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Abstract 
 
The collection of spatial and temporal information is of primary importance for wide-
field transient event detection. Full-field imaging systems coupled with high frame-rate 
detectors readily enable such collections; however, these configurations are not easily 
adapted to secondary missions with more stressing spectral requirements.  While, spectral 
filters (e.g., filter wheel) can be introduced, the spectral bandpasses must be fairly broad 
to accommodate shorter integration times. For staring mode sensors, chromotomographic 
systems offer significant advantages over more conventional systems (filter wheels, 
AOTF, LCTF). Most notably, due to their integration of signal at each pixel, 
hyperspectral data can be collected with higher temporal and spectral resolutions at 
higher signal to noise ratios. These instruments have proven applicable to such diverse 
fields as optical testing, biomedical imaging and airborne remote sensing. The goal of 
this research was to study the applicability of CTS systems to scene and target 
characterization from space-based platforms.
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1. Introduction 

 
 

While staring sensors lend themselves toward wide-field monitoring, detection and 
identification of transient events, they are not easily adapted to hyperspectral imaging. 
Multiple spectral filters may be used to add moderate spectral information; however, the 
need for high temporal rates requires that these filters operate with broad spectral 
bandpasses. For staring sensors one must considered unconventional methods to move 
from low to high spectral (i.e., multispectral to hyperspectral) resolution. 
Chromotomographic systems offer significant advantages of more conventional systems 
(filter wheels, AOTF, LCTF).1,2  Most notably, due to their integration of signal at each 
pixel, hyperspectral data can be collected with higher temporal and spectral resolutions 
and higher signal to noise ratios (SNR).  
 
Chromotomographic spectrometry has a history of approximately 10 years with 
significant amounts of research focusing on the generation of proof-of-concept devices 
(in the visible, mid-wave and long-wave infrared). These devices operate under similar 
principles to medical CT systems.  In medical CT scans, x-rays are passed through the 
body and measured by 2-D detectors. These projections are collected as the x-ray source 
and detector are moved in opposition about the body. In this way, projections are 
captured from multiple view angles. This set of projections is then used to reconstruct 
slices through the body's internal structures.  In chromotomographic spectrometry, 
projections of spectral datacubes (x, y, and λ) are created by imaging through a dispersive 
element. Rotating the disperser is analogous to moving the x-ray source with respect to 
the detector. Now instead of reconstructing 3 dimensions of spatial data, we can 
reconstruct 2 dimensions of spatial and 1 dimension of spectral data (i.e., a spectrum at 
every ground sample across a 2-dimensional (2-D) scene)  
 
These instruments have proven applicable to such diverse fields as optical testing, 
biomedical imaging and remote sensing; however, their utility for scene and target 
characterization from space based platforms has not yet been explored. This was the 
focus of the LDRD entitled, “Reconstruction Algorithm Development and Assessment 
for a Computed Tomography Based-spectral Imager”. This report is broken into the 
following sections: (1) CTS Imaging System and Mathematical Models, (2) 
Reconstruction Algorithm Development (3) Task-Based Measures of Reconstruction 
Quality, and (4) Conclusions.   
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2. Comparison to Standard Spectral Imaging Approaches 
 
Standard spectral imaging approaches require some form of spatial or spectral scanning 
to measure a complete 3-D (x, y, λ) datacube. Figure 1 for example, shows the scanning 
requirements of 3 standard spectral imaging systems.  For 
persistent surveillance applications, it is undesirable to leave 
significant portions of the spatial field or spectral range 
unmonitored in this way. Chromotomographic spectrometers 
(CTS), on the other hand, collect spatial and spectral 
multiplexed datasets. This is done by imaging the scene 
through a dispersive element such as a rotating prism or 
fixed computer generated hologram. Although, the spectral 
and spatial information is now convolved together, this data 
can be reconstructed using knowledge of the system transfer 
function. Such multiplexing of spatial and spectral content 
provides the additional benefit of increased signal at each 
pixel and therefore the ability to detect dim or rapidly 
changing phenomena with a higher signal-to-noise ratio. The 
trade-off for this increased capability is a dramatic increase 
in the complexity of algorithms used to reconstruct the 
desired datacubes. 
 
 
3. CTS Imaging Model 
 
The goal is to reconstruct spectral slices through a 3-D spectral datacube by acquiring 
multiple 2-D projections of that cube. In this way, CTS systems are analogous to standard 
tomographic systems (e.g., x-ray CT systems) used for whole body imaging.  In standard 
x-ray tomography, such projections are acquired by moving an x-ray source past a 3-D 
object and collecting the transmitted signal with a detector moving in the opposite 
direction (See Figure 2).  
 

 
 

Figure 2.  Schematic diagram of traditional computed tomography system. 
 

 
Figure 1. Schematic 
diagram of the spectral 
and spatial information 
collection per 
measurement for standard 
imaging spectrometers.  

X-ray source 

Detector 
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The fundamental difference between standard x-ray tomography and chromotomography 
is that the 3rd dimension of the latter’s object cube is spectral rather than spatial.  In CTS, 
a dispersive element is used to project a 3-D spectral datacube onto a 2-D spatial plane 
(e.g., focal plane array). Figure 3a provides a schematic representation of such spatial-
spectral projections. In order to reconstruct an estimate of the object cube, projections 
from multiple view angles are required. For a CTS, variations in projection angle are 
accomplished by changing the amount or orientation of spectral dispersion. Figure 3b 
shows a CTS which incorporates a rotating direct vision prism to create the later effect. 
As the prism rotates, the image from a single undeviated wavelength (shown in green) 
remains fixed while spectral data from shorter and longer wavelengths rotate about its 
fixed position. Using this method, a single datacube projection is collected per integration 
time. 
 

(a) (b) 
 

Figure 3. (a) Projection of 3-D (2 spatial, 1 spectral) datacube onto a 2-D plane (e.g., focal 
plane array). (b) Schematic diagram of CTS incorporating a direct vision prism. 

 
 
A 2-D spatial projection is simply an integration of 
signal along a series of parallel lines running through a 
3-D object. Such projections can be described 
mathematically by 
  

( ) ( ) ( )∫
∞

⋅−= prr ˆ , 2 pfrdpg δφ  (1)

  
where p̂ is the unit vector defined by ( )φφ sin,cosˆ =p . 
The delta functions define the lines over which the 
integration occurs (Figure 4).  
Figure 5 shows examples of several 1-D projections 
through a simple 2-D object.  As mentioned above, spatial-spectral projections are 
achieved through the use of dispersive elements. If one considers that the CTS in  Figure 
3b shifts a spectral image for every wavelength by an amount proportional to the 
spectrometer constant (µ) then a dispersed image may be represented as the integration of 
all such shifted spectral images. 
 

∫ −−−−∗=
λ

φµλλφµλλδλφ )sin][,cos][(),,(),,( 00 mmm yxyxfyxg (2)

Figure 4.  Definition of terms 
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Put more succinctly,  
 

( ) ( )( )
constanter spectromet],sin,[cos

, angle projection],,[where,,, 210

==

==−−= ∫
µφφ

φλλλλµφ

φ

φ

p

xpxx xxdfg
R  (3)

 

 

 
Figure 5. Example of 1-D projections through 2-D object. 

 
 
The reconstruction algorithms described within this document are concerned primarily 
with the spatial frequency representations of the object cube [ ( )λ,ξF ] and projection 
images [ ),( φξG ]. In the discrete imaging model, the projection angles, wavelengths and 
spatial frequency coordinates are sampled as follows: 
 

Mm
M

m
m <≤= 0 , 2πφ           Nnn

n <≤= 0 , 
µ

λ             ( ) Kkkkkk <≤= 212211 ,0 , ξξξ  

 
where, M is the total number of projections, N is the total number of spectral bands and K 
is the total number of spatial samples. In terms of linear algebra, the spatial frequency 
representations of the projection images and object cube are related by means of the 
system transfer function (STF), A. Specifically, for each spatial frequency, kξ , 
 

( )
kkk ξξ FξAG =  (4)

   
where,  Gξk is a vector in CM whose mth component is ( )Mmk πξ 2,#G  

p̂

p p=⋅pr ˆ
o45=φ p 

p 
Projection of 2-D 
object at 3 different 
projection angles 

o0=φ
o45=φ

o90=φp=⋅pr ˆ

p̂

p̂

p=⋅pr ˆ
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 A(ξk) is an M x N matrix whose (m, n)th coefficient is [ ]mk pinExp •− ξπ2  
 Fξk is a vector in CN whose nth component is ( )µξ nk ,F  
 
 
3.1 The Missing Cone 
 
As mentioned above, the work presented here focuses on CTS systems which use direct 
vision prisms to generate projections of spectral datacubes (See Figure 3). Such systems 
have been thoroughly described in by Mooney et al.1  For these systems, the projection 
angle φ is sampled through a simple rotation of the prism and thus varies in orientation 
only. This fact has profound implications on one's ability to properly reconstruct an 
estimate of the spectral datacube from a set of projection images. To understand this 
limitation, we again look to x-ray tomography. A fundamental theorem of tomographic 
imaging is the Central Slice Theorem. This theorem states that the 2-D Fourier Transform 
a single Radon Projection of a 3D object is equivalent to a slice through the object's 3-D 
Fourier Transform. Figure 6 shows an example of the equivalent Central Limit Slice 
theorem for a 2-D object. 
 

 
 

Figure 6.  2-D example of the Central slice theorem. (1) 2-D object. (2) The 1-D spatial 
projection of (1). (3) 2-D Fourier Transform of the object. (4) 1-D Fourier Transform of 
(2). Note that the 1-D Fourier Transform of the 1-D projection is equivalent to a line 
profile through the center of the 2-D Fourier Transform of the object, itself.  
 
 
This theorem suggests a fundamental limit on our ability to accurately reconstruct 
datacube estimates from a limited set of projection images. For a CTS system which 
relies on the rotation of a direct vision prism to generate projection images, the 
magnitude of the projection angle remains fixed while the orientation varies from 0 to 2π. 
To see how this limits our ability to perform reconstructions, we must considered the 3-D 
Fourier Transform (2 spatial frequency and 1 spectral frequency) of the spectral datacube 

F

F Line 

(2) 

(1)

(4)

(3)
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(F). The Central Slice Theorem states that the 2-D Fourier Transform of each projection 
image corresponds to a slice through F.3 This slice passes through the origin at an angle 
equal in magnitude and orientation to that of the projection angle.  Figure 7 shows the 
effect of increasing numbers of projections on the sampling of the spatial and spectral 
frequencies of F.  It is apparent that by using prism rotations to sweep out projections, a 
large subset of spatial and spectral frequencies will never be sampled. The missing region 
corresponds to a cone with its vertex at the origin of the spatial and spectral frequencies 
and is thus known simply as the missing cone.  
 
 

  

 
(a) (b) (c) 

Figure 7. Representations of the data planes captured by a CTS system with a 45 
degree projection angle for (a) 2 opposing projection angles, (b) 2 pairs of 
orthogonal projection angles, (c) multiple projection angles.  The central empty 
space (Missing cone) corresponds to spectral and spatial frequency not captured 
by the CTS.   

 
 
4. Object Cube Reconstructions 
 
As seen from Equation (4), the forward imaging model of the CTS can be described in 
terms of linear algebra with the 3-D object cube related to the set of 2-D projection 
images by a system transfer function. The most direct method of reconstructing a 
datacube estimate from a set of projections would then be 
 

( )
kkk ξξ GξAF 1−=  (5)

 
Due to the fact that ( )kξA  is a large, rectangular and often single matrix, its inverse is 
calculated using singular value decomposition (SVD) methods. The SVD of ( )kξA  can 
be written as  
  

HUΣA V=  where, H indicates Hermitian adjoint  (6)
 
In Equation (5), U is an M x N matrix of othonormal column vectors representing the 
object space singular vectors. V is an N x N matrix of orthonormal column vectors 
representing the image space singular vectors. Σ is an N x N diagonal matrix whose 
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diagonal elements quantify the influence of a given object vector on a corresponding 
image vector.3 If A is nonsingular, the matrix inverse of A is defined as  
 

( )1
1

1
1

1
0

11 ,,,, −
−

−−−−− =Σ= Nwhere σσσ …H1 UVΣA  (7)
 
and a unique solution to Equation (4) exists: 
 

( ) ( )ξξξ GAF 1−=    
 

(8)

   
 
4.1 Moore-Penrose Inverse (MPI) 
 
If A is rank deficient (Rank(A)  = K < N)  then ( )0,,0,,,, 10 …… Kσσσ== KΣΣ  
and a direct inverse is not possible. In this case one may use a pseudoinverse to generate an object 
cube estimate. For example, the Moore Penrose Inverse is defined as  
  

( )0,0,,,,, 11
1

1
0 …… −−−+++ =Σ= Kwhere σσσHUVΣA  .3 (9)

 
The object cube estimate then becomes,  
 

( ) ( )ξξξ GAF ++ =   (10)
   
Due to the lack of data reconstructed from missing cone frequencies, object cube estimates 
generated using MPI suffer from significant reconstruction artifacts. This is especially true in 
the low spatial and high spectral frequency regimes (See Figure 7).  
 
 
4.2 Subspace Constraint Algorithm 
 
The Subspace Constraint Algorithm (SCA) assumes a set of spatial frequencies (∆) exist 
for which the system transfer function [A(ξ)] has full or near full rank (i.e., region outside 
or just inside the missing cone).  An inverse or pseudoinverse is calculated at each spatial 
frequency within ∆ and a set of spectral principal components is calculated from these 
reconstructed spectra ( ξF ).  It is assumed that these spectral principal components 
sufficiently represent all spectra within the remaining object cube. For all spatial 
frequencies outside ∆, the range of the transfer function is thus limited to the subspace 
spanned by these principal components. A detailed description of this algorithm can be 
found in reference [4]. In brief, the algorithm proceeds as follows: 

1. ( ) ( )ξξξ GAF ++ =  for all ∆∈ξ  (collectively, F∆) 

2. Principal component decomposition : HDXWF ′=∆  
3. For all ∆∉ξ , the range of A is limited to the subspace spanned by the spectral principal 

components (W): 
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a. ( ) ( )WAA ξξ =0  

b. ( ) ξξ ξ GAF ++ = 00 )(  

c. ++ = 0WFFW  
4. Solutions for the two frequency subsets are combined to form the complete object cube 

estimate, ++ += WFFF  

 
4.3 Projection onto Convex Sets 
 
It is apparent that in order to more accurately reconstruct a datacube from a limited set of 
projections, an attempt must be made to estimate the signal within the missing cone. 
Numerous methods have been demonstrated for this purpose. One accepted method is the 
use of Projection onto Convex Sets (POCS).5 POCS assumes that:  

 
(1) The original datacube can be composed on 2 components, Nfff += 0  where 

0f is the known part (outside the missing cone) and Nf is the unknown part 
(associated with the null space of A) and  
 
(2) The spectrum at each spatial frequency is well represented by the set of spectral 
principal component calculated from  0f  

 
A detailed description of this algorithm can be found in [5]; therefore, we will only 
reiterate their suggested procedure. On each iteration,  
 

1. Calculate the Moore Penrose Inverse ( ) ( ) 0fGAF ⇒= ++ ξξξ  

a. When computing the SVD HUΣA V= , store Vn-k : Vn-k. is formed by 
replacing the first k columns of V with zero column vectors [k =rank(A)]. 

2. Compute the covariance matrix,
∆∆FFR  

3. SVD: HVUΣR FF =00  
4. Reduce the number of eigenchroma to L < N based upon percent contribution: 

U→UL 
5. On each iteration: 

a. ( )kTkk FUUfPf LL
f ⇒=1   (project the estimate onto the eigenchroma) 

b. ( )kH
kn

kAk
112 fVVfPf kn −−⇒=  (project the result onto the null space of A) 

c. kk
2

01 fff +=+  (apply additive correction to Moore Penrose Inverse) 
 
 
4.4 Filter Image Constraints 
 
As noted above, the CTS inversion problem is compounded by the missing cone of 
spatial and spectral frequency information. SCA and POCS attempt to best estimate this 
missing data by constraining estimates to have a given MPI solution and consistent 
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spectral statistics inside and outside the missing cone.4,5 Additional constraints are made 
available with some simple system modifications and minimal additional datasets. 
Specifically we investigated the strength of filtered image constraints on the CTS 
inversion problem. By introducing a spectral filter mechanism (e.g., filter wheel, tunable 
filters, etc) in the optical path and removing the CTS dispersion, a set of filtered images 
can be acquired immediately after the CTS projection images.  Assuming the scene 
remains stationary over the course of this additional collection time, these filtered images 
may be used to further constrain datacube estimates.  
 
The bandpasses used throughout our study are shown in Figure 8. In order to maximize 
the signal to noise ratio and minimize integration times, the spectral bandpasses must be 
made as broad as possible. On the other hand, the quality of the filtered image constraint 
is vastly improved by using narrow, independent (non-overlapping) spectral filters. In 
fact, as the bandpass of these filters narrows, the system tends toward a standard imaging 
spectrometer. This trade space was not explored during our study. Instead, we selected 
filters which would have operational significance when used independently of the CTS 
system. In other words, we were attempting to marry 2 separately defined spectral 
imagers: (1) a multispectral (7-10 bands) instrument which might be used for applications 
such as scene characterization, atmospheric correction, or weather prediction and (2) a 
CTS imager used to generate higher fidelity spectral products. Thus, the multispectral 
filters used for CTS reconstruction constraints were not optimized for this reconstruction 
purpose. In an operational system, both the primary and secondary applications of the 
spectral filters should be considered when specifying the filter properties.   
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(a) 

 
(b) 

 
Figure 8. Spectral bandpass filters for (a) visible and (b) SWIR constraints, respectively. 

 
 
One method for utilizing filtered images is to apply a filtered image constraint to the final 
result of a standard reconstruction algorithm such as MPI, SCA or POCS (referred to 
throughout this text as MPIFC, SCAFC or SCAFILT, and POCSFC or POCSFILT, 
respectively). Another method explored is to apply the filtered image constraints within 
the standard algorithm itself. Specifically, the filtered image constraint was incorporated 
into the POCS iterations (referred to throughout this text POCSPCFC or POCSPCFILT). In 
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either case, the current datacube estimate is used in combination with the filter 
transmission curves, t, to generate a set of estimated filtered images, s� .  
 

fτs
�� T

ii =    (11)
 
The differences between these filtered image estimates and the ground truth filtered 
images are then calculated [ iii ssε −= �K

] and distributed across the spectral bands.  
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The reconstruction improvements achieved from filtered imaging constraints are 
dependent upon the order in the filters are applied. We chose to work in order from the 
broadest to narrowest spectral bandpasses. This assumes that the accuracy improvements 
associated with narrow spectral filters are greater than from broad filters due to less 
ambiguity in the spectral redistribution of errors. After looping through all spectral filters, 
the datacubes are further constrained by the principal components calculated from outside 
the missing cone. For MPIFC, SCAFC, and POCSFC, this transformation is performed 
for all but the last iteration. The removal of the PC constraint from the final iteration is an 
attempt to preserve anomalous spectra which may not be well represented by the PCs. 
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Repeat steps 1&2 for N iterations. 
 
Figure 9.  Step by step calculations for the Filter Constraint Algorithm (FC) 
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5. Scene Simulation 
 
In order to evaluate the applicability of CTS systems to space based applications, we first 
generated a set of scene simulations. Table 1 provides a summary of the scenes generated 
by SciTec, Inc as part of this effort.6 For each scene, a nominal geostationary orbit was 
assumed and both surface leaving and at-sensor radiance values were provided.  
Throughout this report, results are presented for the Iran and Israel data sets.  The Iran 
256x256 data is composed of 12 datacubes labeled A thru L and the 512x512 data is 
composed of 5 datacubes labeled c1, q1, q2, q3, and q4.  For the Israel data, 8 datacubes 
labeled n_1 thru n_8 were used. 
 
 
Table 1. Summary of simulated scenes generated for this project. 
 
  # of 

Cubes 
GSD Spatial 

Dimensions 
Spectral 

Range(microns) 
Spectral 
Bands 

Israel_North 8 75 256 0.4 to 0.9 32 
5 512 

Nadir 
Iran 

12 120 256 1.9-3.4 32 

Iran 1 
Israel_North 1 
Madison4AS 1 
North Korea 1 

Off 
Nadir 

Pakistan 1 

360 256 x 256 1.9-3.4  32 

 
 
SciTec was also able to provide material map estimates for each simulated scene. The 
accuracy of these material maps is greatest for those scenes generated with a nadir 
looking sensor. These material maps were used to assess the accuracy of bulk 
classification algorithms applied to reconstructed datasets. See Figure 10  and Figure 11 
for material maps associated with the Nadir viewing Israel_North datacube #8 and Nadir 
viewing Iran datacube C, respectively. 
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(a) (b) 

  
(c) (d) 

  
Figure 10. (a) RGB image of Nadir-viewing Israel North ground truth datacube 
#8. (R: 0.58 µm, G: 0.50 µm, B:0.44 µm) (b) Percent of the primary material 
(Each ground sample is composed of only 2 materials). (c) Index of primary 
material (d) Index of secondary material. Refer to Table A-1 in Appendix A for 
corresponding material names.  

 
 
 



23 
 

 

 
 

  
(a) (b) 

  
(c) (d) 

  
Figure 11. (a) False color image of Nadir-viewing Iran ground truth datacube C. 
(R: 2.44 µm, G: 2.2 µm, B: 2.02 µm) (b) Percent of the primary material (Each 
ground sample is composed of only 2 materials). (c) Index of primary material (d) 
Index of secondary material. Refer to Table A-2 in Appendix A for corresponding 
material names.  

 
 
 
6. Simulation of Potential Error Sources 
 
Part of this effort focused on assessing the degradation of reconstruction performance due 
to certain anticipated error sources: namely, detector noise and platform motion.  CTS 
projection images were thus generated with and without these error sources. 
 
6.1 Gaussian Noise 
 
Detector noise was modeled as a Gaussian random distribution of errors added to the 
projection images prior to reconstruction. This noise term was added such that the signal 
to noise ratio ranged from 10 to 400. This was the only noise term considered with 
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respect to the detector. We did not look at different noise models such as Poisson 
distributions.  
 
 
6.2 Jitter 
 
Here, jitter is defined as the platform motion induced by such active components as 
gyros, pumps and motors. This movement is translated to the imaging telescope which in 
turn blurs the sensed image.  Jitter can produce translations or rotations in 3-space, 
making it difficult to correct.  In order to study the effect jitter has on a CTS system 2-D 
translational jitter is introduced in the cross-track and along-track directions.   
 
A jitter model was created to resemble Parametric Technology Corporation’s Pro-
Engineer’s dynamic motion/structural analysis module.7 The model includes the 
structural dynamics of a representative platform and the dynamics of the telescope 
structure itself.  The forcing functions along with the frequency response of the structure 
are used to produce pointing vectors for the telescope at a sample rate of 70 Hertz.  These 
pointing vectors are then used to produce affine transform coefficients which assume the 
sensor is in a nominal geosynchronous orbit. 
 
The jitter translation positions are given as degree latitude and longitude coordinates 
referenced to the center of the detector.  The coordinates are then transformed into pixel 
translations with respect to the ground sample distance (GSD).  The positions are first 
differentiated leaving only the relative displacement between each time step.  Each 
translation is then converted from degrees to kilometers assuming the earth’s radius is 
6,378 km.   The latitude spacing is scaled by: 
 

180
EarthRadiusscaleLat π⋅

=  

 
and the longitudinal spacing is scaled by: 
 

1cos
180

positionscaleLong scaleLat π⋅⎛ ⎞= ⋅ ⎜ ⎟
⎝ ⎠

, 

 
where the cosine of the starting latitude position accounts for the longitudinal spacing at 
the given latitude due to the curvature of the earth.  Each translation’s latitude and 
longitudinal position change is then multiplied by its appropriate scaling factor.  The new 
values are then divided by the given GSD to scale from kilometers to pixels on the 
detector.  Now the sampling rate is taken into account by taking the CTIS projection 
frame rate in seconds and multiplying it by the jitter sample frequency of 70 Hz and 
inverting this result.  The jitter translations are then up-sampled or down-sampled 
according to the required jitter samples per frame or projection. Once the jitter 
translations are converted to pixel translations they can be scaled in order to vary their 
values and study the effects of various magnitudes of jitter. The maximum and mean 
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distance in pixels from the origin for latitude and longitudinal translations are shown in 
Figure 12 and Figure 13, respectively. 
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Figure 12 Plot of maximum displacement from the origin for shifts in latitude and 
longitude. 
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Figure 13.  Plot of mean displacement from the origin for shifts in latitude and longitude. 
. 
 
In addition, the maximum and mean radial distance in pixels from the origin are shown in 
Figure 14 while the maximum and mean radial distance in pixels between consecutive 
time steps are shown in Figure 15. 
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Figure 14. Max and mean radial displacement from the origin. 
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Figure 15. Max and mean radial displacement between consecutive time steps. 
 
 
 
6.3 Generation of Jittered Datacubes 
 
In order to evaluate a range of jitter magnitudes the scale plots were visually interpreted 
to have an effective scale factor range of 1 to 10 since after a scale value of 10 the jitter 
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statistics are approximately constant. In order to account for sub-pixel movement pixel 
fractions are used to create mixed pixels.  This concept is illustrated in Figure 16, where a 
translation of 0.25 pixels to the north and 0.5 pixels to the east are called for.  The image 
on the left shows the percentages or fractions of pixel values used to create the new 
center pixel in the right image.  The pixel fractions are multiplied by the pixel values and 
then summed to create the new pixel. 
 

 
 

Figure 16. Illustration of how a sub-pixel translation is handled 
 
The end product of the jitter exercise is a spectral data cube that has been reconstructed 
with the various reconstruction algorithms used in this study.  Therefore, a function was 
created to jitter the projection images at the beginning of each reconstruction algorithm.  
The magnitude scaling factor is used an input to the function. The filtered images used 
within the filter constrained algorithms also have appropriate levels of jitter applied. As 
an example of the effects of jitter, reconstructions using the POCSFCPC for jittered 
projections are shown in Figure 16.  Each scene has an imbedded target in the upper left 
quadrant; an enlarged sub-region containing this target is pictured in the second row.  
Each column represents a different scale parameter in which the overall jitter magnitudes 
decrease from left to right.  As the jitter increases in magnitude the scene energy is spread 
further and additional ringing is apparent.   
 
 

12.5 % 12.5 % 

37.5 % 37.5 % 
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Figure 17. Examples of reconstruction artifacts due to jitter. 
 
 
 
7. Reconstruction Results 
 
Representative reconstruction results are presented in this section from 2 datasets: (1) the 
nadir-viewing Israel North Datacube #8 (Figure 10) and (2) the nadir viewing Iran 
Datacube C (Figure 11). Within the remainder of this text, these datacubes will be 
referred to as simply Cube 8 and Cube C, respectively. These datacubes both consisted of 
256 x 256 spatial samples and 32 spectral bands. Cube 8 covered the visible spectrum 
from 0.4-0.9 microns and had a GSD of 75m; while, Cube C covered the SWIR from 1.9-
3.4 microns with a GSD of 120m. Three representative pixel locations were chosen from 
each datacube. Spectra from these locations will be used throughout this section to 
demonstrate the reconstruction accuracy associated with various reconstruction 
algorithms: namely, MPI, SCA, SCAFC, POCS, POCSFC, and POCSFCPC. The 
locations of these pixels and their material make-up are provided in Table 2. 
 

Divisor = 10 
POCS_PC 

Divisor = 5 
POCS_PC 

Divisor = 2 
POCS_PC 
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Table 2. Material contributions for sample spectra used throughout this 
section for Cube 8 and Cube C. 
 

 x y Primary % Primary Secondary % Secondary 
115 35 Water 0 Water 100 

157 111 
Urban 

commercial 81 Concrete 19 Cube 
8 

70 138 

Broadleaf 
and brush 

mix 36 
Compacted 

soil 64 
73 158 Rock 41 Silt-sand 59 
159 150 Rock 38 Silt-sand 62 

Cube 
C 

130 98 Rock 50 Silt-sand 50 
 
 
 
7.1 MPI - Reconstruction Results 
 
As was mentioned in the section entitled, "4.1 Moore-Penrose Inverse (MPI)", a MPI 
solution does not include signal from spatial and spectral frequency locations within the 
missing cone. This is apparent from the sample spectra shown in Figure 18. The effect is 
more pronounced in Iran Cube C; however, in both cases the loss of spectral fidelity 
demonstrates the need for advanced reconstruction algorithms. This report focuses on 
reconstruction results from SCA, POCS, filter constrained SCA and filter constrained 
POCS.  
 

  
(a) (b) 

Figure 18. Representative spectra from 3 locations within the MPI reconstruction of 
(a) Cube C and (b) Cube 8, respectively. 
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7.2 SCA - Reconstruction Results 
 
SCA attempts to improve the accuracy of datacube reconstructions by constraining the 
range of the system transfer function to include only those spectra represented by PCs 
derived from a subset of spatial frequencies outside the missing cone. See the Section 
Entitled, "4.2 Subspace Constraint Algorithm" for a complete description of this 
algorithm. SCA has several variables which may be changed to optimize the 
reconstruction results. Namely, one can adjust the region used for PC calculations as well 
as the number of these PCs used to constrain the range of the STF. Figure 19 shows 
reconstructed spectra from 3 spatial locations within the Cube 8 and Cube C. An increase 
in spectral frequency content is readily apparent in comparison with the MPI spectra of 
Figure 18. The spectra shown in Figure 19 were generated using 6 principal components 
for Israel North and 3 principal components for Iran, respectively. In each case the 
number of PCs minimized the spectral error between these reconstructed and ground truth 
spectra.  
 

 
 

(a) (b) 

Figure 19. Representative spectra from 3 locations within the SCA reconstruction 
of the (a) Cube C and (b) Cube 8, respectively 

 
 
7.3 POCS - Reconstruction Results 
 
Reconstruction accuracy is improved by moving from the noniterative techniques such as 
SCA to an iterative algorithm such as POCS. This move of course comes at the expense 
of reconstruction speed. See the section entitled, "4.3 Projection onto Convex Sets" for a 
complete description of this algorithm. The expected improvement in reconstruction 
accuracy is readily apparent in the representative spectra shown in Figure 20.  
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(a) (b) 

Figure 20. Representative spectra from 3 locations within the POCS reconstruction of the 
(a) Cube C and (b) Cube 8, respectively 

 
7.4 Filter Constrained SCA - Reconstruction Results 
 
A goal of this LDRD was to investigate additional constraints designed to improve the 
accuracy of datacube estimates over standard reconstruction techniques. We were 
especially interested in investigating the potential improvements gained by applying 
filtered image constraints to the reconstruction algorithms developed by Mooney et al 
[SCA and POCS]. See the section entitled, "4.4 Filter Image Constraints" for a 
completed description of the filtered constraint algorithm. The spectra provided in both 
Figure 21 and Figure 22 clearly demonstrate the improvements in spectral accuracy 
gained through the inclusion of these new filter constraints.  
 

  
(a) (b) 

Figure 21. (a) Comparison between SCA reconstruction and Filter constrained SCA 
for a single pixel location in Cube 8. (b)  Representative spectra from 3 locations 
within the SCA reconstruction of Cube 8. 
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(a) (b) 

Figure 22. (a)  Comparison between SCA reconstruction and Filter Constrained 
SCA for a single pixel location in Cube C. (b) Representative spectra from 3 
locations within the SCA reconstruction of the Cube C. 

 
 
7.5 Filter Constrained POCS - Reconstruction Results 
 
For the results presented here, 10 iterations of the filter constraint algorithm were applied 
either as part of each POCS iteration (POCSPCFC) or after completion of the full POCS 
algorithm (POCSFC). Improvements over the standard POCS algorithm were seen for 
either implementation of the filter constraints. Although, the improvements were not as 
pronounced as for SCAFC, they were still noticeable (See Figure 23 and Figure 24) 
 
 
 

  
(a) (b) 

Figure 23. (a) Comparison between filter and non-filter constrained POCS 
reconstructions for a single pixel location. (b) Representative spectra from 3 
locations within the PC Filter Constrained POCS reconstruction of the Cube 8 
datacube. 
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(a) (b) 

Figure 24. (a) Comparison between filter and non-filter constrained POCS 
reconstructions for a single pixel location in Nadir Iran Cube C. (b) Representative 
spectra from 3 locations within the PC Filter Constrained POCS reconstruction of the 
Nadir Iran Cube C. 
 

 
7.6 Summary of Reconstruction Results 
 
A summary of the reconstructed spectra presented in this section is provided in Figure 25 
and Figure 26. From these figures it is readily apparent that filter image constraints do 
significantly enhance our ability to accurately reconstruct spectral estimates from 
projection images. Most notably, the performance of SCA dramatically improves with 
this technique, to the extent that it now provides comparable performance to the iterative 
POCS techniques. This is significant due to the time savings allowed by using a 
noniterative base algorithm itself.  

 
(a) (b) (c) 

Figure 25.Comparative pots of reconstructed spectra from 3 spatial locations in the 
Cube 8: (a) [70,138], (b) [115,35], (c) [157,111] 
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(a) (b) (c) 

Figure 26. Comparative pots of reconstructed spectra from 3 spatial locations in the 
Cube C: (a) [73,158], (b) [159,150], (c) [130,98]. 

 
 
 
From these plots it would be difficult to adequately compare the performance differences 
between POCS, POCSFC and POCSPCFC. Instead, one can look at the mean spatial and 
spectral correlation statistics and mean spectral error associated with each datacube. Plots 
of these values with respect to the various reconstruction algorithms are provided in 
Figure 27 and Figure 28 for Cube 8 and Cube C, respectively. Mean spatial correlation is 
calculated by first determining the spatial correlation between the original and 
reconstruction datacubes on a band by band basis. These values are then averaged to 
provide a mean spatial correlation. In much the same way the mean spectral correlation is 
calculated on a per pixel basis and averaged over the entire datacube. The Mean Spectral 
Error (MSE) is defined as   
 

( )

( )
 bands spectral ofNumber ,...2,1  where,

2

2

=
−

=
∑

∑
i

s

ss
MSE

i
o

i
ro

  (13)

 
The plots in general show a trend of increasing accuracy from MPI to SCA, SCAFC, 
POCS, POCSFC, and finally POCSFCPC. Also, from these plots there does not appear to 
be a large difference between the 2 implementations of filter constrained POCS however 
both do offer an advantage over POCS alone. The greatest improvement offered by the 
filter constraint algorithm is seen for SCA. The improvement is enough to make this a 
much more competitive algorithm even bringing it up to the level of the iterative 
approaches.  
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Figure 27. Mean spatial error, spectral correlation and spatial 
correlation as a function of reconstruction algorithm and iteration 
number for Cube 8. 
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Figure 28. Mean spatial error, spectral correlation and spatial correlation as a function of 
reconstruction algorithm and iteration number for Cube C. 
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8. Task-based Measures of Reconstruction Quality 
 
In the past, CTS reconstruction quality has been assessed in terms of spectral and spatial 
accuracy. While these are important parameters for assessing strict reconstruction 
accuracy, they do not hold the answers to questions most likely posed by end-users. 
Specifically, they do not include any information regarding how the data will be used or 
better yet whether or not the data is accurate enough to meet specific mission 
requirements. To this end, we looked at 2 possible mission scenarios. The first assumes a 
need to detect static point targets against a cluttered background.  Static targets are used 
because it is assumed that the spectra associated with dynamic events can be calculated 
without need for full datacube reconstruction (e.g., for example using background 
subtraction methods). The second scenario involves the need to perform bulk 
classifications on all materials within the scene. This would correspond to fairly general 
classes such as vegetation, water and bare soil. We are interested in quantifying the 
difference between classifications maps derived from a standard hyperspectral instrument 
(no reconstruction required) versus those derived from the CTS system. The method of 
quantifying changes in bulk classification was developed as part of this LDRD effort and is 
described in 10. Theoretical Description of Classification Algorithms.  
 
 
9. Reconstruction Accuracy of Anomalous Point Objects 
 
As mentioned above we were interested in quantifying the ability of various 
reconstruction algorithms to accurately estimate anomalous spectra within a scene. We 
also sought to assess the dependence of these reconstructions on (1) the number of PCs 
used in reconstruction constraints, (2) the ratio of target to background signals, and (3) 
the correlation between the target and background signatures. For the point target 
experiments, the Synthetic Scene Generation Model (SSGM) was used to create both the 
basic scene and anomalous spectra.8  The base scene without any anomalous spectra is 
shown in Figure 29. 
 

 
 

Figure 29. SSGM scene used in anomalous spectra experiments. 
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9.1 Target to Background Ratio 
 
The first experiment was to assess the reconstruction accuracy of the point target 
(anomalous) spectra as a function of the ratio between the total target irradiance and the 
total background irradiance.  Here, we considered only one anomalous spectrum.  In 
order to compare the impacts of adding multiple dim targets versus a few bright targets, 
the point targets were inserted in numbers of 1, 10, 100 or 1000 were inserted at locations 
selected from a uniform random distribution of positions.  The anomalous spectrum and 
the average background spectrum are shown in Figure 30a and Figure 30b, respectively. 
The correlation between these spectra is a moderate 0.65.  The relationship between 
reconstruction accuracy for anomalous spectra with varying degrees of correlation to 
background is explored later in this report. 
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Figure 30. (a) Original target signal used for TBR experiment. (b)Average background 
signal from the SSGM scene. 
 

 
The target to background ratio (TBR) is calculated as follows. Given the original 
simulated target spectrum ( otS ) the altered target spectrum ( )otat SS *δ=  and the average 
background spectrum bS , the TBR is defined as 
 

( )

∑
∑

=

i
ib

i
iat

S

S
TBR where i = 1… to the number of bands. (14)

 
Targets are placed in the scene by full pixel replacement at the given location(s) with 
TBRs ranging from 0.1 to 3 in increments of 0.1.  The family of curves for these TBR 
values is shown in Figure 31.  After the point targets were inserted in the basic scene, a 
set of projection images and subsequently reconstruction estimates were generated using 
the algorithms of the Sections entitled "CTS Imaging Model and "Object Cube 
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Reconstructions", respectively. The algorithms are referenced as Moore-Penrose Pseudo-
Inverse (MPI), Projection onto Convex Sets (POCS), Projection onto Convex Sets with 
Filter Constraints (POCS Filter), Projection onto Convex Sets with Filter Constraints per 
iteration (POCS PC), Subspace Constraint Algorithm (SCA) and Subspace Constraint 
Algorithm with Filter Constraints (SCA Filter).   
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Figure 31. Family of curves for the 30 TBR levels. 

 
 
After each reconstruction the target spectra were extracted and compared to their original 
signature using the spectral angle defined as 
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(15) 
 

 
In Equation (15),  n is the number of bands and rtS is the reconstructed spectrum. For 
algorithms which use PC based constraints, the number of PCs was varied from 3 to 6 
and the resulting spectral angle was averaged over the 4 results. The quality of individual 
reconstructions is highly dependent upon several variable parameters within the 
reconstruction algorithms. In order to explore the dependency of reconstructions on the 
selection of PCs, we looked at the residual errors associated with a range of PC 
transformations. We did this in such a way as to isolate these errors were from other 
reconstruction artifacts. Specifically, we examined the errors incurred by expanding the 
target and background spectra in terms of a limited set of PCs (ranging from 3 to 6). 
These PCs were calculated first from the region outside the missing cone and then from 
the entire datacube. This process was repeated for each target-scene combination.  
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9.2 Spectral Correlation to Background 
 
In order to study the effects of target to background correlation on reconstruction 
accuracy of anomalous spectra, a second experiment was created.  The TBR was kept at a 
constant value of 2 while adding varying amounts of the average background spectrum to 
the target spectrum.  A TBR of 2 was chosen to assure that the target signature dominated 
for each anomalous pixel.  The altered target spectra is defined as 
 

( )at b otS S Sε α= ⋅ ⋅ +  (16)
   
The variable, ε is used to maintain a constant TBR and is defined as, 
 

b i
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b otii
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while α is used to vary the target to background spectral correlation and is defined as, 
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∑

 where i = 1, … Number of spectral bands. (18) 

   
A family of 10 curves was created that have target to average background correlations of 
0.0002, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.  The curves are shown in  
Figure 32. 
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Figure 32. Family of curves used in the correlation experiment, solid blue lines 
correspond to target curves; while, the solid red line corresponds to the average 
background spectrum. 
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9.3 Target to Background Ratio Results 
 
As described above, two experiments were devised and conducted to evaluate the ability 
of various CTS reconstruction algorithms to reconstruct point target and background 
scene spectra. In addition, an attempt was made to quantify the degradation in 
reconstruction quality associated with representing the target and background spectra by 
a limited subset of PCs calculated from a limited subset of spatial frequencies. The 
quality metric used in all cases was the spectral angle between the reconstructed and 
original spectrum. For the TBR experiment 1, 10, 100 or 1000 targets were inserted into 
the SSGM scene. A subset of the plots for each of the six sets is shown for the 1000 
target case in this section. See Appendix B for a complete set of plots associated with the 
TBR, correlation and principal component experiments. 
 
 
9.3.1 PC impacts as a function of TBR 
 
In general a smaller spectral angle is calculated when using principal components 
calculated from outside rather than inside the missing cone (e.g., See Figure 33).  As the 
target radiance is increased relative to the background, the spectral angle decreases for 
both cases.  An interesting phenomenon occurs when only 1 target is present. 
Specifically, there is a dip in the spectral angle when using PCs calculated from outside 
of the missing cone at a TBR of approximately 0.5 after which the curve increases.  At 
this time, there is no explanation for this behavior. See Figures B1, B11, B23 and B35 in 
Appendix B for the complete set of curves associated with this experiment.  
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Figure 33. Average and standard deviation of spectral angle versus TBR for target 
signature(s) using projections onto principal components in the spatial frequency domain 
calculated outside missing cone and over entire region.  The average of the spectral 
angles associated with 3 to 6 PCs are shown here. 
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In contrast to the target signatures, the average background is better represented when all 
spatial frequencies are included in the principal components calculations.  Due to the 
punctile nature of the targets, we expect these objects to be better represented at the 
higher spatial frequencies outside the missing cone than the background materials which 
are dominated by lower spatial frequencies.  Overall the average spectral angles are very 
small (< 2 degrees) while the standard deviation increases as the target pixel(s) become 
brighter. A representative plot is shown in Figure 34 for an insertion of 1000 randomly 
placed targets. See Figures B4, B14, B26, and B38 in Appendix B for the complete set of 
curves associated with this experiment. 
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Figure 34. Average and standard deviation of spectral angle versus TBR for the 
background signatures using projections onto principal components in the spatial 
frequency domain calculated outside missing cone and over entire region.  The average 
of the spectral angles associated with 3 to 6 PCs are shown here. 
 
 
9.3.2 MPI Results as a function of TBR 
 
In general, as the TBR increases, the spectral angle decreases for all target insertion 
numbers and their values are nearly identical; however, if only 1 target is inserted, the 
spectral angle is on average 15 degrees below the other curves.  Considering that one 
target pixel could be represented as a delta function, its Fourier transform would be a 
constant, therefore represented at all frequencies.  MPI exploits the data contained outside 
of the missing cone using the system transfer function and the single target is well 
represented in this case leading to a smaller spectral angle. A representative plot is shown 
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in Figure 35 for an insertion of 1000 randomly placed targets.  See Figures B2, B12, B24, 
and B36 in Appendix B for the complete set of curves associated with this experiment. 
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Figure 35.  Average and standard deviation of spectral angle versus TBR for target 
signature(s) reconstructed with the MPI algorithm. 

 
 

For MPI reconstructions of the background signatures, the spectral angle remains 
relatively constant irregardless of the number of targets inserted or the brightness of those 
targets. This shows that the accuracy of the reconstructed background spectra are largely 
unaffected by the insertion of anomalous spectra when using the MPI reconstruction 
algorithm. A representative plot is shown in Figure 36 for an insertion of 1000 randomly 
placed targets. See Figures B5, B15, B27, and B39 in Appendix B for the complete set of 
curves associated with this experiment. 
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Figure 36. Average and standard deviation of spectral angle versus TBR for the 
background signatures reconstructed with the MPI algorithm. 
 

 
 
 
9.3.3 TBR SCA and POCS Results (Filter and non-Filter constrained) 
 
In general the POCS, POCS Filter and SCA Filter have smaller spectral angles than SCA 
and POCS PC.  The POCS algorithm is considerably better for the 1 target case.  An 
unexplained hump appears in the POCS PC curve for all cases.  The POCS, POCS Filter 
and SCA Filter curves show that a bright target (TBR of 1.5 or greater) will be resolved 
with a spectral angle of 15 to 10 or better for all cases.  A spectral angle of 15 degrees or 
better will generally provide acceptable target identification; however this depends on the 
correlation to the background spectra. A representative plot is shown in Figure 37 for an 
insertion of 1000 randomly placed targets. See Figures B3, B13, B25, and B37 in 
Appendix B for the complete set of curves associated with this experiment. 
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Figure 37.  Average and standard deviation of spectral angle versus TBR for target 
signature(s) reconstructed with POCS, POCS Filter, POCS PC, SCA, and SCA Filter 
algorithms. 

 
 

For reconstructed background spectra, the spectral angle statistics are relatively constant 
for all but the POCS PC algorithm, which is not understood at this time.  Once again the 
POCS, POCS Filter and SCA Filter are consistently the best performers.  Overall the 
POCS algorithm seems to have the smallest angles. A representative plot is shown in 
Figure 38. For an insertion of 1000 randomly placed targets.  See Figures B6, B16, B28, 
and B40 in Appendix B for the complete set of curves associated with this experiment. 
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Figure 38. Average and standard deviation of spectral angle versus TBR for the 
background signatures reconstructed with POCS, POCS Filter, POCS PC, SCA, and 
SCA Filter algorithms. 

 
 
 
9.4 Spectral Correlation to Background 
 
9.4.1 PC impacts as a function of Spectral Correlation 
 
For the spectral correlation experiment 1, 10, 100 or 1000 targets were inserted into the 
SSGM scene. Again we are first interested in how well we can represent the target 
spectra from principal components calculated from all spatial frequencies as well as just 
those outside the missing cone. For all numbers of inserted targets, the spectral angle 
decreases as the target to background correlation approaches 1.  Intuitively, as the 
similarity between the target and background increases, the target should be better 
represented by principal components which are calculated primarily from background 
statistics. Overall the principal components calculated outside of the missing cone 
resulted in smaller spectral angles.  This is again explained by their relatively higher 
contribution to higher spatial frequencies than the background signal. The single target 
case has spectral angle twice as large as the other cases, however this is not understood at 
this time.  A representative plot is shown in Figure 39 for an insertion of 1000 randomly 
placed targets. See Figures B7, B17, B29 & B41 in Appendix Bfor the complete set of 
curves associated with this experiment 
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Figure 39.  Average spectral angle versus target to background correlation for target 
signature(s) using projections onto principal components calculated from spatial 
frequencies outside missing cone and over entire region.   

 
 
As was the case in the TBR experiments, the background spectra are estimated with 
smaller spectral angles when using PCs from the entire spatial frequency range. A 
representative plot is shown in Figure 40 for an insertion of 1000 randomly placed 
targets. See Figures B10, B20, B32 & B44 in Appendix B for the complete set of curves 
associated with this experiment. 
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Figure 40. Average and standard deviation of spectral angle versus target to 
background correlation for the background signatures using projections onto principal 
components in the spatial frequency domain calculated outside missing cone and over 
entire region.   
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9.4.2 MPI Results as a function of Spectral Correlation 
 
For target spectra reconstructed using MPI, the spectral angle generally increases as the 
target to background correlation increases. As the target spectra gain similarity to the 
surrounding background, one would expect the target spectra to have a reduced 
contribution to higher spatial frequencies (i.e., the target spectra begin to blend with the 
background) and therefore perform in this way.  A representative plot is shown in Figure 
41 for an insertion of 1000 randomly placed targets. See Figures B8, B18, B30, and B42 
in Appendix B for the complete set of curves associated with this experiment. 
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Figure 41. Average and standard deviation of spectral angle versus target to 
background correlation for target signature(s) reconstructed with the MPI algorithm. 

 
 

For MPI reconstructions of the background signatures, the spectral angle remains 
relatively constant irregardless of the number of targets inserted or the target to 
background correlation.  A representative plot is shown in Figure 42 for an insertion of 
1000 randomly placed targets. See Figures B11, B21, B33, andB45 in Appendix B for the 
complete set of curves associated with this experiment. 
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Figure 42. Average and standard deviation of spectral angle versus target to 
background correlation for the background signatures reconstructed with the MPI 
algorithm. 

 
 
 
9.4.3 Spectral Correlation SCA and POCS Results  
 
For reconstructed background spectra, SCA outperformed all other algorithms for all 
target number cases while POCS PC gave the highest angles overall.  The POCS 
algorithm was the second best performer.  The spectral angle increases as the correlation 
approaches 1 due to its decrease in spatial frequency and subsequent movement into the 
missing cone (i.e., towards lower spatial frequencies). A representative plot is shown in 
Figure 43 for an insertion of 1000 randomly placed targets. See Figures B9, B19, B31, 
and B43 in Appendix B for the complete set of curves associated with this experiment. 
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Figure 43. Average and standard deviation of spectral angle versus target to 
background correlation for target signature(s) reconstructed with POCS, POCS Filter, 
POCS PC, SCA, and SCA Filter algorithms. 

 
 
In general, the inserted target spectra correlations have little effect on the background 
spectral reconstructions.  The POCS algorithm has the smallest angles overall while 
POCS PC has the highest; however as the number of targets decreases POCS produces 
higher and higher spectral angles. A representative plot is shown in Figure 44 for an 
insertion of 1000 randomly placed targets. See Figures B12, B22, B34, and B46 in 
Appendix B for the complete set of curves associated with this experiment. 
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Figure 44. Average and standard deviation of spectral angle versus target to 
background correlation for the background signatures reconstructed with POCS, POCS 
Filter, POCS PC, SCA, and SCA Filter algorithms. 

 
 
 
9.5 Point Target Conclusions 
 
For all point target experiments, the POCS and POCS filter reconstructions produce the 
minimum spectral angles. The SCA algorithm, on the other hand performs poorly for the 
targets but very well for the background spectra.  The CTS system is ideal for point target 
detection due to their inherent high spatial frequency that is well preserved outside of the 
missing cone.  As was expected, the system performs better when the targets are bright 
relative to the background and are less correlated to the background.  The single target 
case needs to be investigated further to better explain its behavior in terms of TBR and 
correlation. 
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10. Theoretical Description of Classification Algorithms 
 
10.1 Introduction 
 
Image classification is proposed in this LDRD as the means of characterizing the “bulk” 
loss/change in information due to image reconstructions.  The basic assumption is that the 
classification of a near-perfect CTS image reconstruction should provide a nearly 
identical match with that of the classification of the original image from which the CTS 
reconstruction was derived.  As such, the match between the CTS and original image 
classifications should diminish with poorer reconstructions or with the introduction of 
increasing amounts of system noise or CTS instrument jitter.  The challenges in this study 
include both the choice of image classification and development of a means to compare 
classification maps.  In the last 30 to 40 years several image classification algorithms 
have been developed for multispectral/hyperspectral imagery and are readily available for 
this study.  However, all are not equally applicable or useful to this problem.  Our study 
concentrates on examining the results from two suitable yet very different classification 
approaches.   In contrast, the concept of quantifying a match between classification maps 
has received comparatively little or no study.  We propose one approach for quantifying 
the “optimum” match between classification maps.  The results provided are based on an 
approximation which requires significantly less time to compute. 
 
 
10.2 Classification Approaches 
 
Classification approaches can typically be categorized into parametric and nonparametric 
methodologies.  Some commonly used parametric approaches rely on Gaussian mixture 
models to characterize the feature space clusters.9,10,11  These sorts of approaches also 
require the number of clusters/classes as input in order to iteratively establish the 
appropriate mixture of parameterized distributions.  Some approaches for determining 
this number are discussed in [12].12  In general, parametric methods yield unsatisfactory 
results especially where a complex feature space is involved.  Since the shape of the 
delineated clusters is predefined with a parametric model, defining the feature space 
distribution in this way will tend to introduce artifacts in the resulting classified image. 
 
Nonparametric clustering methods do not rely on a priori assumptions about the feature 
space distribution. These methods are better suited for complex feature spaces and tend to 
provide superior results in these cases.  Nonparametric approaches can be categorized 
into hierarchical and density estimation methods.  Hierarchical methods combine (or 
partition) data based on a given proximity measure.13  These methods tend to be 
computationally expensive and the stopping criteria for combining (or partitioning) the 
data are not clear-cut.  Alternately, nonparametric methods, based on density estimation, 
leverage off the concept that the feature space can be viewed as an empirical multivariate 
distribution.  Dense regions in this feature space correspond to the modes of the empirical 
distribution.  Given the location of a particular mode, the associated cluster can be 
delineated based on the distribution within the local feature space. 
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Recently more powerful nonparametric cluster approaches have been introduced.14  With 
these, the goal has been to determine modes of the underlying probability density to 
define candidate cluster centers.  Although very powerful, this approach can fall victim to 
another common data and dimensionality problem known as the ‘curse of 
dimensionality’.  That is, the density estimation will tend to become more difficult as the 
dimensionality of the feature space increases.  In particular, when the dimensionality N 
becomes very large (e.g. N > 7) in a multidimensional feature space, samples quickly 
become ‘lost’ in the wealth of the space.  Moreover, local neighborhoods of points in a 
high dimensional space are likely to be free of observations.  When neighborhoods are 
extended to include a sufficient number of observations, they become so large that they 
tend to provide global, rather than local density estimates.  To relieve the problem by 
filling the space with observations would soon require prohibitively large sample sizes. 
 
The two approaches chosen for this study include a selection from each of these 
categories.  The parametric approach is the well-known k-means clustering approach that 
has been used extensively in image analysis.15  The other is a relatively new non-
parametric approach known as Distribution-Free Clustering (DFC).16  We believe that 
DFC should provide classification maps that are more consistent with the self similar 
regions represented by each image.  Although k-means is a very different classification 
approach, we choose it for this study to cross-check reconstruction quality trends 
determined from DFC. 
 
 
10.2.1 K-means Clustering 
 
K-means is a non-hierarchical approach for partitioning (or clustering) N data points into 
K disjoint subsets Sj containing Nj data points so as to minimize the sum-of-squares 
criterion (19).  Here xn is a vector representing the nth data point and µj is the geometric 
centroid of the data points in Sj. 
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When the user specifies a random start, the algorithm generates the k cluster centers 
randomly and proceeds by fitting the data points in those clusters.  The algorithm assigns 
each case (object) to one of k clusters so as to minimize a measure of dispersion within 
the clusters. The algorithm consists of a simple re-estimation procedure as follows. First, 
the data points are assigned at random to the K sets. Then the centroid is computed for 
each set. These two steps are alternated until a stopping criterion is met, i.e., when there 
is no further change in the assignment of the data points 
 
This very common measure of sum of distances or sum of squared Euclidean distances 
from the mean of each cluster can be set up as an integer programming problem but 
because solving integer programs with a large number of variables is time consuming, 
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clusters are often computed using a fast, heuristic method that generally produces good 
(but not necessarily optimal) solutions. 
 
In general, the algorithm does not achieve a global minimum of J over the assignments. 
In fact, since the algorithm uses discrete assignment rather than a set of continuous 
parameters, the "minimum" it reaches cannot even be properly called a local minimum. 
Despite these limitations, the algorithm is used fairly frequently as a result of its ease of 
implementation. 
 
 
10.2.2 Distribution-Free Clustering 
 
The goal of DFC is to perform unsupervised coarse level image classification consistent 
over image calibration or sensor view geometry.  We propose that a gross spectral shape 
can be exploited.  The proposed approach associates spectra that have similar overall 
shape characteristics to designate self-similar regions while ignoring the categories of 
spectral variabilities mentioned here.  This algorithm is significantly more intricate than 
k-means.  The description of the algorithm follows below. 
 
In the first step the image is transformed into a space where signal variabilities within 
self-similar regions are less discernable.  The approach applied is a scaling-independent 
transformation that reduces the pixel-to-pixel variability and enables our multivariate 
clustering approach.  The spectral content represented in a given N-dimensional pixel can 
be viewed as the ‘spectral-signature’ for any underlying material(s) as seen by the sensor.  
Our transformation is a simple rank ordering of the N components of this signature. 
 
Due to the rank-ordering approach used to quantize the spectral signatures, the 
transformed data becomes concentrated in a predetermined number of feature space 
locations.  That is, the rank ordering quantization process forces the spectral signatures 
(feature vectors) to take on !N  predetermined values.  For example, for 3=N , we have 

!3  or 6 possible permutations.  The resulting 6 quantized feature vectors (QFVs) iV are as 
follows: [ ]2,1,0 , [ ]1,2,0 , [ ]2,0,1 , [ ]0,2,1 , [ ]1,0,2 , and [ ]0,1,2 .   
 
Given any two QFVs [ ],..., mbmam vvV =  and [ ],..., kbkak vvV = , we define the squared 
spectral distance (SSD) between these as shown in (20).  From here on, we refer to the 
SSD as simply the “distance”.  It can be shown that the minimum distance between any 
two vectors in this quantized space is independent of N and cannot be less than 2.  
However, the maximum distance maxd  varies as function of N.  Thus, given this 
prepossessing step, the QFVs are integer valued and are limited to the permutations on N.  
It is important to note that only a subset of the !N  possible permutations can be 
represented in typical imagery.  For example, in 14-band image there are approximately 
87 billion possible permutations.  However, the actual number of represented 
permutations cannot exceed the number of actual pixels. 
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( ) ( ) ...222 +−+−=−= kbkakamakm vvvvVVd (20)
   
 
 
10.2.3 Graph Theoretic Framework 
 
The data quantization described earlier is the basis of our framework in which coarse 
level image classification can be performed.  In particular, data in our quantized feature 
space can be viewed as a graph consisting of a set of nodes V  (also referred to as 
vertices) and a set of connecting edges E .  In this framework, each node VV ∈i  
corresponds to one and only one of the !N  QFVs and EE ∈ji,  corresponds to the 
connecting edge between two of the nodes in V .  The node symbol iV  is represented in 
bold here in order to distinguish it from the corresponding QFV, iV  .  Together, the sets 
of nodes and connecting edges describe our basic graph, ( )EV,G = .  Thus, each of the 
possible !N  nodes iV  represents a particular number of quantized spectral signatures. 
 
The edges ji,E  between nodes in the graph represent similarity relationships between 
QFVs.  Two nodes are related and therefore connected by an edge if their distance is less 
than or equal to a connectivity distance connectd  where max2 ddconnect ≤≤ .  We note that 
multiple connections can occur between nodes for a given connectd .  This can be illustrated 
with the representative feature vectors [ ]2,1,0 , [ ]1,2,0 , and [ ]2,0,1 .  For 2=connectd , the 
nodes represented by the vector pair [ ] [ ]{ }1,2,0,2,1,0  are connected, as is the node pair 
[ ] [ ]{ }2,0,1,2,1,0 .  The basic graph shown in Figure 45 (a) illustrates the connectivity for all 

possible nodes for the N = 3 case, and 2=connectd .  Here, the nodes are depicted as circles 
with labels iV  and the associated QFV shown in the node. 
 
From the case represented by Figure 45 (a), we observe that a single graph contains all 
possible representative nodes.  We note that in some cases, one or more QFVs may not be 
represented within the data and thus the corresponding nodes will not be part of the 
graph.  For example, if we find that the QFVs corresponding to nodes 2V  and 3V  do not 
exist, then the graph describing our feature space will consist of two unconnected sub-
graphs as shown in Figure 45(b). From Figure 45 (a), we also observe two characteristics: 
1) multiple connections to nodes and 2) the existence of a path from any given node to 
any other node.  Although our observations of this graphical feature space description 
provide us some insights into the relationships between QFVs, it is not immediately 
apparent how this can assist us in classifying an image.  However, through the 
introduction of two additional constraints (Node Weight and Connectivity Direction) to 
our basic graph framework this problem becomes more tractable as we will show in the 
next section. 
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Figure 45 (a) Graph for N=3 and dconnect = 2, (b) Unconnected graphs for N=3 and dconnect 
= 2 

 
 
Node Weight is defined as the total number of original feature vectors (spectra) 
transformed to a QVF representative and Connectivity Direction is the direction 
designated from the node with the larger weight (parent) to the node with the smaller 
weight (child).  Edge weights between nodes are equal to the weight of the parent node.  
We define a weight function w for edge ji,E  as )w(V)V,w(V iji = , where j,iE  indicates 
directionality from i  to j  and ij ,E  indicates directionality from j  to i .  Figure 46 
illustrates this concept for the following node weight relationships:  

),3w(V)w(V  ),w(V)w(V 101 >>  and ,)w(V)w(V ),w(V)w(V ),w(V)w(V 544220 >>>
)w(V)w(V 53 > . 

 
 

V0

V2

V4

V1

V3

V5

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2
1
0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2
0
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
0
2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
2
0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
2
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
1
2

( )0Vw ( )1Vw

( )3Vw( )2Vw

( )4Vw ( )5Vw
 

 
Figure 46 Graph for N=3 and dconnect = 2 annotated with node weight and direction 

 



56 
 

 
In this modified framework, our feature space is represented by a directed acyclic graph 
(DAG).  Certain important phenomena now become evident in this framework.  In 
particular, certain nodes are found to have no incoming edges.  These nodes are defined 
as “major nodes”.   In the sections that follow we will see that they tend to represent the 
most significant feature vectors in our image.  Examples of these are nodes 1V  and 2V  in 
Figure 46(c).  Equally important, we observe that multiple parent connections can occur 
to a child node. 
 
Using the DAG framework, we suggest that self-similar regions in an image correspond 
to sub-graphs within the DAG.  Our task becomes one of determining how to partition 
these sub-graphs such that each best represents a single classification within the data.  
The premise of our approach is that a child node can have one and only one parent.  Thus, 
given a child node shared by multiple parent nodes, we must devise a scheme for 
choosing a single parent.  Our goal in the next section is to explain a partitioning scheme 
that will give ownership of shared child nodes to the self-similar region within our feature 
space. 
 
 
10.2.4 Graph Traversal Approach 
 
In the framework described above, we introduce a graph traversal approach that seeks to 
partition our DAG into separate sub-graphs where each is rooted at a major node.  In this 
approach, we establish parent-to-child ownership by seeking the path with maximum 
combined edge weight to any given child node.  Doing so creates separate graphs known 
as maximum spanning trees.   A great deal of research has been on the subject of 
minimum spanning trees, which typically use a “greedy” graph traversal approach that is 
based on the paradigm that a locally optimal choice will lead to a globally optimal 
solution to the problem.  Dijkstra’s algorithm* is one such method for finding minimum 
spanning trees in a DAG.17  However this approach is not applicable to our task since 
finding maximized node paths require global knowledge of the graph and we must resort 
to a less optimized method described as follows: 
First, we assume that a path }V,...,V,{Vp k10k =  exists in G  with a path weight 

∑
=

−=
k

1i
i1ik )V,w(V)w(p  defined as the sum of the edge weights between successive pairs 

of nodes along the path kp .  Based on our earlier edge weight definition, this can be 

simplified to ∑
=

=
k

0i
ik )w(V)w(p .  Further, we define S  as a set containing nodes whose 

paths have already been determined to be maximized and we define Q as a set of nodes 
whose maximum paths have not been determined such that Q = V-S.  Next, for each 
node QVq ∈ , we keep only the edge to the predecessor parent with the maximum path 

                                                 
* Dijkstra’s algorithm is a greedy approach used to efficiently generate a minimum-spanning tree for a directed acyclic 

graph from a single source node.  
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weight, and add qV  to S .  If the node qV  has only one parent, then it is immediately 
added to the set S.  Maximum paths are determined by solving for every possible path 
from qV to a major node.  Recursion adds efficiency to this path calculation by working 
backwards from possible major nodes and only keeping track of path weight and 
immediate predecessor information.  Once the algorithm has terminated and the set Q  is 
empty then the set S contains all nodes in V and each of these nodes has only one parent. 
 
 
Figure 47 shows an example of a DAG before traversal with node specifications and node 
weights shown outside the circles symbolizing the nodes along with the QFV 
specifications inside the circles.  Figure 48 shows the same DAG after traversal with 
finalized edges.  At this point we’ve established 3 separate clusters denoted by the 3 
separate maximum spanning trees.  Thus, each QFV has been included in a distinct 
cluster with one major node and is linked to other QFVs by similarity distance connectd  via 
a maximally weighted path.  We note that the use of path weights lends a sense of cluster 
gravity to our determined memberships. 
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Figure 47 Example Directed Acyclic Graph before graph traversal annotated with node 
weight and direction. 
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Figure 48 Example Directed Acyclic Graph after graph traversal annotated with node 
weight and direction. 
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10.3 Definition of Quality Metrics 
 
The quality of a given reconstruction method is determined by comparing a classification 
map of a reconstructed image with one of the original image from which the 
reconstruction was derived.  Here, the k-means and DFC classification algorithms are the 
methods we chose to generate these maps.   We note that the classification algorithms 
proposed do not perform a classification as in terrain categorization or materials 
identification.  Instead they simply associate self-similar regions based on their inherent 
design assumptions as described above.  The resulting classes are each labeled with a 
unique numerical identifier by the algorithm 
 
We note that the k-means algorithm will (in general) provide k uniquely labels regions for 
a user-specified value of k.  In contrast the DFC algorithm, will determine the unique 
self-similar classes which may differ in number between the original and reconstructed 
image.  Of course, if a reconstruction was “perfect” the number of classes will be the 
same but the numbering may or may not be the same.  In the k-means based analysis, the 
same number of classes will be specified from both original and reconstructed images.  
We note that k-means also doesn’t guarantee the same numerical labeling whether or not 
it is the same or a different image. 
 
Given the possibility of varying class labeling or variations in the number of classes 
between original and reconstructed images, we propose a measure of quality that is 
independent of either.  The quality measure that we define here is simply a measure of 
similarity between the original and reconstructed classification maps.  We illustrate it 
with the aid of the following simple examples.  The first and second examples illustrate 
cases where original and reconstructed classification maps both have the same number of 
classes as might be produced by k-means.  The third illustrates a result where the number 
of reconstructed image classes is greater than original image classes. 
 
The first example illustrated by Figure 49 depicts nearly identical classification maps 
between original and reconstructed datacubes.  The data of concern is that which is 
contained inside the circular region.  The area outside this circle is regarded as “masked”.  
Here, the C1|C2 and C3|C4 boundaries have changed between the reconstructed and 
original image classifications. 
 

Original Image Classification Reconstructed Image Classification

C4 C1

C2C3

C4 C1

C2C3

 
 

Figure 49. Classification maps for original and a nearly identical reconstruction 
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An overlay of the reconstructed classification map over the original image classification 
map as seen in Figure 50 illustrates how we might visualize their similarity.  From this, 
we can discern how the classes of reconstructed and original overlap.   
 

OIC4 OIC1

OIC2OIC3

RIC4 RIC1

RIC2RIC3

RIC3

OIC4
RIC2

OIC1

 
 

Figure 50. Overlapped class maps for nearly identical original and reconstructed 
images. 
 
Equivalently, we can express these overlaps as a “Match” table.  Here, the table indicates 
/the number of common pixels in classes that overlap between original and reconstructed 
classifications.  In our original and reconstructed data sets, all images have the same pixel 
dimensions and the masked regions are also the same in both cases.  Thus, the table 
represents pixel counts between class intersections of the two classification maps.  
Therefore the sum of all intersections equals the count of all possible pixels of interest in 
either image.  Since, the sum of the entries in the Match table equals the total number of 
possible pixels; we can also represent these entries as percentages of the total as shown in 
Table 3. 
 
From the example overlay, we can see that Original Image (OI) Class 1 (C1) overlaps 
with Reconstructed Image (RI) C1 and RIC2.  But, clearly, the largest percentage 
contributing to our measure of similarity comes from the OIC1 and RIC1 intersection.  In 
our quality metric we choose to “optimize” the total percentage between original and 
reconstructed classification map intersection by including any contributions for an OI or 
RI class only once.   For example, if we include the RIC1 and OIC1 intersection, we can 
not consider RIC1 or OIC1 as contributions to any other intersection. From the example 
Match table, we determine the total best possible percentage comes from the 
contributions along the table diagonal yielding a 95% level of similarity. 
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Table 3 Match Table class maps of nearly identical original and reconstructed images 
 
 
 Original Image (OI) Classification 

 C1 C2 C3 C4 
C1 37.5 0 0 0 
C2 2.5 10 0 0 
C3 0 0 10 2.5 

 
Reconstructed 

Image (RI) 
Classification 

C4 0 0 0 37.5 
 

We execute the quality metric algorithm by selecting the first maximum table entry 
followed by zeroing out the corresponding row and column.  We repeat this process until 
the entire table is zeroed out.  The sum of the maximum entries selected equals our 
measure of similarity. The second example illustrated by Figure 51 depicts moderately 
different classification maps between original and reconstructed datacubes.  Here, all 
boundaries have changed between the reconstructed and original image classifications.  
In this case the Match table yields a slightly different result equal to 90% similarity. 
 

Original Image Classification Reconstructed Image Classification

C4 C1

C2C3

C4 C1

C2C3

 
 

Figure 51. Classification Maps for original and reconstructed imagery with moderate 
variations 
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Figure 52. Overlapped class maps for original and reconstructed imagery with moderate 
variations 
 
 
 
Table 4. Match Table for class maps of original and reconstructed imagery with 
moderate variations 
 
 
 

Original Image (OI) Classification 

 C1 C2 C3 C4 
C1 35 0 0 0 
C2 2.5 10 2.5 0 
C3 0 0 7.5 2.5 

 
Reconstructed 

Image (RI) 
Classification 

C4 2.5 0 0 37.5 
 
In the third and final example shown in Figure 53 and Figure 54 we depict a case where 
the classification algorithm yields 5 classes for the CTS reconstruction and 3 classes for 
the original image.  Such a situation is not unusual when using a classification algorithm 
like DFC and when the CTS reconstruction differs significantly from the original.  In this 
case, the quality metric applied to the results in Table 5 yields 72.5% similarity. 
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Figure 53. Classification Maps for original and reconstructed imagery with significant 
variations 
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Figure 54. Overlapped class maps for original and reconstructed imagery with 
significant variations 
 
 
 
Table 5. Match Table for class maps of original and reconstructed imagery with 
significant variations 
 
 
 

Original Image (OI) Classification 

 C1 C2 C3 
C1 35 0 0 
C2 2.5 12.5 0 
C3 0 7.5 2.5 
C4 0 0 12.5 

 
Reconstructed 

Image (RI) 
Classification 

C5 2.5 0 25 
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11. Bulk-Classification Results 
 
The results provided in this report describe algorithm performance in terms of the percent 
match between the original and reconstructed image classification maps.  Results are 
presented for the Iran and Israel data sets.  The Iran data set is composed of 256x256 and 
512x512 pixel images while the Israel imagery is restricted to only 256x256 pixels.  For 
either Iran or Israel, the 256x256 or 512x512 datacubes were extracted from a single 
larger image.   The Iran 256x256 data is composed of 12 datacubes labeled A thru L and 
the 512x512 data is composed of 5 datacubes labeled c1, q1, q2, q3, and q4.  For the 
Israel data, 8 datacubes labeled n_1 thru n_8 were used. 
 
This analysis was performed in two parts.  These include reconstruction algorithm 
performance assessments without and then with additional perturbations due to system 
noise or sensor jitter.  The latter part of this analysis is described under the section 
entitles, "11.6 Sensitivity Analysis".  The result plots pertaining to the analysis 
described here constitutes a great deal information.  The majority of these plots are 
provided in the appendix at the end of this report.  Due to the large number of plotted 
results of this information, only a representative set of plots are provided in the main 
body of this report. 
 
For all performance analyses, results were generated from the DFC and k-means 
algorithms.  In order to determine any net effect from the use of a particular set of 
spectral bands, 2 sets of spectral bands for the available imagery was analyzed with the 
two classification algorithms.  The two sets of spectral bands chosen for this analysis 
include bands 1 through 16 for the first set and bands 1 through 13 and 24 through 32 for 
the second set.  Bands 14 through 23 are water absorption bands and were omitted from 
the second set for that reason..  No significant difference was observed between these two 
band selections however the results for both sets are provided in the appendix.  Also, in 
the case of the k-means, the algorithm was executed for k=3 and k=6.  This was done to 
determine the effect, if any, of the choice of k. 
 
In the plots that follow, we note that k-means based quality metric performance results 
tend to depict larger percentage match values compared to those based on a DFC quality 
metric.  This difference follows from the number of classes that were generated in the 
two classification approaches.  Typically, when large and/or unequal numbers of classes 
are generated between original and reconstructed classifications (as can be the case of 
DFC), the tendency will be a reduction in the maximum common pixel/area intersections 
between classification maps as observed in Figure 54.  We can also observe this effect for 
the k-means based quality metric as the value k is increased from 3 to 6.  This overall 
reduction in performance for the k-means quality based metric is illustrated in several 
examples throughout Appendix C. 
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11.1 Comparison of Reconstruction Algorithms 
 
Two sets of performance results are provided for both Iran and Israel datasets.  In the first 
set, results are presented that illustrate the relative performance of CTS reconstruction 
algorithm approaches.  The second set illustrates performance of the reconstruction 
algorithms as a function of the number of principal components constraints from 2 
through 6. 
 
 
11.2 Performance Change by Average Number of Images 
 
The first set of results illustrates performance for the 6 reconstruction algorithms as a 
function of an average of 6 or 12 images for the 256x256 Iran data.  The reason for 
utilizing the full set and half the set was to determine whether performance remained 
consistent in this case.  For the 512x512 Iran data, performance is shown as a function a 5 
image average since only 5 512x512 images were available and a computing an average 
of results less than 5 would not be considered useful.  Given the similar performance 
between Israel and Iran data sets, only the Iran data results are shown in this section.  
Results for the Israel data are provided in Appendix C 
 
The results that follow depict an average performance for the MPI, POCS, POCS Filter 
Constrained (POCSFC), POCS Principal Component Filter Constrained (POCSPCFC), 
SCA, and SCA Filter Constrained (SCAFC) reconstruction algorithms.  Figure 55and 
Figure 56 illustrate performance for 256x256 and 512x512 datacubes respectively.  These 
results incorporate an average effect of using 2 through 6 principal component constraints 
for all but the MPI approach.  In that case, the only reconstructions produced were based 
on either 2 principal component constraints or with no constraints at all. 
 

 
DFC k-means (6 classes) 

 
Figure 55 Iran 256x256 Images, Bands: 1-16, DFC and k-means Classification 
Algorithms, Performance Change by Average Number of Images 
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DFC k-means (3 classes) 

 
Figure 56 Iran 512x512 Images, Bands: 1-13 and 24-32, DFC and k-means 
Classification Algorithms, Performance Change Over Average of All Images 
 
 
Observations and Conclusions Regarding Average Number of Images 
 
The plots in Figure 55 illustrate that performance steadily improves for the POCS-based 
approaches starting from the POCS to the POCSFC and POCSPCFC algorithms.  The 
same is true for the SCA based approaches SCA and SCAFC.  These results are 
consistent with the design and implementation assumptions for these algorithms.  
However, from these plots, it is not necessarily clear there is a clear winner between best 
of these two reconstruction approach subsets POCSPCFC and SCAFC.  From these same 
plots, one might assume that the MPI algorithm also appears to perform competitively.  
However, we recall that MPI results only include performance results from 2 variations in 
principal components where as the other approaches include performance results from 5 
principal component variations.  Therefore a comparison of MPI against the other 
reconstruction approaches is not a fair one to make.  Likewise, from Figure 56 we can 
make some similar observations from the DFC based quality metric.  Although the 
improvement trend is not as clear for the POCS-based reconstruction, the general trend 
between the reconstruction approaches follows that discerned from the 256x256 imagery.  
Alternately, the k-means results for the 512x512 imagery do not seem to correspond.  
That is, the POCSPCFC performance results are expected to be at least as good as those 
of the POCSFC.  Instead, they tend to b slightly worse.  However, the performance 
manifested for the k-means based quality metric is generally very high throughout and 
the performance difference between all approaches here tends to be between 5 to 10 
percent. 
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11.4 Performance Change by Number of Principal Component 
Constraints 
 
The second set of results illustrates CTS reconstruction algorithm performance as a 
function of the number of PCs (2-6) used as reconstruction constraints.  MPI results are 
only available for constraints of 2 principal components.  Therefore comparisons with 
MPI are not very useful and are not considered in this analysis.  The results included here 
illustrate performance for Iran 256x256 and 512x512 imagery.  These are shown in 
Figure 57 and Figure 58 respectively.  Results for Israel 256x256 pixel imagery depict 
different characteristics from those seen in the Iran data and for that reason are provided 
in Figure 59.  In addition, the full complement of available imagery is used for Iran and 
Israel imagery in either the 256x256 or 512x512 pixel cases. 
 

 
DFC k-means (3 classes)  

Figure 57 Iran 256x256 Images, Bands: 1-16, DFC and k-means Classification 
Algorithms, Performance Change by Number of Principal Component Constraints 
 
 

 
DFC k-means (3 classes)  

Figure 58 Iran 512x512 Images, Bands: 1-16, DFC and k-means Classification 
Algorithms, Performance Change by Number of Principal Component Constraints 
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DFC k-means (3 classes) 

Figure 59 Israel 256x256 Images, Bands 1-16, DFC and k-means Classification 
Algorithms, Performance Change by Number of Principal Component Constraints 
 
 
11.5 Observations and Conclusions Regarding Classification as 
Function of PCs 
 
The results derived in this analysis depict reconstruction algorithm performance trends 
that are very similar to those seen and discussed in Appendix C.  In addition, the results 
shown here in Figure 57 and Figure 58 for the Iran 256x256 and512x512 imagery both 
follow a very similar trend.  However, the trend observed between the Iran and Israel data 
sets is significantly different.  For example, in the DFC based quality measure, the 2 
principal component constraint (PC2) results tend to be the most significant for the Iran 
data sets and the least significant for the Israel data.  Outside of that constraint case, we 
also note that performance generally degrades for all CTS reconstruction approaches with 
increasing numbers of principal component constraints.  The first observation would 
seem to indicate a data dependency in which the Iran data was best characterized by the 
first 2 principal components and in the case of the Israel data the contrary is true.  Our 
second observation indicates that given the best principal component characterization, 
increasing the number of principal components only serves to degrade performance of the 
reconstruction algorithm by introducing additional noise. 
 
 
11.6 Sensitivity Analysis 
 
The second phase of our study was a sensitivity analysis directed at determining the 
effects of varying signal to noise ratio (SNR) and sensor jitter.  In the interest of time, the 
number of images used in these studies was limited to 6 out of either 12 or 8 total 
datacubes for Iran and Israel data respectively.  For SNR, analysis was further limited to 
reconstructions constrained by only 5 principal components.  For the jitter experiments, 
the plots incorporate average results for principal constraints or 2 through 6.  However, 



69 
 

the jitter quality metric results for reconstructions with 5 principal component constraints 
are also available in Appendix C.  In all plots shown here, results pertaining to the MPI 
reconstruction approach are excluded since this approach is considered to be non-
competitive with the other reconstruction approaches discussed here. 
 
 
11.6.1 Signal to Noise Ratio 
 
Figure 60 and Figure 61 results were generated from the Iran and Israel data sets 
respectively and include representative plots that illustrate performance changes due to 
signal to noise ratios of 10, 100, 200, 400 compared to results on noiseless data.  The 
results due to noiseless data are shown in black. 
 

DFC k-means (3 classes) 
Figure 60 Iran 256x256 Images, Bands: 1-16, DFC and k-means Classification 
Algorithms, Signal to Noise Ratio (SNR) Analysis 
 

DFC k-means (6 classes) 
Figure 61 Israel 256x256 Images, Bands 1-16, DFC and k-means Classification 
Algorithms, Signal to Noise Ratio (SNR) Analysis 
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The results achieved from this analysis generally indicate that as SNR increases, 
performance increases as well with similar relative changes between algorithms.  For the 
Iran data, we observe that the noiseless data performance tends to be slightly worse than 
for the SNR 200 and SNR 400 cases.  This is somewhat perplexing but we see that this 
observation holds true for quality metrics based on both DFC and k-means algorithms.  
This would seem to indicate that the result is data dependent since it was reflected in two 
very different classification approaches.  Although the results are not remarkably better, 
one supposition is that the introduction of a small amount of noise into the Iran data 
altered the feature space distributions of the reconstructed data in manner that yielded a 
more similar classification map.  The hypothesis that this is a data dependent issue is 
further supported by the results for the Israel data reconstructions.  Here, performance 
increases significantly from an SNR of 10 and regularly improves for SNR’s of 100, 200, 
400 and is best of all for noiseless data reconstructions. 
 
 
11.6.2 Jitter Analysis 
 
Figure 62 and Figure 63 results were generated from the Iran and Israel data sets 
respectively and include representative plots that illustrate performance changes due to 
increasing amounts of jitter from 10 through 1 where 10 is the least jitter and all are 
compared to results on jitterless data.  The results due to jitterless data are shown as the 
thin red line. 
 

 
DFC k-means (3 classes) 

Figure 62 Iran 256x256 Images, Bands: 1-13 and 24-32, DFC and k-means 
Classification Algorithms, Jitter Analysis 
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DFC k-means (3 classes) 

Figure 63 Israel 256x256 Images, Bands 1-13 and 24-32, DFC and k-means 
Classification Algorithms, Jitter Analysis 
 
 
 
From both DFC and k-means based quality metrics the performance results achieved 
from the jitter analysis reflect a very regular improvement corresponding to decreasing 
jitter.  These results correspond to our expectations of decreasing performance with 
increasing sensor jitter.  We note that the results tend to be more tightly packed for the 
DFC based approach.  A clearer view of both these plots can be seen in larger versions in 
Appendix C. 
 
 
12. Conclusions 
 
Throughout the course of this project, we have produced a set of tools which may be used 
to assess the applicability of non-conventional spectral imaging systems to missions 
associated with space-based optical sensors. Specifically, algorithms were developed to 
simulate CTS imagery, reconstruct spectral datacubes, and assess new mission-based 
reconstruction quality metrics. New reconstruction algorithms which incorporate filtered 
image constraints were developed and evaluated within this framework. These algorithms 
were found to outperform their non-filter-constrained counterparts in terms of both 
spectral accuracy and bulk classification accuracy. While POCSFC also performed well 
throughout the point target experiments, POCS consistently provided smaller spectral 
angles for target spectra. The relative performance of these algorithms is of course highly 
dependent upon a multitude of variables including the spatial and spectral frequency 
content of a given scene, the number of principal components used to constrain 
reconstructions, the region from which these PCs are calculated and the number of 
projection images. Future efforts should explore this trade space and compare the 
sensitivity of filter and non-filter constrained algorithms to each of these variables. For 
example, one might predict that a reduced number of projection images would be 
required when filter constraints are available. In addition, a study designed to select an 
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optimum filter set for a combined CTS and standard spectral imager should be 
undertaken during the design phase of such a system.  
 
While we were successful in setting up the tools and framework for answering many 
questions regarding CTS utility to space-based platforms, we were only able to perform a 
limited set of analyses with these tools. For example, the impacts of inaccurate STF 
measurements were not investigated as part of this effort. This is a critical issue for 
space-based systems which may not have on-board methods for performing corrections 
of this crucial variable in CTS reconstructions. Along these same lines, we restricted our 
analysis to a PSF that provided point-to-point mapping. In other words, we did not 
develop algorithms to incorporate multi-pixel PSFs or field dependent aberrations. We 
also did not address the need to optimize these reconstruction algorithms for speed or 
memory consumption. A study that looked at the possibility of operating CTS 
reconstruction algorithms with compressed data and/or a compressed STF would be very 
valuable to the space-based application of CTS. In addition, although we established the 
tools and methods for performing sensitivity analyses against error sources, we were 
limited by time to assessing the impacts of only two such sources on bulk-classification 
accuracy. A more complete assessment of these and other system-dependent impacts 
would be strongly recommended as part of any CTS design process. Finally, it should be 
noted that although the majority of this work is highly specific to CTS systems, the 
innovative methods developed for assessing bulk-classification capabilities may be used 
to compare the classification accuracies associated with any number of spectral imaging 
systems.  
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Appemdix A 
 
Table A-1. Material distributions for the Nadir viewing Israel North datacubes. Materials with less 
than 1% contribution are not included in this list.  

 
 Material  Cube 1 Cube 2 Cube 3 Cube 4 Cube 5 Cube 6 Cube 7 Cube 8 
1 Water  0% 14% 0% 1% 1% 2% 1% 18% 
2 Old snow (1000 

micron radius) 
 

0% 0% 0% 0% 0% 0% 0% 0% 
4 Compacted soil  55% 50% 31% 51% 34% 37% 61% 36% 
5 Tilled soil  on 

june 30 chgd to 
same as 
compacted 

 

9% 4% 11% 8% 15% 12% 13% 2% 
6 Sand  1% 0% 0% 0% 0% 0% 0% 0% 
7 Limestone and 

silt 
 

8% 11% 12% 2% 1% 3% 3% 3% 
8 Irrigated low 

vegetation 
 

3% 0% 2% 6% 21% 20% 4% 1% 
9 Meadow grass  1% 1% 4% 3% 4% 2% 0% 2% 
10 Scrub  1% 3% 1% 3% 2% 2% 2% 2% 
11 Broadleaf forest  4% 4% 10% 5% 12% 8% 4% 3% 
14 Asphalt  0% 0% 9% 0% 0% 2% 0% 10% 
15 Concrete  0% 0% 0% 0% 0% 0% 0% 1% 
16 Grass scrub mix  1% 1% 2% 3% 3% 1% 0% 1% 
17 Urban 

residential 
 

0% 0% 2% 0% 0% 2% 0% 8% 
18 Urban 

commercial 
 

0% 0% 12% 0% 0% 1% 0% 6% 
20 Broadleaf and 

brush mix 
 

1% 2% 2% 1% 2% 3% 2% 3% 
21 Wet soil  0% 0% 0% 0% 0% 0% 0% 0% 
24 Rock 30 and soil 

70 mix 
 

14% 10% 2% 17% 5% 5% 11% 4% 
 
Table A-2. Material numbers for the Nadir-viewing Iran North Datacubes.  
 

# Material # Material 
1 Water 12 Pine forest 
2 Varnished sandstone 13 Tundra 

3 
Mixture of material 6 & 7 (rock & silt-
sand) 14 Asphalt 

4 Dry silt-salt flats 15 Concrete 
5 Wet silt-salt playa 16 Metal building roof 
6 Silt-sand 17 Urban residential 
7 Rock 18 Urban commercial 

8 Irrigated low vegetation 19 
Dummy replacement for polarized water 
(now 28) 

9 Meadow grass 20 Seaice (3 meters thick) 
10 Scrub 21 Old snow (1000 micron radius) 
11 Broadleaf forest   
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Appendix B 
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Figure B1. 
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Figure B2. 
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Figure B3. 
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Figure B4. 
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Figure B5. 
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Figure B6. 

 
 



78 
 

Correlation Results 
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Figure B7. 
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Figure B8. 

Target to Background Correlation 
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Figure B9. 
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Figure B10. 

Target to Background Correlation 

Target to Background Correlation 
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Figure B11. 
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Figure B12. 

 

Target to Background Correlation 

Target to Background Correlation 
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100 Targets 
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Figure B13. 
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Figure B14. 
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Figure B15. 
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Figure B16. 
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Figure B17. 
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Figure B18. 
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Correlation Results 
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Figure B19. 
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Figure B20. 

Target to Background Correlation 
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Figure B21. 
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Figure B22. 

Target to Background Correlation 

Target to Background Correlation 
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Figure B23. 
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Figure B24. 

Target to Background Correlation 

Target to Background Correlation 
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Figure B25. 
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Figure B26. 
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Figure B27. 
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Figure B28. 
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Figure B29. 

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60
Spectral Angle Background error for target to background correlation 0.65 and PCs 3-6

TBR

S
pe

ct
ra

l A
ng

le

POCS
POCS Filter
POCS PC
SCA
SCA Filter

 
Figure B30. 
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Correlation Results 
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Figure B31. 
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Figure B32. 
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Figure B33. 

Target to Background Correlation 

Target to Background Correlation 
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Figure B34. 
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Figure B35. 

Target to Background Correlation 

Target to Background Correlation 
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Figure B36. 
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Figure B37. 

Target to Background Correlation 
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Figure B38. 
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Figure B39. 
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Figure B40. 
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Figure B41. 
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Figure B42. 
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Figure B43. 
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Figure B44. 

Target to Background Correlation 
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Figure B45. 
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Figure B46. 
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Figure B47. 
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Figure B48. 
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Appendix C 
 
Iran 256 x 256 
 

 
 
C- 1 Iran 256x256 Images, Bands 1-16, DFC Classification Algorithm, Performance Change by Average 
Number of Images 
 

 
 
C- 2. Iran 256x256 Images, Bands 1-13 and 24-32, DFC Classification Algorithm, Performance Change by 
Average Number of Images 
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C- 3 Iran 256x256 Images, Bands 1-16, k-means Classification Algorithm, 3-Classes, Performance Change 
by Average Number of Images 
 

 
 
C- 4 Iran 256x256 Images, Bands 1-13 and 24-32, k-means Classification Algorithm, 3-Classes, 
Performance Change by Average Number of Images 
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C- 5 Iran 256x256 Images, Bands 1-16, k-means Classification Algorithm, 6-Classes, Performance Change 
by Average Number of Images 
 

 
 
C- 6 Iran 256x256 Images, Bands: 1-13 and 24-32, k-means Classification Algorithm, 6-Classes, 
Performance Change by Average Number of Images 



103 
 

Iran 512x512 
 

 
 
C- 7 Iran 512x512 Images, Bands 1-16, DFC Classification Algorithm, Performance Change Over Average 
of All Images 
 

 
 
C- 8 Iran 512x512 Images, Bands 1-13 and 24-32, DFC Classification Algorithm, Performance Change 
Over Average of All Images 
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C- 9 Iran 512x512 Images, Bands 1-16, k-means Classification Algorithm, 3-Classes, Performance Change 
Over Average of All Images 
 

 
 
C- 10 Iran 512x512 Images, Bands 1-13 and 24-32, k-means Classification Algorithm, 3-Classes, 
Performance Change Over Average of All Images 
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C- 11 Iran 512x512 Images, Bands 1-16, k-means Classification Algorithm, 6-Classes, Performance 
Change Over Average of All Images 
 

 
 
C- 12 Iran 512x512 Images, Bands: 1-13 and 24-32, k-means Classification Algorithm, 6-Classes, 
Performance Change Over Average of All Images 
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Israel 256x256 
 

 
 
C- 13 Israel 256x256 Images, Bands 1-16, DFC Classification Algorithm, Performance Change by Average 
Number of Images 
 

 
 
C- 14 Israel 256x256 Images, Bands 1-13 and 24-32, DFC Classification Algorithm, Performance Change 
by Average Number of Images 
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C- 15 Israel 256x256 Images, Bands 1-16, k-means Classification Algorithm, 3-Classes, Performance 
Change by Average Number of Images 
 

 
 
C- 16 Israel 256x256 Images, Bands 1-13 and 24-32, k-means Classification Algorithm, 3-Classes, 
Performance Change by Average Number of Images 
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C- 17 Israel 256x256 Images, Bands 1-16, k-means Classification Algorithm, 6-Classes, Performance 
Change by Average Number of Images 
 

 
 
C- 18 Israel 256x256 Images, Bands 1-13 and 24-32, k-means Classification Algorithm, 6-Classes, 
Performance Change by Average Number of Images 
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Performance Change by Number of Principal Component 
Constraints 
Iran 256x256 

 
 
C- 19 Iran 256x256 Images, Bands 1-16, DFC Classification Algorithm, Performance Change by Number 
of Principal Component Constraints 
 

 
 
C- 20 Iran 256x256 Images, Bands 1-13 and 24-32, DFC Classification Algorithm, Performance Change by 
Number of Principal Component Constraints 
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C- 21 Iran 256x256 Images, Bands 1-16, k-means Classification Algorithm, 3-Classes, Performance 
Change by Number of Principal Component Constraints 
 

 
 
C- 22 Iran 256x256 Images, Bands 1-13 and 24-32, k-means Classification Algorithm, 3-Classes, 
Performance Change by Number of Principal Component Constraints 
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C- 23 Iran 256x256 Images, Bands 1-16, k-means Classification Algorithm, 6-Classes, Performance 
Change by Number of Principal Component Constraints 
 

 
 
C- 24 Iran 256x256 Images, Bands: 1-13 and 24-32, k-means Classification Algorithm, 6-Classes, 
Performance Change by Number of Principal Component Constraints 
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Iran 512x512 
 

 
 
C- 25 Iran 512x512 Images, Bands 1-16, DFC Classification Algorithm, Performance Change by Number 
of Principal Component Constraints 
 

 
 
C- 26 Iran 512x512 Images, Bands 1-13 and 24-32, DFC Classification Algorithm, Performance Change by 
Number of Principal Component Constraints 
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C- 27 Iran 512x512 Images, Bands 1-16, k-means Classification Algorithm, 3-Classes, Performance 
Change by Number of Principal Component Constraints 
 

 
 
C- 28 Iran 512x512 Images, Bands 1-13 and 24-32, k-means Classification Algorithm, 3-Classes, 
Performance Change by Number of Principal Component Constraints 
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C- 29 Iran 512x512 Images, Bands 1-16, k-means Classification Algorithm, 6-Classes, Performance 
Change by Number of Principal Component Constraints 
 

 
 
C- 30 Iran 512x512 Images, Bands: 1-13 and 24-32, k-means Classification Algorithm, 6-Classes, 
Performance Change by Number of Principal Component Constraints 
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Israel 256x256 
 

 
 
C- 31 Israel 256x256 Images, Bands 1-16, DFC Classification Algorithm, Performance Change by Number 
of Principal Component Constraints 
 

 
 
C- 32 Israel 256x256 Images, Bands 1-13 and 24-32, DFC Classification Algorithm, Performance Change 
by Number of Principal Component Constraints 
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C- 33 Israel 256x256 Images, Bands 1-16, k-means Classification Algorithm, 3-Classes, Performance 
Change by Number of Principal Component Constraints 
 

 
 
C- 34 Israel 256x256 Images, Bands 1-13 and 24-32, k-means Classification Algorithm, 3-Classes, 
Performance Change by Number of Principal Component Constraints 
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C- 35 Israel 256x256 Images, Bands 1-16, k-means Classification Algorithm, 6-Classes, Performance 
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