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Abstract. Application of moments method to study dynamics of muon cooling 
system is presented. The muon cooling channel has specific features such as 
damping due to ionization cooling, heating due to multiple scattering and energy 
struggling. Our method (in a case of transverse motion) is correct in absence of 
longitudinal magnetic fields such as solenoids. 

INTRODUCTION 

It is well known that moments method is successfully used for calculation 
of the dynamics in different focusing channels. However, the muon cooling 
channel has some specific features: a) damping due to  ionization cooling; 
b) heating due to  multiple Coulomb scattering and energy struggling. In 
our paper [l] on “Kinetics of Muon Longitudinal Cooling” we considered an 
evolution of longitudinal beam moments in a system with constant parameters. 
In this paper we investigate a more general case: a cooling system, consisting 
of a number of sections, each of which has constant parameters. Our method 
(in a case of transverse motion) is correct in absence of longitudinal magnetic 
field (e.g. solenoids). 
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METHOD OF MOMENTS 

Equation of motion for individual particle in presence of damping and ran- 
dom heating may be written as: 

y” + 2ay’ + w2y = W(x)  (1) 

The y is a particle coordinate (transverse or longitudinal one), 2a is a damping 
coefficient; w is a gradient of the external field, W(x) is a function describing 
heating. 

We can consider W(x) as a sum of random &functions (kicks), with given 
spectral density: 

with y’ = dy/dz. Let us assume that W is also constant. Then, by simple 
differentiation we find (using Eq. 1); that 

Let ( g 2 )  = u; (yg’) = v; ( ( v ’ ) ~ )  = t. We can rewrite our system in the following 
form 

1 u’ - 2v = 0 
Q2u + v’ + 2 a v  - t = 0 
-2R2v + t’ + 4at = w (4) 

This system should be solved for general initial conditions: 

u = uo; v = vo; t = t o .  (5) 

The solution of the linear system (4) can be written in matrix form: 

Here subscript “f” corresponds to final point of the section, (R)  is a column 
and ( M )  is 3 x 3 matrix. 

Elements of R and M may be found using Laplace transform method. We 
have the following steps: 
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1. Using Laplace transform method we get a system of linear equations for 
V(p); V(p) ;  T(p)  -+ Laplace transforms of u(z) ;  v(z); t ( x ) ;  ( p  is a Laplace 
variable). 

2. Solving this linear system we obtain expressions for U(p);  V ( p ) ;  T ( p ) .  

3. A backward Laplace transform can be found using a residue theorem: 

Here summation is made over all p k  which are the first order residues of 

Using this procedure, we can obtain final expressions for all the elements. 
function F(p).  

Ml,l = exp(-2az)[ch2aoz + -sh2aoz a + 
QO 

R2 
-(ch2aox - l)] 
2a; 

1 sh2aox 
QO 

Adly2 = exp(-2ax) - 1) + 
ch2aox - 1 

M1,3 = exp(-2az) 2 4  

M2,1 = exp(-2az) 

M2,2 = exp(-2ax)[a(ch2aox - 1) + aosh2aoxI (12) 

(15) 1 a s h2ao 2 

a0 a0 
M3,2 = exp(-2ax)R2 [ ~ ( l  - ch2aox) + 
M3,3 = exp(-2ax) - 1) + (ch2aox 

1 a 
- -sh2aox) 

a0 

All diagonal terms ( M ~ J ,  M2,2, and M3,3) should be equal to 1 for z = 0, all 
others are equal to  0 for z = 0. For column: 

1 R2 a exp(-2az) 
R1= -[I + 7 exp(-2az) - 

4aR2 a, 4 



[ ( ;) 4aR 4 
a2eh2aoz - R2 

R3 = - 1 +exp(-2ax) sh2ao 1 - - - 

Here 

a0 = d r n  
If a0 is imaginary, then 

APPLICATIONS TO LONGITUDINAL COOLING 

In this case y = z - x,. (xs is a coordinate of equilibrium particle), 

1 
mc2P2y 

2a  = 

The first term in RHS describes longitudinal cooling due to wedges, the second 
one damping due to  change of longitudinal mass, and the third one - so 
named “natural” cooling due to slope of the ionization losses curve [2]. Here 

We see, that if (g). 
and the first term in (22)  disappears. Where X is a transverse coordinate. 

does not depend on X ,  the derivative is equal to  zero, 
ion 

Parameter A is defined by 

R is a radius of curvature for ideal trajectory. R is the synchrotron frequency 
and in linear approximation may be written as 

2 R =  
2nEa,  cos ( F z s )  A 

mc2XP2y (25)  
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Here E,, is an amplitude of r.f. field, and X is its wavelength. 

Here re, me - classical radius and mass of electron; p; 2; A are density; 
charge and atomic number of the wedge material m - muon mass. Let us 
consider sections which are specific for cooling system: 

a) Wedge section 

b) Section of transverse cooling (q = 0) 

c) Accelerating section 

a = a1 + a2 + a3; w = w,; i-2; = 0 

a = a2 + a 3 ;  w + w,; i-2: = 0‘ 

a = a2; w = 0; i-2: # 0 

APPLICATIONS TO TRANSVERSE COOLING 

Here y is a transverse coordinate 

1 P’ 
ion mc2P2y P 

- Kal+ - (29) 

K is a coefficient describing coupling with “wedge section”, if 9 = Qy, K = 1; 
if XI?, = 0, K = 0. 

E, = 15 MeV, XT is material radiation length. Let us consider sections which 
are specific for ionization cooling system. 

a) Wedge section 
w=w1 

It is easy to show, that 5 + a i  = 0, 
a2 is arbitrary 

= a? - Kal+ $ 
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b) Section of transverse cooling 
w=w, 
a ! = O  
R2 is arbitrary 

w=o 
Q = d  
R2 is usually zero. 

c) Accelerating section 

P 

Since in our variables X ,  %; damping rate (in absence of wedges) is equal to 
zero, if wedges are used, then we have increment (a! < 0) in such a section. 
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