1982) have recent ly  provided de ta i l ed  reviews o f  these 
c -  - _  

studies. Most o f  the models constructed f o r  thermal-hydrological systems i n  

t h e  Salton Trough are conceptual ly.s imi lar  t o  t h e  model presented here for t he  

Salton Sea System. Upwelling ho t  f l u i d s  a r e , l a t e r a l l y  diverted by an 

impermeable cap rock or low v e r t i c a l  permeabil i ty reservoir  rock r e s u l t i n g  i n  

a s i g n i f i c a n t  hor izonta l  component of f l u i d  flow i n  the upper port ions of t he  

f i e l d .  1 
\ 

The model of t h e  East Mesa f i e l d  i n  the Imperial Valley, Cal i forn ia ,  

presented by  Kassoy and Goyal (1979) and Goyal and Kassoy (1980) is ,  for  

example, q u a l i t a t i v e l y  and quan t i t a t i ve l y  s im i la r  t o  t h e  model developed here 

for  the Salton Sea f i e l d .  They postulate f a u l t  zone changing of  a shallow 

geothermal reservoir,  w i t h  ho t  f l u i d  assumed t o  f l o w  h o r i z o n t a l l y  as t h e  

r e s u l t  o f  low v e r t i c a l  permeabil ity. They model o n l y  a l i m i t e d  p a r t  of the 

complete c i r c u l a t i o n  pattern, and evaluate t h e  e f f e c t  o f  a v a r i e t y  of 

parameters such as mass f l ow  rate, Rayleigh number and f a u l t  width on 

Pressures, v e l o c i t i e s  and temperatures throughout t h e  aquifer. By inc lud ing 

the d e t a i l s  of the upflow i n  the f a u l t  zone they have developed a more 

c o w l  icated mathematical descr ipt ion of the f i e l d  than t h e  one presented 

here. I n  contrast, our simpler formulation enables us t o  r i go rous l y  compare 
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' model calculat ions f o r  a smaller number o f  parameters t o  the  observed 

temperature d i s t r i b u t i o n  i n  the cap rock. 

Riney and others, 1977, have developed a preproduction areal  model o f  t h e  

Sal ton Sea upper reservo i r  which also postulates s i g n i f i c a n t  hor izonta l  flow. 

Their. two-dimensional numerical simulat ion of hor izonta l  f low w i t h i n  the  upper 

reservoir ,  however, shows f low d i rect ions uni formly from southeast t o  

northwest across the  area modeled i n  t h i s  paper. Thus, they model t h e  f l ow  of 

c o l d  water i n t o  the system i n  exact ly  the opposite d i rec t i on  t o  the f l ow  o f  

h o t  water postulated i n  our model. 
- -  

I n  order t o  analyze t h i s  contradict ion, i t  i s  necessary t o  understand t h e  

uncer ta in t ies associated w i t h  determining natural  f low d i rect ions and r a t e s  i n  

geothermal systems. Ideal ly ,  one could use t race r  studies or  d i r e c t  pressure 

measurements t o  i n f e r  the f low direct ions. To our knowledge, there have been 

no d e f i n i t i v e  t racer  tes ts  designed t o  evaluate t h e  natural  flow, and t h e  

present r e l a t i v e l y  aibiguous pressure data indicates no s i g n i f i c a n t  l a t e r a l  

pressure gradients. ! 
I 

I n  the  absence o f  t h i s  type o f  data, two types o f  approaches can be used 

t o  i n f e r  the natural  f l ow  direct ions.  F i r s t ,  one can use f i e l d  observations 

as a basis for est imat ing pressure variat ions, and use these estimates t o  

ca lcu late f l o w  d i rect ions and rates. ' T h i s  i s  the approach taken by Riney and 

others, (1977), i n  which they use thermal data from t h e  ends of t h e  f i e l d ,  t h e  

d i p  of the reservo i r  rocks and the b r i n e  equation o f  s t a t e  t o  calculate a 

pressure d r i v e  across t h e  f i e l d .  Al ternat ively,  one could i n f e r  f l o w  

d i rec t i ons  from an analysis of f i e l d  character is t ics  without f i r s t  est imat ing 

t h e  pressure var iat ion.  The procedure i s  t h i s  case i s  t o  constrain f l ow  

d i rec t i ons  by  analyzing observed products o f  t h a t  flow. Elders and others 

(1983), recent ly  used t h i s  type o f  approach t o  constrain natura l  f l ow  patterns 
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i n  the  Cerro P r i e t o  f i e l d .  They used mineralogic and i so top ic  data from we l l  

cu t t ings  and cores t o  i n f e r  the  flow direct ions. 

I n  t h i s  paper, we have s i m i l a r l y  appl ied t h i s  approach, us ing geophysical 

data ra the r  than geochemical data t o  i n f e r  the character is t ics  o f  the natura l  

flow. Flow d i rec t ions  a re  postulated us ing t h e  observed pa t te rn  o f  

geophysical anomalies, and the  i n f e r r e d  character is t ics  o f  the reservo i r  

rock. A p p l i c a b i l i t y  of t h e  model i s  assessed by  comparing model calculat ions 

w i th  the observed thermal gradient data. Because the  two d i f f e r e n t  approaches 

y i e l d  r a d i c a l l y  d i f f e ren t  resu l t s  f o r  t h e  Salton Sea f i e l d ,  i t  i s  necessary t o  

analyze t h e i r  impl icat ions i n  more de ta i l .  

A hor izonta l  pressure gradient away from t h e  center o f  t h e  f i e l d  i s  

required t o  produce the f l u i d  flow patterns used i n  our model. The pressure 

di f ference a t  two distances can be calculated f o r  the . rad ia1  f l o w  mode by 

in tegra t ing  Darcy.'s Law. 
7 3  For the  la rges t  estimated f l ow  r a t e  (Qr = 3 x 10 m /year), 

v i scos i t y  f o r  h o t  b r i n e  (0.1 centipoise), moderate permeabil ity, (100 MD), and 

an aqui fer  thickness o f  2000 M, then 
1 

r2 
P(rl)  - P ( r 2 )  = (11 p s i )  l o g  - 

. r1 

For example, measurements a t  opposite ends o f  the  f i e l d  (perhaps a t  r = l  km 

and r=5), a pressure d i f ference o f  up t o  13 ps i  could be expected. 

Measurements would have t o  determine formation pressures w i t h i n  a s ing le 

hydrologic un i t ,  and corrected accurately f o r  d i p  o f  t h e  u n i t  between t h e  

wells. 

t h e  predicted pressure gradient could be detected. 

If cor rec t ion  terms can be calculated accurately t o  a few psi, then 

Less accurate pressure measurements could be used t o  d is t ingu ish  between . 

t he  model discussed here and the  Riney, e t  a1 model. That model i s  based on 

s im i la r  thermal data, bu t  p red ic ts  a pressure drop o f  over. 50 p s i  d r i v i n g  co ld  
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I f l u i d  - i n t o  the  geothermal f i e l d .  This pressure d r i v e  comes from estimating 

the pressure a t  e i t h e r  end o f  the f i e l d .  

These pressures are calculated from the  observed temperature - depth 

p ro f i l es ,  apparently assuming: 

The upper reservo i r  i s  a water-table aquifer, wi th  t h e  water-table 

a t  the ground surface (Morse and Stone (1979) concluded the upper 

reservo i r  i s  a confined aquifer.). 

Density can be calculated assuming s a l i n i t y  i s  f i x e d  (Helgeson . 

(1968) observed t h a t  s a l i n i t y  varies w i t h  temperature i n  t h i s  f i e l d ,  

keeping density nea r l y  constant). 

There i s  no v e r t i c a l  convection i n  the  upper reservoir.  I n  order t o  

maintain h igh temperatures i n  the reservo i r  given the i n f l ux  of c o l d  

water from t h e  southeast, t h e i r  model requires a s i g n i f i c a n t  input 

o f  h o t  f l u i d  from the lower reservoir,  i n  c o n f l i c t  w i t h  conclusions 

drawn from oxygen isotope studies (Kendall , 1976), observed v e r t i c a l  

s a l i n i t y  differences, and in fe r red  v e r t i c a l  permeability. 

7 -  - 

. 

An e r ro r  of on l y  4% i n  the  larger  o f  t he  two calculated pressures would 

be adequate t o  account f o r  the 50 p s i  pressure d r i ve  which they calculated. 

We bel ieve t h a t  t h e  uncertaint ies r e s u l t i n g  . .  from t h e  above assumptions are 

large enough t h a t  f low i n  the opposite d i r e c t i o n  i s  possible. 

Furthermore t h e i r  model does not  attempt t o  account f o r  t h e  natura l  

evolut ion of the system, or  t o  fit other aspects of the thermal f i e l d ,  l i k e  

t h e  uniform heat f l o w  w i t h i n  t h e  thermal cap. Consequently, we do not be l ieve 

t h a t  t h e i r  preproduction model inva l idates ours. 

Future Invest igat ions o f  t h e  Hydrothermal System 

Hydrothermal models o f  t he  type presented i n  t h i s  paper are useful for  

several reasons. F i r s t ,  they permit  est imation o f  parameters t h a t  are not  
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e a s i l y  or  d i r e c t l y  measurable i n  the  f i e l d ,  as i n  t h e  case o f  t h e  age o f  t h e  

system and f l ow  rates. Second, they provide a basis f o r  extrapolat ing t h e  

data beyond t h e  d r i l l e d  or  surveyed area. These extrapolat ions have l e d  t o  

re f i ned  estimates o f  the recoverable thermal energy (Younker and Kasameyer, 

1978). I n  t h i s  appl icat ion the  model h igh l i gh ts  the  resource po ten t i a l  of t h e  

t r a n s i t i o n  reg ion where low surface gradients are found above a h o t  aquifer. 

Third, they del ineate areas o f  major uncertainty and, therefore, can guide 

fu tu re  e f f o r t s  toward increased understanding o f  the subsurface processes. 

There i s  extensive data from one p a r t  o f  t h e  hydrothermal system i n  t h e  

Salton Sea area. Within t h e  surveyed f i e l d ,  hor izonta l  f low i n  a confined 

aquifer away from a l a r g e l y  unspecif ied heat source adequately explains some 

character is t ics  of the thermal anomaly. Major aspects o f  the hydrothermal 

system remain subject t o  question. The fo l l ow ing  questions remain regarding 

the aquifer: 1) How deep i s  the region of hor izonta l  f low? 2)  What i s  the Plan 

view o f  t he  f l o w  t o  t h e  no r th  o f  t he  f i e l d ?  and 3 )  What are t h e  recharge 

pathways? The fo l lowing questions remain regarding the heat source: 

are t h e  exact locat ions of intrusfons? 2)  How f a r  apart are they? 3)  How hot  

are they? 4) What i s  the r a t e  o f  intrusion? 

1) What,! 

The simple hydrothermal model presented i n  t h i s  paper provides a 

framework fo r  i nves t i ga t i ng  some of these questions. The model generates 

testab le predict ions which can be evaluated both b y  surface heat-flow 

measurements and by observations i n  addi t ional  deep wells. The model p red ic t s  

t h a t  i f  t h e  host rocks were uni formly permeable then: 

1) An area o f  h igh  heat flow (4 t o  5 times normal) and o f  uniform heat 

f low w i l l  be found t o  t h e  northwest of t h e  volcanic buttes. 

2) The area o f  uni form 

wide) zone o f  r a p i d  

heat f l ow  w i l l  be bounded by a narrow (1  km 

t r a n s i t i o n  t o  reglonal  heat ' f low. . 
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Lee and Cohen (1979) attempted t o  measure heat flow beneath t h e  Sal ton 

Sea, northwest o f  the volcanic buttes, using a 2-m lance- l ike rhermal probe. 

They detected a thermal anomaly of areal extent s im i la r  t o  t h e  SSGF, bu t  

question the v a l i d i t y  o f  these measurements because offshore heat flow values 

are a factor o f  three above values measured onrshore. . The predicted anomalies 

could be detected and del ineated by heat-flow measurements i n  r e l a t i v e l y  

shallow holes. Furthermore, i n  the  t r a n s i t i o n  region, t h e  model predic ts  

t h a t  , as the hydrothermal zone i s  approached, the cap-temperature gradient 

should increase wi th  depth. This predic t ion can be tested by deeper wel ls  a t  
- ._ 

the  margin o f  the zone o f  h igh  heat flow. 

If t h e  model i s  supported by new data and t h e  locat ion of t h e  t r a n s i t i o n  

region i s  mapped by the shallow heat-flow measurements, then quan t i t a t i ve  

estimates can be made of t h e  location, volume, and r a t e  o f  input  o f  the heat 

source. As an example, assume t h a t  a r a d i a l  f low model i s  supported by t h e  

s p a t i a l  geometry o f  t h e  boundary region. Using t h e  simple expressions f o r  

heat input  t o  the system, it i s  possible t o  ca lcu late the t o t a l  heat i npu t  t o  ! 

t h e  system per u n i t  thickness o f  aqui fer  i n  the  preproduction state. 
1 

Therefore, assuming basa l t i c  intrusion, one can calculate the volume of magma 

required t o  in t rude and lose i t s  heat t o  each ki lometer o f  aquifer. I f  t h i s  

can be constrained fu r the r  by d i r e c t  o r  i n d i r e c t  measurement of the aquifer 

thickness, estimates o f  t h e  intruded magma volume can be made. These 

estimates could guide any future e f f o r t s  t o  explore the deeper port ions of t he  

hydrothermal system. 

SUMMARY AND CONCLUSIONS 

The tecton ic  s e t t i n g  and geophysical data suggest a zone o f  l o c a l i z e d  

i n t r u s i o n  i n  the o f f s e t  region between the Brawley f a u l t  and the San Andreas 

fau l t .  Mafic and s i l i c i c  dikes in t rude t o  within one ki lometer o f  t h e  surface 
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i n  t h i s  area, and may be t h e  product o f  t he  magmatic body which provides the  

source o f  heat f o r  t he  Salton Sea Geothermal Field.  Because of low v e r t i c a l  

permeabil ity, convection c e l l s  which have large scale v e r t i c a l  motion within 

the explored area are precluded. High hor izontal  permeabil i ty and 

demonstrated l a t e r a l  c o n t i n u i t y  o f  reservoir  sands promote l a t e r a l  flow of 

f l u i d  away from the zone o f  intrusion. 

TWO features o f  t h e  temperature f i e l d  put  addi t ional  constraints on t h i s  

conceptual model. F i r s t ,  uniform steady-state heat f low i s  observed i n  a 

500-m t h i c k  thermal cap over an area o f  30 t o  40 km . This observation 

indicates t h a t  t h e  f l u i d  f l o w  patterns and r a t e  o f  heat de l i ve ry  t o  t h e  

2 
- -  

thermal cap i n  t h i s  area have not changed f o r  a substantial per iod of t ime.  

Second, t h e  per iphery o f  t h e  high heat-flow zone i s  abrupt and t h e  thermal 

gradient i n  the cap increases s i g n i f i c a n t l y  w i th  depth as the hydrothermal 

zone i s  approached.. These observations indicate t h a t  heat has been del ivered 

t o  the periphery f o r  a much shorter t i m e  than i s  required f o r  conduction i n  

t h e  cap t o  come t o  steady-state equi l ibr ium and t h a t  the region of high 

temperature below the  cap i s  expanding. 
t 

A two-dimensional model o f  hor izontal  f l u i d  flow outward from a local ized 

heat source produces thermal f i e l d s  which match these observations. The model 

1s simple enough t h a t  ana ly t i ca l  r e s u l t s  can be evaluated f o r  a broad range of 

parameters. The system age i s  estimated by minimizing the variance between 

t h e  observed surface heat-flow data and the  model. Age estimates range from 

3000 t o  20,000 years, consistent w i t h  the hypothesis t h a t  the Sal ton Sea 

Geothermal F i e l d  i s  p a r t  o f  a veryyoung hydrothermal system. 
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, FIGURE CAPTIONS 

Figure 1. 

Fi  gure 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Location of the Salton Sea Geothermal Field (SSGF) and nearby 

faul ts  i n  the Imperial Valley (modified from Elders and others, 

1972). The SSGF 1 ies w i t h  the Salton Sea Known Geothermal 

Resource area Sndicated by the irregular boundary southeast Of 

, 

the Salton Sea. Basement rocks a re  indicated by stippled pattern. 

Locations of thermal zones A, 6 and C. The zones are 

superimposed on a map of thermal. gradients (OC/per 100 m).  Open 

synbols indicate data from deep wells (Younker and others, 1982)s. 

and closed symbols indicate data from shal low wells (Lee and 

Cohen, 1979) . 

- -  

Representative temperature depth profiles from Zone A wells and 

Zone C wells. The Sinclair  wells are from Zone C, where the 

gradient increases w i t h  depth. . O t h e r  wells are  i n  the central 

part of the f i e ld  (Zone A). 

Geometry of the flow model showing the cap rock, aquifer, and 

basement thickness. 

Samples of calculated temperature fields i n  layer I for 

horizontal radial incompressible-flow: 

temperature prof i le  i n  the cap a t  different distances from f l u i d  

source a f t e r  9340 years, 56 shows the evolution o f  the gradient 

distribution a t  the surface for different times. 

5 A  shows the vertical 
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' Figure 6. 

Figure 7. 

c -  

Figure 8. 

Figure 9. 

Figure 10. 

Figure 11. 

1907F 

Observed surface temperature gradients p l o t t e d  versus distance 

from the postulated center of t he  Sal ton Sea Geothermal Field.  A 

regional  va lue .o f  0.11 "C/m i s  subtracted from t h e  gradient data. 

Values o f  t h e  thermal breakthrough distances (In km) which 

minimize t h e  squares o f  t he  dif ferences between t h e  thermal 

gradients from f i e l d  data and from a model calculated for various 

values of p and t '  contoured on a p l o t  of l o g  t '  versus l o g  p.  

Model variance (sum o f  squares o f  d i f ferences between the  modeled 

thermal gradients and the  observed) contoured on a p l o t  of log  t' 

versus l o g  p. 

P lo ts  o f  scaled surface temperature gradient  versus distance f o r  

d i f f e r e n t  models. The parameter values f o r  each case are 

ind icated b y  s m o l s  on Figure 8. O f  these cases, model D f i t s  .,' 

the observations best. 

Dimensionless f l ow  parameter, contoured on a p l o t  o f  l o g  t '  

versus l o g  p. Numbers i n  parentheses are the  computed volumetric 

f low ra tes  i n  m i l l i o n s  o f  cubic meters per year, us ing t h e  

parameter values l i s t e d  i n  Table 1. 

Estimates o f  t he  system age superimposed on t h e  model variance 

p lo t .  Parameter values used i n  the  ca l cu la t i on  are l i s t e d  i n  

Table 1. Low variance models a re  associated w i th  ages from 3,000 

t o  20,000 years. 
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TABLE 1. Parameters used i n  several calculat ions. 

Qr = 1.6 x lo7 */yr 

9 = 0.20 

zo = 500 m 

C, = 954 J/kg-K 

= 2500 k g / d  Pr 

kr = 3 w/m-k 

p f = 1000 k g / d  

Cf = 4180 J/kg-K 

h = 4270 m 

Mhere Qr i s  the  in jec ted  mass f low r a t e  f o r  r a d i a l  f low 

0 i s  the  poros i ty  o f  t he  aqui fer  

zo i s  the  depth o f  t h e  t o p  o f  the  aqui fer  

Cr i s  t he  spec i f i c  heat o f  t he  rock matr ix  

pr i s  the  densi ty  o f  t h e  rock matr ix 

kr i s  the  thermal cpnduct iv i ty  o f  t he  caprock and basement rock 

i s  t he  densi ty o f  t h e  reservo i r  f l u i d  P f  

Cf i s  the speci f ic  heat o f  - the reservo i r  f l u i d  

h i s  t he  aquifer thickness. 
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