PROBLEMS OF SILICA SCALING AT CERRO PRIETO

GEOTHERMAL POWER STATION

S. Mercado and J. Guiza Federal Commission of Electricity Mexico

Abstract

In the Cerro Prieto Geothermal field, where the predominant fluid in the reservoir is water, we have had problems with silica and other deposits in the first exploration wells as well as in production wells. Scaling problems have also been encountered in silencers, cyclone separators, drains, water pipes, etc. Some scale problems have also been encountered in the turbine blades of the geothermal electric plant. Most of these problems have been solved by corrective procedures which, in some cases, have turned into routine. Scale deposition is a problem that certainly diminishes the useful capacity of geothermal fluids with water predominance, but it does not actually endanger the installations, since this problem is under control.

Description of the Geothermal Field of Cerro Prieto

The "Cerro Prieto" geothermal field presents hydrothermal surface manifestations in an area of about 30 square kilometers, where the production zone is located (Fig. 1). Thirty deep wells have been drilled in this field to a depth ranging from 700 m. to 2,000 m. Flow is obtained through pre-slotted casing or through gun perforated casing, after cementing the production casing, except 150 m. to 300 m. of the bottom part, where the hot strats are located. High enthalpy water flows through these perforations and is conducted to the surface through the 7-5/8" production casing.

As the water ascends through the production casing, the hydrostatic pressure diminishes and it partially flashes into steam. The flow through the valve tree is a water-steam mixture containing from 20 to 40% of steam. This mixture is admitted to a centrifugal Webre type centrifugal separator, 54" in diameter. The steam is sent to the power plant and the separated water to an evaporating pond.

From 20 to 80 tons per hour of steam are obtained from each well at a pressure of 100 psig. To date, 13 wells are used to supply the necessary steam to maintain at full load two units of 37.5 MW each, at a steam rate of 9.4 Kg/KWh.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Composition of the Brine and its Relationship to Silica and Other Scaling Salts

A typical analysis of the brine extracted by the wells is shown in Table I. As it can be seen, the following relationship can be established:

Cations:

$Na^+ > K^+ > Ca^{++} > Mg^{++}$

Anions: $C1 > HCO_3 > SO_4$

According to the classification of Chebotarey (1956) the brine is of subterranean origin and formed under restricted circulation or stagnation. By means of isotopic analysis of the geothermal fluid it has been established that the water from the geothermal reservoir is of meteoric origin and proceeds mainly from the Colorado River.

The high concentration of dissolved solids is the result of the solubility action of the hot water on the sedimentary rocks (see the sandstone analysis in Table II) acting for thousands of years, and reaching an equilibrium state or saturation with respect to some elements such as silicon, sodium and potassium.

The geothermal fluids also contain substantial amounts of dissolved gases, mainly CO2 and H2S and in minor amounts NH3, H2, and CH4.

The high content of dissolved silica in the well brine is the result of dissolution of rock at temperature, a fact experimentally verified by different investigators. Results of tests conducted in our Laboratory with a sandstone core sample obtained from a well at a depth of 1,090 m. and using brine of the wells are shown in Fig. 2. Prior to the test, silica in the brine was precipitated and separated from the brine. As expected, the concentration of silica in solution increases with the temperature.

Silica concentrations determined in these tests are shown in Fig. 2 by (+). As can be seen, they follow the solubility curve obtained by Kennedy (1950) and Morey and Fournier (1962).

It has been possible to establish that the fluid discharge by the Cerro Prieto wells is saturated with respect to silica at the temperature at which the brine is found. This fact has been utilized to determine the temperature and enthalpy of the hydrothermal brines with acceptable accuracy. This method has been employed by Fournier and Rowe (1966) and Mahon (1966) for the same purpose.

Table I

		an a	ا الافرار الاراني ما	
	Element	an an an an Anna an Airtean an An Airtean Anna Airtean	ppm	
n an	Na V	and the second	9062	n an
	.∧ Li		2287	
	Ca	-	520	1
	Mg B		1 14	
	SiO2	and a second second	1250	and the second second
1898 - A. A.	C1 Dra		16045	
	Br F		31 2	
	S04		6	
ala kan selata pangangan pangangan 1990 - Angelan Pangangan 1990 - Angelan Pangangan	HCO ₃ NaCl (Cl) As		2 74 26442 0.5	
	Fe		0.3	
	pH Cond. (mmhos)		7.7 32200	n an
and the second sec		1		an an Arrange 1945 - Arrange Arrange 1946 - Arrange Arrage
	T	able II		
Char	dool Commondation -	f Candatana Alt		

Chemical Analysis of the Separated Water of Well M-5 After Being Exposed to Atmospheric Pressure

and the second second second second

. .

Chemical Composition of Sandstone Obtained from A Depth of 1090 M. at "Cerro Prieto"

	Element			<u>ppm</u>	
	Na K		1	4875 1200	
	L1 Ca	1月19日) - 1月19日日子 - 1月19日子子	2	72 8000	
	Mg B C1			8505 244 2100	
n kapanganan (Ke) Tanàna amin'ny kaominina dia kaominina Tanàna amin'ny kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina di	Fe Br			520 65	2011년 1일 - 124 18 1912년 1일 - 2012년 1913년 1일 - 2012년
	SiO2		26	6000	

In a similar manner, the brine is saturated with respect to carbonates at the temperature of the brine.

Due to the saturation condition of some of its components, deposition of scale occurs on the inside of the well casing as the geothermal fluid undergoes physical changes on its way to the surface. The scaling occurs physically when the high enthalpy water ascends through the production casing and the pressure at which it is subjected is reduced causing partial flashing of the water into steam. The zone of the casing where this change of phase occurs depends on the original enthalpy of the fluids. Fig. 3 shows the relation between the enthalpy measured in each well and the depth at which the deposits are found.

Chemically, deposition occurs when the brine (originally saturated with respect to silica and carbonates at the initial temperature) becomes supersaturated as a portion of the water flashes into steam and the temperature of the brine is reduced by this change of phase.

CO₂ originally present in the brine is transferred to the steam when boiling is initiated. The initial equilibrium is disturbed and bicarbonates are precipitated as carbonates according to the following reaction:

$$Ca(HCO_3)_2 \rightarrow CaCO_3 + H_2O + CO_2^{\dagger}$$
.

Scaling problems of the production casing are more or less severe, depending on the zone where scale is produced and the depth of this zone. If, for instance, the deposit is formed in the production casing, rimming of the well recovers the well output. If, however, the deposit is formed in the slotted portion of the casing, fluid flow is restricted and the slots cannot be cleaned by rimming. Scale may also occur in the surrounding ground seals and diminishing permeability with no means of cleaning it.

Deposits similar to those formed in the production casing keep on forming in the separators, water piping, silencers and drains. Silica and other insoluble deposits are formed because water containing these salts is carried over the steam. This carryover is responsible for scales formed in condensate traps and on turbine blades.

Conclusions

Scaling in the production pipes from wells and in other installations has caused problems and restricted the integral use of the geothermal fluids. However, it has been possible to solve scaling problems as they occurred and operation of the wells and the geothermoelectric plant has been continuous since its inauguration in April, 1973. In the future, we hope to use preventive systems that will make the use of geothermal energy from water-predominant reservoirs much easier.

Table III

of	Wells: 1A	, м7, м9	, M10,	M11,	M29 au	nd M39
- -	<u>Well 1A</u> :				e da la compositione e e trata en la compositione	
×		CaCO ₃			94.6	5 %
• •		MgCO3			4.2	2 %
(d. 1		NaC1			1.1	. %
31 7 1 1 2 2 2	<u>Well M7</u> :					
		Ca			29	%
		Mg			6.1	. %
		C1			1.2	28%
	e en al estador de la compañía. A transmissión	Fe ₂ 03			1.2	.3%
		S10,	:		6.0) %
4 - 4 	$F_{1,2}^{(1)} = \frac{1}{2} \frac{1}$	so ₄			· 0	%
	<u>Well M9:</u>	(750731)) at 14	47-170	<u>) m.</u>	
		CaCOa			75.5	6%
ta el An 6		S10,			12.5	1%
		NaC1			0.8	2%
4.8 . U 179 - 1		FeS			9.4	6%
	Well M10:					
		- 医哈里氏 - 医鼻前后检				
87.5		CaCO ₃			75.6	7%
		MgCO3			3.1	9%
		^{S10} 2			19.5	2%
		FeS			1.6	2%

Chemical Composition of Scale in Production Pipe of Wells: 1A, M7, M9, M10, M11, M29 and M39

<u>Well M11</u>:

the stell

Α.			<u>% (w)</u>
		그는 것 같아요. 이야지.	n de la constantina. La constantina
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	S10,	$(\Delta f) = C f_{1} + (-1) f_{2}$	25.1
	Fe Ź	(FeO)	3.7
	Cu	(Cu0)	0.1
	Ca	(Ca0)	24.4
	Mg	(MgO)	12.0
	Na	$(Na_{2}0)$	0.4
	K	$(K_2\overline{0})$	0.3
	Zn	(ZnO)	0.2
•	Mn	(MnO)	0.9
	C1		1.4
<u>+</u>	Au	· · · ·	0.0001
	Ag		0.0061
	CO3		14.2
	C.L at 400'	°C	1.4
	C.L at 800°	°C 3	22.9

Β.		
÷	. •	

n (* 1997) 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	% (w)				
Depth m	CaCO ₃	sio ₂	FeS	NaC1	
27	30.53	61.10	5.73	0.71	
74	35.0	60.05	4.31	0.64	
121	48.92	44.34	4.59	0.43	
167	43.9	51.6	3.67	0.46	
214	35.93	56.96	4.36	0.54	
260	44.44	49.54	4.03	0.59	
307	54.7	39.5	5.08	0.64	
344	52.00	42.28	5.08	0.64	
399	33.89	59.46	5.81	0.84	
482	38.85	54.10	6.08	0.97	
585	38.55	53.91	6.52	1.02	
600	39.31	52.52	3.74	1.63	
, 659	55.54	37,44	1.64	0.49	
715	79.74	12.87	1.25	0.28	
		(Ref)			

ŗ

- 0-⁷⁻⁶

		% (w)		
Depth	CaCO ₂	Si0,	NaC1	FeS	
m	J	- -			
500	78.00	8.02	0.81	12.59	
507	90.18	2.31	0.33	0.69	
554	91.55	0.59	0.07	0.59	
601	92.3	1.34	0.07	2.16	
648	92.95	1.18	0.07	0.80	
694	94.07	0.52	0.08	0.71	
750	93.59	1.54	0.12	1.21	
797	93.72	1.55	0.1	0.5	
867	87.69	5.27	0.12	2.16	
890	85.47	8.37	0.26	1.54	
1030	18.00	25.63	0.27	9.78	(1)

(1) MgCO₃ 41.53%

Well M39 (Aug.-Sept. 75)

Well M29: (Nov.-Dec. 1975)

	% (w)				
Depth m	CaCO3	Si02	NaC1	FeS	
250	84.43	6.09	0.11	3.18	
928	61.24	23.34	0.27	1.86	
964	87.78	2.89	0.03	0.082	
992	71.11	15.10	0.28	1.46	
1015	70.26	15.98	0.17	4.64	
1057	73.25	17.95	0.26	0.94	
1076	90.56	5.18	0.14	0.98	
1085	71.28	17,08	0.20	2.27	
1095	73.30	17.60	0.25	3.07	
1116	78.94	9.10	0.19	3.97	
1140	76.55	18.43	0.15	1.37	
in constraint which have been as the second s	1	بیهیشی با بر وال ای اینا ا			

	a ser an	a suma in the
	भूत हो दिन	% (w)
	Well M3 (white)	Well M34 (white, gray and brown)
CaCO3	9.52	6.5
Si02	3.6	85.1
Fe203	0	4.29
MuO		0.04
Co	0.005	
N1 Cu	0.0013	0,003
	0.00002	0.00013
Ag	0.0020	0.002

Chemical Analysis of Scale in Water Discharge Pipes in Wells M3 and M34

Chemical Analysis of Scale Inside of Cyclone Separator of Well M34. Color of Sample: Black

% (w)__

31.4	
0	. ا
0.2	
0.05	
0.013	
0.049	
0.0005	:
0.0043	
	31.4 0 0.2 0.05 0.013 0.049 0.0005 0.0043

Chemical Analysis of Scale in Silencer of Well M5 and Well M8

.

	×	(w)
	Well M5	We11 M8
	(gray)	(white)
S102	91.7	93.2
FeoŐa	1.4	0.86
MnŐ	0.06	0.05
Со	0.0069	0.0245
Cu	0.015	0.0086
Au	0.00002	0.001
Ag	0.0021	0.0021

Chemical Composition of Scale in Turbine Rotor Blades and Fixed Blades

Phases detected in X-ray analysis:

Magnetite Pyrite Pyrrohotite Calcite Halite KCl

A. 2nd Maintenance Unit No. 1, Nov. 1975

	Fixed Blades				Rotor Bla	<u>des</u>
	1	4	5	6	1	
S102	55.4	1.0	0.8	2.0	0.5	
Fe0	1.3	35.2	26.6	29.7	34.9	
Ca0	24.6	0.3	0.3	0.1	0.1	
CrO4	0.1	0.2	0.1	0.1	0.1	
MgO	0.1	0.1	0.1	0.1	0.1	
MnO	0.7	0.3	0.3	0.5	0.5	
S	T	37.6	37.6	51.7	Т	
SO4	3.6	0.0	37.2	0.0	67.2	
C1	1.3	0.2	0	0	0	

B. 3rd Maintenance Unit No. 2, March, 1976

	Fixed Blades			Rotor Blades				
	1	3 4	5	6	1	4	5	6
Si0,	14.1	0.5 0.5	0.7	1.1	0.4	0.4	0.5	1.6
Ca0 ²	24.0	0 0	0	0	0	.0	0	0
Fe0	25.7	44.3 56.6	28.8	21.9	50.3	33.5	38.7	17.3
S	-	9.6 5.2	0.4	0.2	0.5	3.1	2.4	0.3
CO3	14.5	0 0	0	0	0	0	0	0
K2Õ	0.2	- 0	0	0	0	0		0
Na ₂ 0	9.4	0	0	0	0	0	0	0

·7:

FIG. 1. - CERRO PRIETO GEOTHERMAL FIELD

FIG.2. QUARTZ SOLUBILITY VS TEMPERATURE

69_01

6.19 19

DEPOSITS IN WELL M-29

CHEMICAL VARIATIONS VS DEPTH

DEPOSITS OF WELL M-13 AT 591 m DEPTH

80

•

٤.

C

SMG/JLSM

3.4.- Deposits inside of silencer: a) Bottom; and b) Test Plate.

3.5.- Silica deposit (99% SiO₂) in drainage.

3.6.- Scale in turbine fixed blades. First and second steps.

3.6.- Scale in turbine blades of 6th step.