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Abstract 

 

Our discovery that the introduction of living cells (Saccharomyces cerevisiae) alters 

dramatically the evaporation driven self-assembly of lipid-silica nanostructures suggested 

the formation of novel bio/nano interfaces useful for cellular interrogation at the 

nanoscale.  This one year “out of the box” LDRD focused on the localization of metallic 

and semi-conducting nanocrystals at the fluid, lipid-rich interface between S. cerevisiae 

and the surrounding phospholipid-templated silica nanostructure with the primary goal of 

creating Surface Enhanced Raman Spectroscopy (SERS)-active nanostructures and 

platforms for cellular integration into electrode arrays.  Such structures are of interest for 

probing cellular responses to the onset of disease, understanding of cell-cell 

communication, and the development of cell-based bio-sensors.  As SERS is known to be 

sensitive to the size and shape of metallic (principally gold and silver) nanocrystals, 

various sizes and shapes of nanocrystals were synthesized, functionalized and localized at 

the cellular surface by our ‘cell-directed assembly’ approach.  Laser scanning confocal 

microscopy, SEM, and in situ grazing incidence small angle x-ray scattering (GISAXS) 

experiments were performed to study metallic nanocrystal localization. 
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Preliminary Raman spectroscopy studies were conducted to test for SERS 

activity.  Interferometric lithography was used to construct high aspect ratio cylindrical 

holes on patterned gold substrates and electro-deposition experiments were performed in 

a preliminary attempt to create electrode arrays.  A new printing procedure was also 

developed for cellular integration into nanostructured platforms that avoids solvent 

exposure and may mitigate osmotic stress.  Using a different approach, substrates 

comprised of self-assembled nanoparticles in a phospholipid templated silica film were 

also developed.  When printed on top of these substrates, the cells integrate themselves 

into the mesoporous silica film and direct organization of the nanoparticles to the cell 

surface for integration into the cell. 
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Figures 

 

Figure 1. Schematic illustration of the formation of a functional bio/nano 

interface formed via cell-directed assembly 
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 Figure 2. TEM images of gold NC at the surface of a cell forming the bio/nano 

interface:  a) top view, b) cross-section 
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Figure 3.  a) SEM image of cells in a silica film immobilized utilizing cell-

directed assembly, b) SEM of gold NC on the surface of an immobilized cell  
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 Figure 4. GISAXS of cells with 2nm lipid-coated gold particles in a silica film 

formed via cell-directed assembly 
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 Figure 5.  Raman spectra, obtained with 647 nm excitation, of cells 

immobilized via cell-directed assembly on copper, plus gold NC  
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  Figure 6.  TEM images of a) 30 nm  lipid-coated silver nanoparticles, and b) 

80 x 40 nm water-soluble gold nanorods 
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  Figure 7.  a) Hole array in SU-8 with aspect ratio ~3,  b) Hole array in SU-8 

with aspect ratio ~9, and c) Hole array in SU-8 with aspect ratio ~14. 
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  Figure 8.  a) Cross-section SEM showing partially filled hole array. b) Cross-

section SEM showing hollow gold post inside hole array 
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  Figure 9.  a) Top down SEM showing incomplete hole array,  b)  SEM 

showing of surface showing broken gold posts, and  c) SEM of SU-8 film after 

removal indicating broken posts in film as well as void in the center of the 

hollow posts 
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  Figure 10.  a) Top down SEM showing incomplete hole array,  b)  SEM 

showing of surface showing broken gold posts, and  c) SEM of SU-8 film after 

removal indicating broken posts in film as well as void in the center of the 

hollow posts. 
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  Figure 11.  Schematic of cellular integration into a bio-compatible silica film  
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  Figure 12.  A cell that has integrated itself into a bio-compatible mesoporous 

silica film 
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  Figure 13.  Confocal images showing the localization of optically-labeled 

gold NC by cells placed on top of a bio-compatible silica film containing the 

gold NC 

21 
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Introduction 

 

The integration of biological building blocks into functional platforms is important to 

applications across the field of nanotechnology (1).  However, hybrid materials that incorporate 

biological units such as whole cells require functional bio/inorganic interfaces (2-4), benign 

synthesis conditions (5-12) and fluidic support systems to avoid dehydration (13).  Cell-directed 

assembly integrates biological materials in a uniformly nanostructured inorganic host that 

maintains cell accessibility, addressability, and viability in the absence of an external fluidic 

architecture. 

  As we have reported earlier (14), during immobilization of S. cerevisiae cells in a porous, 

lipid-templated silica matrix utilizing evaporation-induced self-assembly, the cell forms its own 

novel interface through which it both directs assembly of the inorganic host phase and provides a 

fluid, membrane-like environment for the localization of proteins and nanocrystals in extended 

nanostructures.  Characterization of the assembly process and the bio/nano interface through in-

situ grazing incidence small angle X-ray scattering (GISAXS) (15), electron microscopy, and 

laser scanning confocal imaging, shows the cells profoundly alter the self-assembly pathway, 

creating around themselves multilayered phospholipid vesicles that interface coherently with the 

nanostructured silica host.  The immobilized cells mediate their local pH and stress, collectively 

switching the silica mesophase.  Replacing the cell with several cell models demonstrates that 

the living cell is necessary for the formation of the lipid interface and transformation of the 

inorganic phase, serving as a site for lipid aggregate nucleation and ordering.  The living cell’s 

response to osmotic stress is an important part of its ability to direct the structure of its local and 

global environments.  Cell-directed assembly supports a highly biocompatible immobilization 

strategy that extends viability of immobilized cells to several weeks and creates cell-directed 

hierarchical structures that serve as stand-alone sensors through reporter protein expression, or 

organize proteins and nanocrystals at the cell surface.  The cell’s ability to organize ordered 

assemblies of lipids, mediate its local chemical and physical environment, and form a seamless 

bio/nano interface suggests that cell-directed assembly represents a new general synthetic 

approach wherein cells direct their self-integration into functional multiscale nano/bio devices.   

One way to exploit this new interface is by utilizing Surface Enhanced Raman 

Spectroscopy (SERS).  In SERS, Raman signals can be enhanced by many orders of magnitude 
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(>10
4
) due to the high local optical fields of metallic nanostructures. Ideal SERS-active metallic 

nanostructures are aggregates of 3-100-nm diameter gold or silver nanoparticles.  Optical field 

enhancement occurs due to resonances of the applied optical field with surface plasmon 

oscillations of the metallic nanostructure.  Given the addition of these nanoparticles during the 

cell-directed assembly process, a metallic nanostructure can be developed around each cell, 

which should allow sensitive spectroscopic probing of the cell surface.  Over time, nanocrystals 

(NCs) enter the cell where they should continue to serve as local probes of molecular structure – 

especially in the vicinity of nanocrystal aggregates that appear to form within the cells.  As 

spectra can be acquired in seconds, it should be possible to follow in real time structural 

transformations that accompany/allow NC entrance into the cell.  Bio-conjugation of the NCs 

with molecular receptors could be used to target NC attachment to specific cellular components.  

Comparison with control (non-conjugated) NC systems should allow identification of molecular 

recognition events, possibly enabling determination of the onset of infection. 

 

I.  The Bio/Nano Interface via Cell-directed Assembly 

Following our group’s recent discovery of the remarkable ability for living cells to 

incorporate themselves as part of the evaporation-induced self assembly process, it was quickly 

discovered that the cells are also able to organize bio-compatible, functionalized nanocrystals 

during the drying process.  Our group has also previously demonstrated how to make bio-

compatible nanocrystals in an efficient and direct manner (16).   A schematic of the bio/nano 

interface formed via cell-directed assembly process utilizing bio-compatible nanoparticles has 

been illustrated in Figure 1.   
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Figure 1.   Schematic illustration of the formation of a functional bio/nano interface formed via cell-

directed assembly 

 

To study NC localization scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), GISAXS, and, for optically labeled NCs, fluorescence microscopy and 

confocal laser-scanning microscopy were used.  These studies, although limited in the scope of 

the functionalization chemistry, suggested that phospholipid functionalization is necessary for 

cellular localization.  As can be seen in Figure 2, TEM images employing 2-nm gold 

nanocrystals show that, during evaporation-induced self-assembly of lipid/silica nanostructures 

incorporating S cerevisiae, gold NCs are localized at the cellular surface forming the bio/nano 

interface.  Figure 3 displays SEM studies performed with energy dispersive electron 

spectroscopy (EDS) confirmed fluorescence microscopy results that show gold NC localization 

at the immediate surface of the cell.   
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a) b)a) b)

 

Figure 2.  TEM images of gold NCs at the surface of a cell forming the bio/nano interface, a) top view, b) 

cross-section 

 

 

Au = Green

O = Red

Si = Blue

b) c)a)

 

 

Figure 3.  a) SEM image of cells in a silica film immobilized utilizing cell-directed assembly, b) SEM 

image of gold NCs on the surface of an immobilized cell, c) 2-D EDS spectra of image b clearly showing 

the presence of gold NCs 

 

As NC localization could allow the formation of a SERS-active nanostructure that might 

be operative even during internalization, this project focused on extending the initial work to 

create SERS-active structures in which living cells and NCs are immobilized in a nanostructured 

fluidic architecture. Interestingly, GISAXS studies indicate that NC localization can in some 

cases result in ordered NC arrays at the cellular surface, as can be seen in Figure 4.  Such arrays, 

if proven to be SERS-active, could be precisely tuned with respect to particle spacing – perhaps 

allowing optimization of the SERS-active nanostructure.   
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Figure 4.  GISAXS of cells with 2 nm lipid-coated gold particles in a silica film formed via cell-directed 

assembly 

 

 

 

II.  Surface Enhanced Raman Spectroscopy 

Having confirmed cell-directed NC localization at the cell surface, attempts were made to 

obtain SERS-enhanced spectra.  Raman spectra were obtained using argon (514 nm) and krypton 

(647 nm) ion laser lines.  The films were illuminated though an optical microscope 

(approximately 1 um horizontal resolution) coupled to a triple spectrograph with a liquid 

nitrogen cooled, charge-coupled-device detector.  The spectra obtained of the immobilized cell 

films have significant backgrounds of broad features due to fluorescence.  These broad features 

were removed from the spectra by a fitting procedure for presentation in this report.  However, 

the overall levels of Raman scatter are low, so that relatively high noise levels and a few artifacts 

related to the fitting procedure (e.g., features with downward-pointing peaks) remain in the 

spectra.   

Figure 5 shows Raman spectra, obtained with 647 nm excitation, of films created by cell-

directed assembly.  It was hoped that intimate contact of the gold would result in enhancement of 

Raman scatter from components of the yeast cells by the SERS effect.  The spectra from two 

locations on the film in which gold is present show significantly more intense Raman bands (due 

to –CH2–, from alkane chains) than the spectrum from the film which lacks the gold NCs.  Also, 

a band due to carboxylate groups, probably from neutralized organic acids, is present only in the 
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spectra of the gold NC-containing film.  The polar nature of carboxylate groups means that they 

have a relatively high probability of coupling to the gold NCs, thereby increasing the likelihood 

of SERS effects.  However, the intensity increase of the Raman bands from the gold NC-

containing films corresponds to a very modest SERS effect. 
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Figure 5.  Raman spectra, obtained with 647 nm excitation, of cells immobilized via cell-directed 

assembly on copper, plus gold NC 

 

 

As SERS is inherently sensitive to both sample preparation (e.g. size and concentration of NCs) 

and operating conditions (e.g. excitation wavelength), the lack of access to a dedicated Raman 

spectrometer has seriously hindered progress in this area.  Collaborative experiments with UC 

Santa Cruz have yielded non-reproducible results  – presumably due to the limited numbers of 

experiments, the heterogeneous nature of our samples (cell-containing regions separated by silica 

nanostructures), and the sensitivity of SERS to sample processing and experimental parameters.  

Recent experiments performed at Sandia have resulted in Raman spectra of samples containing 
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cells with and without localized nanocrystals.  However, further tests are needed both to confirm 

the SERS enhancement of these spectra as well as to optimize the parameters for performing 

SERS.  

 

III. Creation of SERS-optimized Bio-Compatible Nanoparticles 

SERS is known to be sensitive to the size, shape and composition of the metallic 

nanoparticles.  Optimum nanoparticles are gold or silver with diameters of  20-100 nm and 

having a shape that provides maximum surface area.  Our initial work employed 2-3-nm gold 

NCs, thus we adapted literature procedures to synthesize larger silver NCs (30 nm spheres) and 

low-aspect ratio, gold nanorods (80 x 40 nm) (17), both of which are known to be highly SERS-

active.  TEM images of these SERS-active particles are shown in Figure 6.   

Surface functionalization is important in directing NC localization.  For our initial studies 

using 2-3 nm gold NCs, we modified the initially hydrophobic alkanethiol terminated surfaces 

with phospholipids (and optically-labeled phospholipids), creating a hybrid bilayer that made the 

NCs water soluble and directed their localization.  Similar procedures were used for hydrophobic 

oleylamine-terminated silver NCs.  Gold nanorods however are prepared in aqueous solvents 

with cetyltrimethylammonium bilayer terminated surfaces.  No satisfactory process has been 

developed to date to functionalize these nanoparticles with phospholipids.   

 

a) b)a) b)

 

Figure 6.  TEM images of a) 30 nm lipid-coated silver nanoparticles, and b) 80 x 40 nm water-soluble 

gold nanorods 
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IV.  Fabrication of Nanoelectrodes 

 A concurrent task of this project was the construction of a substrate containing small, 

high aspect ratio gold posts for use as electrodes – the idea being that cells would recognize and 

internalize lipid-coated gold posts, thereby integrating themselves into an electronic platform.  

Fabrication of high aspect ratio metallic structures is complicated by several factors.  First, there 

are inherent limits on lithography of high aspect ratio features in photoresist such as resist 

resolution, mechanical stability, exposure wavelength and diffraction.  Second, given a high 

aspect ratio hole in photoresist, filling the hole with metal is difficult.  Approaches such as 

sputtering or metal evaporation are prone to clogging the opening to the hole prior to complete 

“via” fill.  Given typical cell dimensions, the initial design specifications were to fabricate gold 

pillars approximately 50 nm in width and 5 µm in height, an aspect ratio of 100.  Such a 

demanding aspect ratio is clearly beyond the capability of current lithography, prompting us to 

devise a three pronged approach to achieve our goal.  The first step is to optimize the lithography 

process to attain the highest aspect ratio features possible.  The second fabrication choice was to 

opt for a “bottom up” via fill approach -- electrochemical deposition of gold.  The final step is to 

take the highest aspect ratio electrodeposited gold post and post-fabrication etch-back to yield 

the final cell probe structure.  In this final step, the aspect ratio of the post is improved due to the 

isotropic nature of the etch-back.  The radius of the post shrinks relative to its height. 

 

 

Figure 7.  a) Hole array in SU-8 with aspect ratio ~3,  b) Hole array in SU-8 with aspect ratio ~9, and  c) 

Hole array in SU-8 with aspect ratio ~14. 

 

Initial work on the high aspect ratio lithography focused on using interferometric 

lithography (IL) and the SU-8 negative tone photoepoxy resist system.  A frequency tripled 

Nd:YAG laser in the Lloyd mirror configuration was used to generate 1-D interference patterns.  
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Consecutive exposures were then used to expose 2-D hole-arrays in the SU-8 photoepoxy.  

Optimization of the angle of incidence, exposure dose, post-exposure bake time and temperature, 

and develop times, yielded hole-arrays with high aspect ratios.  Figure 7 shows some 

representative examples along the optimization path, with aspect ratios of ~3, ~9 and ~14.  In the 

final device, hole arrays over the entire substrate are not desired, in which case, a mix-and-match 

photolithography approach will be pursued.  Photoresist exposure is an additive process, so that 

conventional lithography can be used to selectively expose the resist, yielding IL-generated holes 

only in the desired location. 

For safety and environmental reasons, a non-cyanide based gold electrochemical 

deposition bath was chosen (that utilizes complexation and reduction of Au(III) by thiosulfate to 

form stable plating solutions) (18).  The pH of the plating bath was found to be a critical 

parameter for solution stability; if the pH was not adjusted immediately to ca. 7.4 after 

dissolution of the bath ingredients, precipitation of gold occurred within a few minutes.  At pH 

7.4, the bath appeared stable for several hours.  Deposition was performed using a constant 

current of 10 mA/cm
2
 onto platinum substrates (other metal substrates, including chromium, 

silver, and nickel yielded films of inferior quality).  Figure 8a shows a cross section SEM 

photograph of an apparently partially filled SU-8 hole array. Figure 8b shows a similar cross 

section SEM indicating that the gold posts filling the vias suffer from poor morphology, and are 

in many cases, hollow.  The cause for this poor morphology has yet to be determined, but is 

surely influenced by the complex surface chemistry between the plating bath and the SU-8 resist 

surface. 

 

 

Figure 8.  a) Cross-section SEM showing partially filled hole array, b) Cross-section SEM showing 

hollow gold post inside hole array. 
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Being a photocurable epoxy, SU-8 is typically used in applications where it is intended to remain 

behind as part of the ultimate device.  Under standard processing conditions, fully cross-linked 

and thermally treated SU-8 is difficult to remove.  However, the processing conditions used to 

generate the high aspect ratio features seen above lie outside these usual processing conditions, 

resulting in partially cross-linked resist.  Delamination and removal of the partially cross-linked 

resist occurs under prolonged exposure to the SU-8 developer.  The SEM images in Figure 9 

demonstrate several issues with this approach.  From the top-down image of the substrate after 

resist removal in Figure 9a, it is apparent that the film suffered from non-uniform filling of the 

hole array.  This is most likely due to incomplete resist removal in the bottoms of the holes, and 

can be addressed by resist process modifications such as extending the develop time slightly.  

The SEM of the surface in Figure 9b is more problematic.  Here it is apparent that the deposited 

posts were broken and removed with the SU-8 resist film.  This is confirmed by the SEM of a 

portion of SU-8 after removal from the substrate in Figure 9c.  Gold posts remain in some of the 

holes of the SU-8 film.  This image also shows further evidence of hollow gold posts, as several 

of the gold posts have a void in the center, resulting in an annular appearance.  

 

 

 

Figure 9.  a) Top down SEM showing incomplete hole array,  b)  SEM showing of surface showing 

broken gold posts, c) SEM of SU-8 film after removal indicating broken posts in film as well as void in 

the center of the hollow posts. 

 

The tendency of the SU-8 film combined with the plating bath chemistry to produce 

hollow posts is promising, however the mechanism is not understood, and the observation could 

be the result of any number of parameters.  Perhaps the more challenging issue is the tendency of 

the SU-8 film to break off the filled posts during resist removal.  So, while the SU-8 is capable of 

resolving very high aspect ratio features, these initial results seem to indicate a change in course 
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to a less rugged resist is warranted.  Along this path, some exploratory work with an image 

reversible resist, AZ 5214, was performed.  Image reversible resists function as positive resists 

under normal process conditions, but switch to negative tone when a post-exposure bake, and 

flood exposure are performed after initial pattern exposure.  Figure 10 shows the initial results, 

demonstrating much lower aspect ratio as well as significant side wall curvature, indicating that 

this resist system is probably ill-suited for our needs.  Future directions for the fabrication of the 

nanoelectrodes include exploring thick, conventional photoresists capable of being chemically 

dissolved rather than physically removed, as well as use of more stable plating baths.  

 

 

Figure 10.  a) Top down SEM showing incomplete hole array,  b)  SEM showing of surface showing 

broken gold posts, and c) SEM of SU-8 film after removal indicating broken posts in film as well as void 

in the center of the hollow posts. 

 

V.  Cellular Patterning and Integration onto Substrates 

 

Using a different approach to create biocompatible substrates that would allow for 

cellular integration, substrates comprised of self-assembled nanoparticles in a phospholipid-

templated silica film were also developed.  In this novel technique, when printed on top of these 

substrates, the cells can actually integrate themselves into the mesoporous silica film and direct 

organization of the nanoparticles to the cell surface for integration into the cell, as illustrated in 

the schematic in Figure 11.   
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Figure 11.  Schematic of cellular integration into a bio-compatible silica film 

 

 

First, a bio-compatible mesoporous silica template containing functionalized 

nanoparticles is made using evaporation-induced self-assembly.  Cells are then introduced on top 

of the dry silica film.  The cells then rehydrolyze and condense the surrounding silica film, 

returning the system to a state of quasi-fluidity.  In this state the cell can organize its 

environment in a manner similar to that of cell-directed assembly, yielding a fully functional cell 

immobilized in a porous, 3D silica mesophase.  An SEM image of a cell introduced on top of a 

bio-compatible silica film can be seen in Figure 12. 

 

 

 

Figure 12.  A cell that has integrated itself into a bio-compatible mesoporous silica film 
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As seen by the localization of optically-labeled gold NC in Figure 13, the cell can also 

organize lipids and bio-compatible nanoparticles in its vicinity, followed by drying and 

recondensation of the silica matrix to yield immobilized cells that maintain many of the same 

properties as those found using the cell-directed assembly approach.  This approach, however, 

may provide an even better route for bio-compatible cell immobilization as it could minimize 

many undesired effects of having the cell present during the evaporation-induced self-assembly 

process.  For example, the cell would no longer have to be exposed directly to alcohols and acids 

or bases.  Additionally, the osmotic stresses on the cell associated with the evaporation process 

may be greatly reduced.  Future directions for this novel cell integration technique involve 

patterning of the cells on the mesoporous silica substrates.  This could be accomplished using 

ink-jet printing to dispense cells on top of a pre-existing film according to a desired template to 

create functional cellular arrays. 

 

Cross-sectional confocal projection Topographical  confocal projection

cellcell

Cross-sectional confocal projection Topographical  confocal projectionCross-sectional confocal projection Topographical  confocal projection

cellcell

 

Figure 13.  Confocal images showing the localization of optically-labeled gold NC by cells placed on top 

of a bio-compatible silica film containing the gold NC 
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