
SAND REPORT
SAN D2006-0422
Unlimited Release
Printed Jan. 2006

Some Language Issues in High
Performance Computing : Translation
from Fine-grained Parallelism to
Coarse-grained Parallelism

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release ; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government . Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately

owned rights . Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors . The views and

opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America . This report has been reproduced directly from

the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile : (865) 576-5728
E-Mail: reports@adonis .osti .gov

Online ordering: http://wwwdoe .gov/bridge

Available to the public from
U.S . Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone :

	

(800) 553-6847
Facsimile:

	

(703) 605-6900
E-Mail :

	

orders@ntis.fedworld .gov
Online ordering: http://wwwntis .gov/help/ordermethods.asp?loc= 7-4-0#online

i

SAND2006-0422
Unlimited Release
Printed Jan . 2006

Some Language Issues in High
Performance Computing : Translation

from Fine-grained Parallelism to
Coarse-grained Parallelism

Sue Goudy* Shan Shan Huang, Zhaofang Wen t

Abstract

A parallel programming model, BEC, was proposed in [1], to enable Global
Address Space (GAS) capabilities for programming in SPMD style . It is a
portable light-weight approach for incremental acceptance of the GAS model,
along an evolution path that leverages existing infrastructures . It assists mi-
gration of legacy applications thereby encouraging their expert programmers to
adopt the new model . BEC also provides for some unaddressed needs, such as
ef ficient support for high-volume fine-grained random communications . BEC
can be used as an enhancement to existing environments such as MPI.

This report presents a scheme for a compiler to translate high level GAS
languages PRAM C ([2]) and UPC ([9]) into BEC . Since PRAM C implements
the theoretical Parallel Random Access Machine (PRAM) model [5] and BEC
implements the Bulk Synchronous Parallel (BSP) model [10], such a transla-
tion by a compiler is theoretically significant, because it is the first time that
a program in PRAM semantics (fined-grained parallelism) is translated into
program in BSP style (coarse-grained parallelism) . This provides a bridge from
the PRAM model (considered impractical) to the BSP model (considered prac-
tical) . Because BEC leverages infrastructures on existing platforms (such as

* email : spgoudy@sandia .gov
temail : zwen@sandia .gov

3

MPI or SHMEM [7, 6]), this translation scheme enables a new and alterna-
tive approach for higher level GAS language implementations which can avoid
heavy investment in re-inventing much of the same communication capabilities.

4

Acknowledgment

The authors gratefully acknowledge the support and encouragement from our
managers, Sudip Dosanjh, Neil Pundit, and Jim Ang . Funding for students to work
on the PRAM C translations project was provided by Sandia's Computer Science
Research Institute, for which we are indebted to Director David Womble . Numerous
discussions with Jonathan Brown contributed strongly to the technical content of
this report . Thanks to Ron Brightwell, whose thorough review comments greatly
improved this presentation.

We wish to acknowledge distinguished leaders for their contributions in the field
and for inspiring us . These notably include Bill Carlson, Kathy Yelick, and Bob
Numrich. In particular we gratefully acknowledge Bill Carlson's guidance and his
assimilation of Zhaofang Wen and Mike Heroux into the UPC Consortium. Thanks
also to the UPC Consortium and, in particular, Lauren Smith, Tarek El-Ghazawi,
Phil Merkey, Steve Seidel, and Dan Bonachea.

Special thanks to Lewis Goudy for proofreading the document, which greatly
enhanced its presentation.

5

Contents
1 Introduction	 7

2 Features of PRAM C	 8
2.1 Parallel Control Constructs 	 8
2.2 Data Types and Their Physical Layout 	 10

3 UPC Language Features	 11

4 Overview of BEC	 12
4.1 Structure of BEC Programs	 12
4 .2 Language Extensions	 13

5 Translating PRAM C	 13
5 .1 General Idea of Translation 	 14
5 .2 High Level C Constructs	 15
5 .3 VPsnfo	 16
5 .4 PRAM_do and Initialization of VP_in f o	 17

5 .5 Function	 18
5 .6 Expressions	 22
5 .7 Assignment Statement	 26
5 .8 Loops	 27
5 .9 Conditional Statements 	 30
5 .10 Other Flow Control Statements 	 34

6 Translating UPC into BEC	 35
6.1 UPC to BEC Translation Scheme 	 35

7 Comparison of PRAM C and UPC	 37
7.1 Observations	 38
7.2 Differences in Translations	 39

8 Conclusion	 40

6

Some Language Issues in High
Performance Computing:

Translation from Fine-grained
Parallelism to Coarse-grained

Parallelism

1 Introduction

On distributed memory hardware, Global Address Space (GAS) provides ease of
programming by allowing one processor direct access to another processor's mem-
ory. GAS promises improved productivity over existing programming environment
(such as MPI) ; and therefore it is attractive for high productivity computing systems
(HPCS).

A parallel programming model, BEC ([1]), was introduced recently to enable GAS
capabilities for parallel programming in SPMD style . It is a portable light-weight
approach for incremental acceptance of the GAS model, along an evolution path that
leverages existing infrastructures and maintains backward compatibility with existing
programming methods and environments . It assists migration of legacy applications
thereby encouraging their expert programmers to adopt the new model . In addition,
BEC provides for some of the unaddressed needs, such as efficient support for high-
volume fine-grained and random communications, which are common in parallel graph
algorithms, sparse-matrix operations, and large scale simulations.

This report presents a scheme for a compiler to translate high level GAS languages
PRAM C ([2]) and UPC ([9]) into BEC . Such a scheme is important for the following
reasons.

• PRAM C adopts the semantics of the of the theoretical PRAM model (for
Parallel Random Access Machine [5]) ; and BEC implements the BSP model [10].
This kind of translation by a compiler, from PRAM C to BEC, is theoretically
significant, because it is the first time that a program in PRAM semantics
(fined-grained parallelism and/or communication) is translated into a program
in BSP style (coarse-grained parallelism and communication).

This provides a real bridge from the theoretical PRAM model (considered im-
practical) to the BSP model (considered practical).

7

• BEC provides the appropriate level of abstraction not only for GAS style pro-
gramming, but also for use as an intermediate GAS language to which other
higher level GAS languages can be compiled or translated.

• Fine-grained communication (through virtual shared memory in PRAM C and
in UPC) can be translated into coarse-grained communication (in BEC).

• Translating PRAM C into BEC provides an alternative approach to implemen-
tation of PRAM C, versus the thread-based approach in [2] . This approach
avoids the overheads and potential limitations associated with management of
a possibly huge number of threads . This also enables many compiler optimiza-
tion techniques to be applied to improve the PRAM C program performance.

• Translating UPC into BEC also provides an alternative approach to implemen-
tation of UPC. As a result, the fine-grained communication in a UPC program
can be converted to coarse-grained communication in actual implementation.

• More generally, this translation scheme enables a new and alternative approach
for higher level GAS language implementations which can avoid heavy invest-
ment in re-inventing much of the same communication capabilities.

2 Features of PRAM C

PRAM C is a simple extension to ANSI C that adds constructs and data types to
support the PRAM model . The control constructs support both Single Instruction
Multiple Data (SIMD) and task parallel programming styles . The shared data type
adds the capability to access remote data implicitly by simply referencing that data.
Delivery of the remote data is handled by the PRAM C runtime support structure.
Details of PRAM C can be found in [2], here we present a brief overview of the
language.

2 .1 Parallel Control Constructs

• PRAM_do : This construct takes as argument an integer K. This construct
indicates that function f (. . .) will be executed by K virtual PRAM processors.
K is a way to express the degree of fine-grained parallelism in the algorithm
that the programmer wants the computer system to exploit.

8

PRAM_do(K) : f(. . .);

The theoretical PRAM model requires a SIMD style of execution of its in-
structions; that is, execution of every instruction is synchronized . Inside a
PRAM_do construct, execution of the statements follows a Single Program
Multiple Data (SPMD) model ; and synchronization is required only at the end
of PRAM_do construct and also at (implicit) barriers as described next . This
relaxation should help performance.

No explicit barrier should be necessary inside PRAM_do . However, there are
implicit barriers within such a construct . These implicit barriers are honored
by the group of virtual PRAM processors within PRAM_do construct:

—The programmer can use the ANSI C block statement syntax (statements
enclosed within curly braces { . . .}) to indicate that the execution of the
block of code needs to be synchronized, implying a group barrier at the
end of the C block.

—Any simple or compound statement implies a group barrier at the end
whenever a shared array access appears in the statement . This should be
sufficient to support the SIMD style of synchronization, because program
correctness can only be affected by out-of-order shared memory accesses.

Note that these implicit group barriers can be handled by the thread scheduling
scheme, and thus do not require explicit synchronization [2]. (If PRAM C is
implemented based on translation into BEC (as discussed in this paper), the im-
plicit barriers are implemented indirectly through the calls to BEC_exchange() .)

• PRAM_fork join : This indicates that C functions fl(. . .), f2(. . .), . . . will be
called in parallel .

PRAM_fork

C_function : fl(. . .);

C_function : f2(. . .) ;

PRAM_ j oin;

Different branches of execution of a PRAM_fork proceed independently ; that
is, there is no synchronization between any two separate branches . This will
be useful in writing parallel recursive functions . This construct also provides a
way to express Multiple Instruction Multiple Data (MIMD) style coarse-grain

9

parallelism; and group synchronization will be provided by runtime services
when needed.

The new constructs (PRAM_fork and PRAM_do) can be nested. They can
also be nested with other compound statements of ANSI C.

2 .2 Data Types and Their Physical Layout

We augment the ANSI C data types with the concept of shared. A shared variable
is accessible by all the virtual PRAM processors as well as threads executing other
parts of the program . This concept is introduced to support the shared memory
processing needed by the PRAM . For example, shared double A [N] ; declares a
shared array that is laid out across all the physical processors with equal partitions.
In this example, assuming P physical processors, elements A[0] . . . A[P — 1] will be
located in the the first processor ; elements A[P] . . . A[P — 1] will be located in the
second processor; and so on . Based on such a formulation, it is easy to determine in
which physical processor any element of a shared array is located . This is important
in the process of bundling fine-grained shared memory (array) accesses . Other layouts
could be used to handle shared items, so long as it is possible to determine the location
of memory from information available at runtime.

Variables that are not shared are local to the thread and thus local to the processor
executing the thread. Therefore, requests to local variables do not require remote
communication and can all be resolved within host processors.

Variables declared in a PRAM_do are also local variables . Conceptually, it helps
to think that there are duplicated sets of such variables with each set belonging
to the private memory space of one of the virtual PRAM processors . A virtual
PRAM processor's accesses to its private memory certainly do not require remote
communications between physical processors . This is in contrast to a virtual PRAM
processor's shared memory accesses ; some of these may be resolvable within the host
physical processor, while others will have to be served via remote requests to other
physical processors.

Note: As discussed in [2], a group of K virtual PRAM processors is introduced at
the PRAM_do (K) : f (. . .) to execute function f (. . .) in parallel . Each of the PRAM pro-
cessors has an identification, MY_ID, which is the relative rank of the virtual processor
within the group ; so MY_ID is a value in the range of [0, K — 1].

10

3 UPC Language Features

Detailed specification of the UPC language can be found in [8] . Here we list only those
features that are specific to PGAS programming, i .e., the UPC shared variables and
the upc_forall loop. Only these PGAS related features are of interest here for our
translation scheme.

UPC shared variables are declared with key word shared. For example,

shared int A [N] ;

declares an array of N items, which is physically distributed over P physical
processors. Although it is legal for a physical processor to access any shared array
elements, accesses to physically remote data is more expensive than physically local
data due to communication overhead . The physical layout of an array on the physical
processors is based on fixed block patterns in which the block size can be specified in
the program . For example, assume there are two physical processors (P = 2).

shared [2] int B [N] ;

declares an array of N items with following cyclically distributed data layout.

processor 0 : B[O], B[1]

processor 1 : B[2], B[3]

processor 0 : B[4], B[5]

processor 1 : B[6], B[7]

UPC provides a parallel loop to express parallelism, typically used together with
UPC shared arrays . For example,

shared int A [N] , B [N] , C [N] ;

upc_forall(i = 0 ; i < N ; i++ ; &A[i]) {

C [i] = A [i] + B [i] ;

}

11

In this example, N loop iterations will be executed in parallel . The fourth loop
parameter, &A[i], called affinity expression, is used to hint that the compiler assign
the i-th iteration to the physical processor which owns array element A[i].

In general, the upc_forall loop has the following form.

upc_forall(E1 ; E2 ; E3 ; affinity)

body;

Note:

• There is no communication or synchronization between iterations . In other
words, there is no dependence between different iterations so that they can be
executed in parallel asynchronously until explicit barrier statements are encoun-
tered.

• There is no nesting of upc_forall loops ; and in case of nesting, the inner
parallel loop becomes a sequential loop.

• There is no parallel reduction . (Note: this issue will be addressed by the newly-
released UPC Collective Operation Specification [11] .)

4 Overview of BEC

BEC is a formalization of the Bundle-Exchange-Compute programming style . BEC
presents its users with convenient language extensions (to ANSI C) and library calls.
Details of the language and runtime support can be found in [1].

4.1 Structure of BEC Programs

Users can expect the convenience of language extensions to ANSI C, as well as library
calls. Program execution is supported by the compiler and the BEC runtime . BEC
follows the SPMD model, with an instance of the BEC runtime object executing on
each physical processor. We sketch the structure to which BEC programs should
roughly adhere, as follows:

• Issue requests for reads from shared variables.

12

• Issue exchange call to serve the read requests, as well as any outstanding write
requests.

• Local computation resumes, with access to requested values for remote data.

• Optional barrier calls to synchronize among processors.

4 .2 Language Extensions

BEC provides a virtual shared memory interface with explicit software control for
data communication. The keyword shared is used to declare variables with storage
that can span the physical memory, even in the case where this memory is distributed.
Two allocation functions are provided for the management of shared data objects . Ex-
plicit data request and exchange functions, together with processor and data locality
identifiers, allow the user to control data access.

In this section, we present a summary of the BEC language extensions to ANSI

• shared: keyword used to modify a C variable declaration to allow for a shared
region

• BEC_joint_allocate : a function called by all processors to create exactly one
shared region

• BEC_local_allocate : called by a single processor to create a shared region

• BEC_request : called to make shared data available for the next phase of com-
putation

• BEC_exchange : causes read requests to be served and write requests to be
recorded

• BEC_barrier : optional synchronization tool

5 Translating PRAM C

Consider the following construct ([2]),

C.

13

PRAM_do(K) : f(. . .);

This construct takes as argument an integer K. It indicates that function f (. . .)

will be executed by K number of virtual PRAM processors . The theoretical PRAM
model requires a SIMD style of execution of its instructions ; that is, execution of
every instruction is synchronized . Here, inside a PRAM_do construct, execution of the
statements follows a SPMD model. Synchronization is required only at the end of
PRAM_do construct and also at (implicit) barrier as described in [2].

One approach to implementing the PRAM_do construct is to create K number
of (light-weight) threads, each representing a virtual PRAM processor . For imple-
mentation on a real system, these threads can be evenly assigned to the P physical
processors, f, threads each. The threads run on the physical processors synchronously
according to the PRAM C semantics . Threads accessing a shared variable will be tem-
porarily suspended until other threads also reach the same point, therefore, all the
shared variable access requests can be bundled up to be served together . Although
flexible for dynamic loading, this approach introduces much thread-related overhead;
there is also the potential issue of having too many threads, which may overwhelm
the runtime system.

An alternative approach to translate PRAM_do (K) : f (. . .) into BEC ; and therefore
f (. . .) will be translated into another function f'(. . .) (written in BEC), which will be
executed by each of the P physical processors (SPMD style).

In the rest of this section, we shall discuss the translation scheme.

5 .1 General Idea of Translation

For each parallel step in f (. . .), the role of the translation is to generate code for each
physical processor in order to simulate the behavior of P virtual PRAM processors.
Therefore, the translation uses the following general idea.

• Every simple statement will be placed in a loop of p iterations.

• Every branch of the control flow will be translated for simulation.

• Operators don't have to change ; it is their operands that must be translated.

— Local variables must be replicated as many times as the number of virtual
processors to be simulated on each physical processor . This is because the

14

virtual processors are actually working on different variables in terms of
physical space . So a scalar becomes a vector, with each vector element rep-
resenting the local variable of the virtual processor simulated . In general,
one extra dimension of size P is added to the translated local variable.
(For example, a pointer becomes an array of pointers ; and a C structure
becomes an array of structures .)

Shared variables (including pointers to shared) remain unchanged because
the virtual processors are really working on the same variable.

MY_ID is a special tag in PRAM C. It always returns the virtual PRAM
processor's relative ranking in the group of virtual processors employed
at PRAM_do (K) :f (. . .) . Here, MY_ID will be translated according to this
definition.

5 .2 High Level C Constructs

Since PRAM C is a C extension, many high-level C constructs are used in the func-
tions directly or indirectly called through the PRAM_do (K) :f (. . .) . This section lists
those that will be translated as well as those that will not be handled.

• Function

• Expression

—Shared variable

—Local variable

—Pointer

• Flow control

—Loops

—Conditionals

Because this report is intended to describe an algorithm for a compiler translation
phase (as opposed to a design document), we do not address all corner cases of ANSI
C and the extensions that comprise BEC and PRAM C . Thorough discussion of
the following constructs requires understanding BEC runtime issues, a topic that is
beyond the scope of this paper . At this time we do not consider the following:

15

• I/O statements

• MPI calls within PRAM C context

• Multiple BEC threads of execution

5 .3 VP _info

In our scheme to translate PRAM_do (K) :f (. . .) into BEC, each physical processor
simulates the work of multiple virtual PRAM processors . In the simulation, the
executions of each statement of f (. . .) by all the virtual processors are simulated
together. For example, a simple statement is translated into a loop containing the
statement, with the loop count being the number of virtual processors to be simulated.
In PRAM C, each virtual processor executing an instance of function f (. . .) has its own
local data, i .e. the local variables in f (. . .) . To simulate multiple virtual processors
together, our approach is to replicate the local variables . This way, a local variable
will be translated into a vector (referred to as generated local vector) of size equal to
the number of virtual processors to be simulated on one physical processor.

A virtual processor in simulation should use its own local data, not some other
virtual processor's local data . Since this local data is now stored in a generated
local vector, it is necessary to have a mechanism to remember the ownership relation
between a virtual processor in simulation and the index location of its local values
in the generated local vectors. In a PRAM C program, some virtual processors may
behave differently in f(. . .) . For example, at an if-then-else statement, some virtual
processors may take the if-branch while others take the else-branch ; and in a while-
loop, some virtual processors may exit the loop earlier than others . It is also possible
that other functions are called within f (. . .), directly and indirectly. For correctness,
the ownership mechanism needs to work in these situations.

In a PRAM C program, the special tag MY_ID is used inside f (. . .) to allow a
virtual processor to take special actions accordingly to its own ranking in the group
of participating virtual processors in PRAM_do (K) : f (. . .) . (Such a style is often used
in PRAM algorithms .)

To address the above needs, we use the following structure to keep track of own-
ership information of a set of virtual processors to be simulated.

VP_inf o{

int count ;

	

// the number of active virtual processors being simulated

16

int * VPIDs ; // the MY_ID values of the active virtual processors

int * activeIndex ; // activelndex[i] remembers the index location

// in the generated local vectors for virtual

// processor VPIDs[i].
}

In summary, accesses to generated vectors need ownership information in VP_info
in order to ensure that the simulation of a virtual processor uses only local data which
it owns. As we shall discuss later, VP_info structures are generated and actively
maintained in translated code.

5 .4 PRAM_do and Initialization of VP_in f o

As discussed in [2], a group of K virtual PRAM processors is introduced at the
PRAM_do (K) :f (. . .) to execute function f(. . .) in parallel . Each of the PRAM pro-
cessors has an identification, MY_ID, which is the relative rank of the virtual pro-
cessor within the group; so MY_ID is a value in the range of [0, K — 1] . Let P =
PROC_COUNT() return the number of physical processors ; and let PROC_ID()
return the ID of the physical processor. The idea is to let physical processor p
simulate K/PROC_COUNT () virtual PRAM processors with MY_ID ranging from
(p — 1) * (K/P) to p* (K/P) — 1 (a balanced work load). The translated code in
SPMD style will be

// declare VP_info

VP_info *VPs = malloc(sizeof(VP_info));

// set up "VPs"

VPs->count = K / PROC_COUNT();

VPs->VPIDs = malloc(VPs->count * sizeof(int));

for (int i = 0 ; i < VPs->count ; i++) {

VPs->VPIDs[i] = i + PROC_ID() * VPs->count;

VPs->activelndex[i] = i ; // All virtual processors initially active
}

// Now call the translated PRAM C function

temp_f(VPs, . . .) ;

17

5 .5 Function

In translation, a function definition (i .e., the body of the function) is either available
or unavailable (such as library functions sin(x) and cos(x)) . If the function definition
is available, that function body will be translated ; in this case, a call to the function
executed by a virtual processor does not need to be replicated in the translated
code. Instead, the statements in the body of the function will be replicated in the
translation . On the other hand, if the function definition is not available, a call to
the function executed by a virtual processor needs to be replicated as many times as
the number of the virtual processors . The key word, PRAM_func is required in the
function declaration to indicate the function body is available for translation, either
in the same file or in a separate file . For example,

PRAM_func extern f(int A);

When a function definition is available for translation, the signature, definition,
and calls to that function will be translated ; and the translated function will be
renamed by adding prefix "temp_" to the name . The reason for this renaming is that
the function may be called in both sequential and parallel context . The translation
should only affect the parallel context.

5 .5 .1 Function Signature

When a function definition is available for translation, its function signature is trans-
lated as follows.

• Function name will be prepended "temp_".

• Return type of the translated function will be void . If the original return type
is of data type T (not void), an additional argument will be added as follows.

T * temp_returnValue

• A non-shared formal argument is translated to a new argument with one
additional dimension (by adding [] in C) . The reason that non-shared argument
types are turned into arrays is that each virtual processor calling the function
should be able to pass in different values . For example, argument int A will

be translated into int temp_A[] . Such generated vectors will be referred to as
generated formal argument vectors .

18

• A shared formal argument will stay the same.

• An additional argument will be added as follows.

VP_info *VPs;

For example, a function with the signature

T1 foo (T2 a, shared T3 b, . . .)

is rewritten to:

void foo (VP_info* VPs, T1 * temp_returnValue, T2* a,

shared_ref_t b . . .).

5 .5.2 Function call

A call to a function with translated definition will not be replicated . A call to a
function without translated function definition will be replicated as many times as
the number of the virtual processors to be simulated.

5.5 .3 Actual Arguments

The C language only has pass-by-value arguments . The effect of pass-by-reference is
achieved by passing an address (pointer value).

Assume in the PRAM C source code, function PG ..) calls function f2(. . .) ; and
let temp_f 1(. . .) and temp_f 2(. . .) be their translated version, respectively.

In our translation scheme, shared formal arguments remain the same ; For each
non-shared formal argument of f2(. . .), a temporary local vector is generated in the
body of temp_f 1(. . .) . In the temp_f 1(. . .), the original call to f 2(. . .) becomes a call
to temp_f 2(. . .) ; and the original actual argument is replaced by this generated local
vector. Additional code is also inserted in temp_ f 1(. . .) for this generated local vector
to capture the values of the corresponding actual argument at the function call, for all
the virtual processors being simulated . (We shall refer to this vector as the generated
actual argument vector .)

Furthermore, a VP_info is passed into temp_f 2(. . .) to provide ownership informa-
tion for accesses of such generated argument vectors inside the body of temp_f 2(. . .).

19

5.5 .4 Scope of VP_info

A VP_info is created at the entry of each function body to provide ownership informa-
tion for accesses to the generated local vectors at the top level of the function body.
In order to provide accurate ownership information in a compact form, a different
VP_info may be constructed when the flow of control enters a conditional branch.
For example, at a conditional statement or in a loop, some of the virtual processors
may take the true-branch while others take the false-branch . Inside each branch, we
only need to simulate exactly those virtual processors that take the branch ; therefore,
the new VP_info for the branch records the ownership information for only those vir-
tual processors that are active in the branch . Once the control flow exits the branch,
the VP_info used before entering the branch can continue to serve . Furthermore, the
VP_info passed in as a parameter to the current function needs to be compressed
similarly and maintained dynamically to reflect the nesting conditional branch level.

5 .5 .5 Function Body Translation

Statements in the body of a function will be translated, as discussed in detail in other
sections of the paper . One important thing to point out is that the VP_info structures
created inside the body of the current function are used to provide ownership infor-
mation for accesses of the generated local vectors at this function body . However,
the VP_info structure passed in from the caller should be used to provide ownership
information for accesses to generated argument vectors.

In addition, the following will be done.

• A new label, temp_end_label will be added towards the end of the function
body. This label precedes a group of compiler generated statements to free up
some dynamically allocated space.

• return statements without returned values will be rewritten to

goto temp_end_label;

• return C, where C is a constant, will be rewritten to

for (i = 0 ; i < VP->count ; i++) {

translated_returnValue[i] = C;

}

20

• return v, where v is a local variable, will be rewritten to

for (i = 0 ; i < VPs->count ; i++) {

translated_returnValue[i] = temp_v[i];

}

where temp_v is the compiler generated temporary variable for v . In this case,
the following declaration will be inserted at the beginning of the translated
function body.

T * temp_v = malloc(VPs->count * sizeof(T));

// assuming T is the type for variable v

• return Exp, where Exp is an expression will first be converted to

v_temp = Exp ; return v_temp;

for some generated variable v_temp ; then the return statement can be translated
using the scheme discussed above.

5.5.6 Local variable declarations

Each declaration is rewritten to add one extra dimension . That is, a scalar becomes
a 1D array; a 1D array becomes a 2D array; and so on. The size of the additional
dimension is the same as the number of the virtual processors to execute this function.

For example,

int i;

is rewritten to

into i = malloc(sizeof(int) * VPs->count);

A free statement is inserted at the close of the function to release the space . If any
variable has initializing expressions, it is initialized after all variables are declared.
If an expression is used to initialize a variable, that expression must be translated
before the assignment to the variable occurs . The details of this are explained next,
in the section on expression translation .

21

5 .6 Expressions

Translation of expressions is done by walking the parse tree in the compiler . The
order of evaluation for the expression is already reflected in the structure of the parse
tree. In general, the operators of the expression will not change ; but the operands
will be translated.

5 .6.1 MYJD

MY_ID will be rewritten to VPs->VPIDs [temp_i] , where VPs is the VP_info struct
in the context, and tempi the loop control variable for the generated enclosing loop
in the translated code.

5 .6.2 Function Call

If the function is not declared as a PRAM_func, the function call will be replicated.
For example, assuming x and y are local variables.

y = cos(x) + sin(x);

will be translated into

float temp_x = malloc(VPs->count * sizeof(float));
float temp_y = malloc(VPs->count * sizeof(float));

// Assign values to temp_x

// Calculate temp_y
for (int i = 0 ; i < VPs_>count ; i++) {

temp_y [i] = cos (temp_x [i]) + sin(temp_x DJ);
}

If the function is declared as a PRAM_func, the function will NOT be replicated.
For example, assuming a, x and y are local variables.

y = a + func (x) ;

22

will be translated into

float temp_x = malloc(VPs->count * sizeof(float));

float temp_y = malloc(VPs->count * sizeof(float));

float temp_func = malloc(VPs->count * sizeof(float));

float temp_a = malloc(VPs->count * sizeof(float));

// call the translated function, put returned value in "temp_func"

translated_f(VPs, temp_func, temp_x);

for (int i = 0 ; i < VPs->count ; i++) {

j = VPs->activelndex[i];

temp_y[j] = temp_a[j] + temp_func[j];

}

5.6.3 Shared Variables

Shared variables in expressions need not change in the translated code . However,
reads of shared variables in an expression must be prefetched, via BEC_request()
and BEC_exchange(), before the shared value can be used in the computation of
the expression . Therefore, BEC_request() and BEC_exchange() need to be inserted
before the evaluation of the expression in the generated code.

For optimization, some of the reads to different shared variables can be prefetched
together, so long as it is semantically legal to do . Before the final evaluation of the
expression, a shared variable write in that expression needs to be handled, by inserting
a call to BEC_exchange() . The exchange is necessary due to possible side-effects on
the shared variable.

Definition 5 .1 An X-block is defined as a maximal abstract syntax subtree that does
not contain any writes into shared variables . A synchronization block is defined
as an X-block, a write to a shared variable, or a function call.

Reads from the shared variables in an X-block can be prefetched together . This
is done by inserting calls to BEC_request(), one call per shared variable read, which
are followed by only one single call to BEC_exchange() to get the values.

During translation, an expression is broken up into synchronization blocks . A
temporary variable (dynamically allocated vector) is declared for each synchronization

23

block to store its intermediate values . These values are put together after code has
been emitted for all synchronization blocks that contribute to the final value of the
expression.

Note: For future optimizations, more sophisticated analysis could allow the com-
piler

• to determine when shared variable reads and writes can be served in the same
BEC_request() ; and

• in general, to combine independent variable accesses in the same synchronization
block.

Execution within a local block by different virtual PRAM processors does not
require synchronization . Their execution can proceed on each processor separately;
and intermediate values can be stored in the variables declared for them. For example,
translation of a + b, where a is a local variable and b is a formal argument, is shown
below. Let VPs be the VP_info structure created in the current function and valid
at the point of the evaluation of this expression ; and let arg_VPs be the VP_info
structure passed as a argument from the caller.

// declaration block

// note that declaration for a and b are translated to their

// respective array types, as explained previously.

int* temp_a = malloc(sizeof(int)*VPs->count);

// here is the temporary variable to store the

// intermediate value of a + b

int* temp_a_plus_b = malloc(sizeof(int)*VPs->count);

// Other code

// translation for a+b

for (i=0 ; i<VPs->count ; i++) {

temp_a_plus_b[VPs->activelndex[i]] =

temp_a[VPs->activelndex[i]] +

temp_b[arg_VPs->activelndexLi]];

}

24

// free statements to release the space

free(temp_a);

Execution of each X-block by different virtual PRAM processors needs to be syn-
chronized (Note: A function that refers only to local variables does not need to be
synchronized. However, since this might be a function linked in from previously com-
piled files and the compiler cannot know whether it involves shared references, we
choose to synchronize all function executions .) For functions calls, this translation is
fairly simple: we call the function, which has been translated to take the appropriate
arguments: a VP_info indicating the virtual processors to simulate, and the arrays
for arguments and return value.

For shared variable accesses, however, we need to generate the following calls to the
BEC runtime library : BEC_Request (for read or write), BEC_Exchange (signaling
this processor is halting and ready for exchange of data), and BEC_Read (if this is a
read request) . For example, for shared variable c and local variable i, expression c[i]
is translated to:

// Declare intermediate variable to store the values.

int* temp_c_sub_i = malloc(sizeof(int)*VPs->count);

int* temp_i = malloc(sizeof(int)*VPs->count);

// Issue BEC runtime library request.

for (j=O ; j<VPs->count ; j++) {

k = VPs->activelndex[j];

BEC_Request(c, temp_i[k], 1);

}

// Issue exchange request.

BEC_Exchange O;

// When exchange returns, all shared data is ready . Read data.

for (j=O ; j<VPs->count ; j++) {

k = VPs->activelndex[j];

BEC_Read(c, temp_i[k], 1, &(temp_c_sub_i[k]));

}

As apparent in the example above, a physical processor can now "bundle" all
the read requests for multiple virtual processors and issue them at the same time.
Thus PRAM C exploits the parallelism in communication, and saves communication
overhead.

25

Now consider another example, a + b + c[i], where a is a local variable, b is a
formal argument, and c is a shared array . Let VPs be the VP_info structure created
in the current function and valid at the point of the evaluation of this expression;
and let arg_VPs be the VP_info structure passed as a argument from the caller . In
the translated code, we combine the variable declarations for the two code examples
above, issue the code block generated for a+ b first, then the code block for c[i], and
finally,

// declare a variable to hold a+b+c[i]

int* temp_a_plus_b_plus_c_sub_i = malloc(sizeof(int)*VPs->count);

// code generated for the two blocks, putting everything together:

for(i=O ; i<VPs->count ; i++) {

j = VPs->activelndex[i];

temp_a_plus_b_plus_c_sub_i[j] =

temp_a_plus_b[j] + temp_c_sub_i[j];

}

We could potentially generate lots of local variables to keep track of intermediate
values for expressions . This situation could be alleviated with more static analysis by
the compiler, where certain expressions do not need local variables for their values.
For example, for a statement expression, where the expression is executed merely for
its side effect, no variable is needed to store the final value . We leave this as future
optimization.

5.7 Assignment Statement

Simple statements such as ID = expr ; are easy to translate . We translate the
expression expr according to the rules described above.

Compound statements involve loops (i .e . while), branching (i .e . if-then-else), and
jumps (i .e . goto, break) . Extra care is needed to ensure preservation of the program
semantics for all virtual processors being simulated . Here we briefly describe how
such situations are handled .

26

5 .8 Loops

The C language has several loop constructs such as while-loop and for-loop . Their
translation schemes are similar . In this section, we present the algorithm for trans-
lating the while-loop, just to show the idea.

while (condition) {

body;
}

To simulate the virtual PRAM processors executing a while loop, the work is
assigned to each of the physical processors . Even if the workload is balanced in terms
of the number of virtual processors to be simulated on each physical processor, it
is still possible that some of the physical processors finish the while-loop simulation
much earlier than others . There is a potential problem in that an active physical
processor may call a BEC_exchange() . Since BEC_exchange() is also a barrier,
that active physical processor cannot proceed until the call is responded to by other
physical processors, some of which may already be out of the loop due to the smaller
number of iterations they executed . This can potentially leave that active processor
hanging forever.

Fortunately, the PRAM C semantics defines an implicit barrier at the exit of a
while-loop (as a compound statement) . That means the processors finishing while-
loop early must wait for other processors . One possible solution to the above problem
is for the compiler to insert an extra busy-waiting loop at the end of generated code for
the original while-loop . This extra busy-waiting loop will keep checking a "global"
status flag, some_processor_busy, for the status of all the other physical processors
about the execution of the translated while-loop code; and in the meantime, the
busy-waiting loop will keep calling BEC_exchange(), on the shared variable phys-
ical_processor_bnsy. This provides the necessary response to other active physical
processors.

Note: In the busy-waiting loop, the computation of the global status using a for-
loop on vector physical_processor_busy[] can be more efficiently implemented using
a global reduction collective . But since this is a busy-waiting loop, performance is
not too important here.

The translation algorithm for a while-loop follows . Here emit(str) is a function
to dump str into the stream of generated code.

27

void translate_while_loop(. . . , Statement * while_loop) {
// Input assumption:

//

	

- VPs : the VP_info created in the current function
//

	

and is valid at the (top of) while loop
//

	

- arg_VPs : the VP_info is the formal argument in the
//

	

translated function containing this translated while loop

// emit a block of code
emit(

// status flag
int some_processor_busy = 1;
// declare a shared vector to keep track of the status

// of the physical processors
shared int * physical_processor_busy =

BEC_joint_malloc(PROC_COUNT() * sizeof(int));

// This physical processor sets its own status to "not done"

physical_processor busy[PROC_ID] = 1;

// declare "VPs_true" to be the compressed VP_info to hold
// the local vector ownership information of those VPs
// for which "condition" is true

VP_info *VPs_true = malloc(sizeof(VP_info));
VPs_true->VPIDs = malloc(sizeof(int)*VPs->count);
VPs_true->activelndex = malloc(sizeof(int)*VPs->count);

// declare "arg_VPs_true" to be the compressed VP_info to hold
// the argument vector ownership information of those VPs

// for which "condition" is true
VP_info *arg_VPs_true = malloc(sizeof(VP_info));
arg_VPs_true->VPIDs = malloc(sizeof(int)*VPs->count);
arg_VPs_true->activelndex = malloc(sizeof(int)*VPs->count);

// declare variable to hold value of condition expression.
int* temp_cond = malloc(sizeof(int)*VPs->count);

) ;

// emit code to compute initial "temp_cond" array for all VPs
translate_condition(VPs, while_loop->condition, "temp_cond");

emit(
// Construct the compressed "VPs_true" based on "VPs"
VPs_true->count = 0 ;

28

for (i=O ; i<VPs->count ; i++) {

if (temp_cond[i]) {
// add VPs->VPIDs[i] to list of true VPs

VPs_true->VPIDs[VPs_true->count++] = VPs->VPIDs[i];
VPs_true->activelndex[VPs_true->count] =

VPs->activelndex[i];
}

}

// Similarly, construct the compressed "arg_VPs_true"
// based on "arg_VPs"

);

emit(

while(VPs_true->count > 0) {

// translated the body of the while_loop
translate(VPs_true, while_loop->body);

// clear the list of true VPs
VPs_true->count = 0;

);

// emit code : to recalculate the temp_cond array --
// only for the VPs already in the loop

translate_condition(VPs_true, while_loop->condition,
"temp_cond");

emit(

// Construct the compressed "VPs_true" based on "VPs"
for (i=O ; i<VPs->count ; i++) {

if (temp_cond[i]) {

// add VPs->VPIDs[i] to list of true VPs
VPs true->VPIDs[VPs_true->count++] = VPs->VPIDs[i];

VPs_true->activeIndex[VPs_true->count] =
VPs->activelndex[i] ;

}
}

// Similarly, construct the compressed "arg_VPs_true"
// based on "arg_VPs"

29

} // end while

);

emit(

// This physical processor sets its own status to "done"

physical_processor_busy[PROC_ID] = 0;

// the extra busy waiting loop

// (until all other processors are done)

while (some_processor_busy) {

// Read the shared vector "physical_processor_busy"

BEC request(physical_processor busy, 0, PROC_COUNT());

BEC_exchange();

// Combine the global status

for (int i = 0 ; i < PROC_COUNT() ; i++) {

some_processor_busy 1 = physical_processor_busy[i];

}

);

// emit code to free up malloc() space

}

Note: The generated code of a compound statement such as the while-loop will
be placed in a C block statement enclosed within curly braces "{" and "I" . This
provides the appropriate scope for the generated temporary VP_info structures (de-
clared within the block statement), such as VPs_true, in order to avoid name collision
when multiple compound statements need to be translated . (The same applies to the
translation of if-then-else as presented in the next section .)

5 .9 Conditional Statements

The C language has conditional statements such as if-then-else, switch-case, etc.
Their translation schemes are similar . Here we present only the translation algorithm
for if-then-else .

}

30

if (condition) {

if_stmts;

} else {

else_stmts;
}

The PRAM C semantics specifies that all the if-stints must synchronize across all
(virtual) processors executing them . The same is true for the else-stmts . However,
the two sets of processors for these different branches do not have to synchronize at
all . Therefore, in our translation, we can translate the if-branch first, and then the
else-branch, while maintaining the correct semantics . This translation algorithm is
as follows.

Similar to the problem in the while-loop translation, it is possible that on one
physical processor, all the virtual processors simulated take only the if-branch ; while
on another physical processor, all the virtual processors simulated take only the else-
branch . Besides, in the generated code, the number of calls to BEC_exchange() on
the two branches may be different . This difference can potentially leave some physical
processors hanging on the call to BEC_exchange(), waiting for other physical pro-
cessors' responses . Once again, one possible solution is to use the same busy-waiting
loop as in the translated code for the while-loop to resolve this issue . Specifically,
we insert two such extra busy-waiting loops, one after the translated code for the
if-branch, and the other after the translated code the else-branch.

The translation algorithm for if-then-else is as follows.

void translate_if_then_else(. . ., Statement * if_then_else) {

// Input assumption:

//

	

- VPs : the VP_info created in the current function

//

	

and is valid before the conditional statement

//

	

- arg_VPs : the VP_info is the formal argument in the

//

	

translated function containing this conditional

emit(

// status flag

int some_processor_busy = 1;

// declare a shared vector to keep track of the status

// of the physical processors

shared int * physical_processor_busy =

BEC_joint malloc(PROC_COUNT() * sizeof(int));

31

// This physical processor sets its own status to "not done"
physical_processor busy[PROC_ID] = 1;

// declare variable to hold VPs for which "condition" is true
VP_info *VPs_true = malloc(sizeof(VP_info));

VPs_true->VPIDs = malloc(sizeof(int)*VPs->count);
VPs_true->activelndex = malloc(sizeof(int)*VPs->count);

// declare variable to hold VPs for which "condition" is false

VP_info *VPs_f alse = malloc(sizeof(VP_info));
VPs_false->VPIDs = malloc(sizeof(int)*VPs->count);
VPs_false->activelndex = malloc(sizeof(int)*VPs->count);

// Similarly, declare "arg_VPs_true" and "arg_VPs_false "
// to be the compressed VP_info structures to hold

// the argument vector ownership information of those VPs
// in the if-branch and the else-branch, respectively.
VP_info *arg_VPs_true = malloc(sizeof(VP_info));
arg_VPs_true->VPIDs = malloc(sizeof(int)*VPs->count);
arg_VPs_true->activelndex = malloc(sizeof(int)*VPs->count);

VP_info *arg_VPs_f alse = malloc(sizeof(VP_info));
arg_VPs_false->VPIDs = malloc(sizeof(int)*VPs->count);
arg_VPs_f alse->activelndex = malloc(sizeof(int)*VPs->count);

// declare variable to hold value of condition expression.

int* temp_cond = malloc(sizeof(int)*VPs->count);

// emit code to compute initial "temp_cond" array for all VPs
translate_condition(VPs, if_then_else->condition, "temp_cond");

emit(
// collect all the VPs for which temp_cond is true
// into array trueVPs, others into falseVPs
VPs_true->count = 0;

VPs_false->count = 0;
for (i=0 ; i<VPs->count ; i++) {

if (temp_cond[i]) {
// add VPs->VPIDs[i] to list of true VPs
VPs_true->VPIDs[VPs_true->count++] = VPs->VPIDs[i];
VPs_true->activelndex[VPs_true->count] =

) ;

32

VPs->activeIndex[i];

} else {
VPs_f alse->VPIDs[VPs_f alse->count++] = VPs->VPIDs{i];
VPs_f alse->activelndex[VPs_f alse->count] =

VPs->activelndex[i];
}

}

// Similarly, construct the compressed "arg_VPs_true"

// and "arg_VPs_false" based on "arg_VPs"

// translate the if branch.

if (VPs_true->count > 0) {

);

// translate the if_stmts only for the true_VPs
translate(VPs_true, if_stmts);

emit (
// This physical processor sets its own status to "done"

physical_processor busy[PROC_ID] = 0;

// the extra busy waiting loop
// (until all other processors are done)
while (some_processor_busy) {

// Read the shared vector "physical_processor_busy"
BEC_request(physical_processor_busy, 0, PROC_COUNT());

BEC_exchange();

// Combine the global status
for (int i = 0 ; i < PROC_COUNT() ; i++) {

some_processor_busy I = physical_processor busy[i];
}

} // end while

);

emit(

} // end if

// translate the else branch.
if (VPs_false->count > 0) {

33

some_processor_busy = 1;
// This physical processor sets its own status to "done"
physical_processor busy[PROC_ID] = 0;

);

// translate the else_stmts only for the false VPs
translate(VPs_false, if_stmts);

emit(
// This physical processor sets its own status to "done"

physical_processor_busy[PROC_ID] = 0;

// the extra busy waiting loop
// (until all other processors are done)

while (some_processor_busy) {
// Read the shared vector "physical_processor_busy"
BEC_request(physical_processor_busy, 0, PROC_COUNT());
BEC_exchange();

// Combine the global status

for (int i = 0 ; i < PROC_COUNT() ; i++) {

some_processor_busy 1 = physical_processor_busy[i];

} // end if

);

// emit code to free up malloc() space

5.10 Other Flow Control Statements

• break : break statements can be handled easily with our scheme of translating
loops . When a break statement is issued for a particular virtual processor,
we simply remove the virtual processor 's ID from the VPs_true list . Since
recalculation of conditions applies only to those virtual processors already in
the list, the exited processor will not be considered for the loop again.

34

• continue : continue statements can be rewritten with if statements.

• goto : goto statements are not allowed in PRAM C ([2]).

6 Translating UPC into BEC

In its most general form, the UPC parallel loop construct takes the form

upc_forall(el ; e2 ; e3 ; e4) {

body;

}

The expressions el ; e2 ; e3 are used to control iterations of the loop, while e4,

called an affinity expression in UPC, suggests which physical processor to use for a
given iteration . We shall leave this most general form for future discussion.

For now, we will focus on a common form of the upc_forall construct in UPC
programs, the counter loop . The loop control expressions can be quite complex;
however, standard compiler techniques can normalize general counter loops to a more
specialized form . Therefore, the following example suffices to illustrate the translation
of a UPC parallel (counter) loop to BEC.

upc_forall(i = 0 ; i < N ; i++ ; affinity_expression) {

body;

}

Note: There is no data dependence permitted between different iterations of
the UPC loop [8] ; therefore, different iterations can be executed in arbitrary relative
order.

6.1 UPC to BEC Translation Scheme

To see the general idea of the translation scheme, we break the translation process into
small, comprehensible steps . For ease of exposition, we give the affinity expression
a definite form. Assume that array A[N] is a shared variable that is accessed in the
loop body.

35

upc_forall(i = 0 ; i < N ; i++ ; &A[i]) {

body;

}

Here the intent of the affinity expression is a hint that iteration i should be exe-
cuted by the processor that physically holds data element A[i].

Assume that P is the number of physical processors available at runtime . A
transformation from UPC to UPC leads to

upc_forall(j = 0 ; j < P ; j++ ; &A[j*(N/P)]) {

// The inner loop is a sequential for loop

for (k = 0 ; k < (N/P) ; k++) {

i = j * (N/P) + k;

body;

}

}

It is possible to provide explicit barriers in UPC . Assume the loop body consists
of code in phases, where each phase is some C code followed by a barrier . That is, a
phase further consists of

code;

barrier;

Therefore, the original upc_forall loop becomes

upc_forall(j = 0 ; j < P ; j++ ; &A[j*(N/P)]) {

// The inner loop is a sequential for loop

for (k = 0 ; k < (N/P) ; k++) {

i = j * (N/P) + k;

code_1;

barrier;

code_last;

barrier;

}

}

Note that code_x is sequential C code with no virtual processors (in the PRAM
C sense) . The generated BEC code will be as follows.

36

. for (k = 0 ; k < (N/P) ; k++) {

i = PROC_ID() * (N/P) + k;

[code_i translated]

[code_last translated]

}

// Exchange to take care of the last batch of shared variable writes

BEC_exchange();

Here we use [code_x translated] to represent the translation of UPC code_x

into BEC . The enclosing upc_forall loop is no longer necessary because BEC is
SPMD. The UPC explicit barriers are naturally subsumed by the BEC data exchange
semantics.

Note: The translation ignores the affinity expression because the BEC environ-
ment manages data locality of shared variables.

The translation of each UPC code phase can be done as follows.

• Keep the original code_x (as C code) unchanged ; and insert the following two
pieces before it;

Since a BEC_request is needed for every shared variable read access, an
easy way to do so is to replicate the control constructs of the code, and
then to replace the simple statements in code with BEC_request calls, one
for each shared variable read in the statements.

Insert a BEC_exchange call after the group of replicated and modified
statements.

The translation of UPC to BEC appears to be more straightforward than that of
PRAM C to BEC . This apparent simplicity may be due to different ways of handling
"virtual processors" and local data in the two high level languages.

7 Comparison of PRAM C and UPC

In this section, we address differences and similarities of translating the PRAM_do
construct and the upc_forall construct . For this purpose, it is important to examine
the semantics of these two parallel constructs.

37

Consider the PRAM_do in its general form,

// PRAM C construct

PRAM_do(N) : f(. . .);

and the upc_forall loop in its commonly used form as a counter loop.

// UPC construct

upc_forall(i = 0 ; i < N ; i++ ; affinity_expression)

body;

Note: If the affinity expression is "continue" (not integer or pointer to shared)
or if it is not specified, the upc_forall is reduced to a sequential for-loop.

7.1 Observations

Similarities:

• Both constructs are used to express parallelism, up to N parallel threads of ex-
ecution . In PRAM_do, N instances of function f (. . .) will be executed, possibly
in parallel; while in upc_forall, N instances of body will be executed.

Differences:

• Nesting

—Nested upc_forall constructs are reduced to sequential for-loops.

—Nesting of PRAM_do is allowed and the parallel semantics of the nested
PRAM_do is unchanged.

• Programming in virtual processors

—PRAM_do enables expression of parallelism in virtual processors . That
is, each instance of the function A . . .) will be executed by one virtual
processor.

—In upc_forall, each instance of body somewhat resembles an instance of
function f (. . .) in PRAM_do . But they are different .

ft.

38

* In PRAM_do, each instance of f (. . .) can have its own local variables,
which are truly private to the executing virtual processors . (Com-
munication between different instances of f (. . .) can only be through
shared variables or shared arguments .)

* Local variables in UPC pertain to physical processors . Therefore, local
variables in UPC are potentially shared by multiple instances of the
executing body assigned to run on the hosting physical processor . So
local variables in UPC are not private to one instance of the body,
but are really shared by a group of instances . In this sense, using
upc_forall does not fully support expression of parallelism in virtual
processors.

• Work assignment to physical processors

Depending on the affinity expression in upsiorall, the group of instances
assigned to a physical processor needs to be determined at compile time
(and even at runtime) . Consequently, users need to ensure that sharing
of local variables by multiple body instances does not lead to unexpected
program behavior . Explicit synchronizations (e .g., using barriers) may be
needed for program correctness ; but such synchronization points apply
to all the instances on all physical processors globally . Currently, there
is no synchronization mechanism in UPC to deal with such sharing of
local variables on each physical processor . (This complication may be
undesirable for the ease of programming.)

PRAM_do does not have such an issue since all the local variables are truly
private to the virtual processors . Work assignment to physical processor
can either be done at compile time or runtime, beyond the concern of the
user.

• Difference in Semantics

—Statements in f (. . .) of PRAM_do follow implicit barriers ([2]) ; so the par-
allel execution of the instances of f (. . .) is synchronous.

—Statements in a upc_forall body follow only explicit barriers ([8]), so the
parallel execution of the instances of body is asynchronous.

7 .2 Differences in Translations

The main difference in translating PRAM_do and translating upc_forall is the different
treatment of local variables . In translating PRAM_do, local variables in f (. . .) must

39

be replicated; but in translating upc_forall, local variables need not change.

Implicit barriers in PRAM C do not lead to additional difficulty in translation,
because they can be treated as explicit barriers at predetermined locations.

8 Conclusion

In this report we have shown that two GAS languages, UPC and PRAM C, can be
compiled into BEC. This shows that BEC can be used an intermediate GAS language
for higher level languages . As it was discussed in this report, BEC consists of a simple
C extension and a runtime library. The BEC runtime library is just a little more than
a simplified and formalized common API to some of the current utilities such as the
EPETRA package in Trilinos [4] . Therefore, any platform-specific optimizations that
have been made to those utilities are available for use by the BEC runtime.

For implementations of high level GAS models, this provides a new and alternative
approach which can leverage many of the existing infrastructures on current platforms.
This is in contrast to some of the existing UPC implementations such as the Berkeley
UPC [3], which develops its capabilities by reimplementation of distributed message-
passing functions.

As an alternative to the thread-based implementation PRAM C for the virtual
processors described in [2], this translation approach is amenable to compiler opti-
mizations. Topics such as prefetching of remote data, interprocedural optimization
of data access, and data exchange heuristics are some of the areas we plan to explore
in the future.

The theoretical significance of our translation approach is that it bridges between
fine-grained parallelism, as in PRAM algorithms, and coarse-grained communication,
as in the BSP model.

References

[1] Jonathan L. Brown, Sue Goudy, Mike Heroux, Shan Shan Huang, and Zhaofang
Wen. BEC: A virtual shared memory parallel programming environment . Tech-
nical Report in preparation, Sandia National Laboratories, Albuquerque, NM,
2005 .

40

r

t

b

[2] Jonathan L . Brown and Zhaofang Wen . PRAM C : A new parallel programming
environment for fine-grained and coarse-grained parallelism . Technical Report
SAND2004-6171, Sandia National Laboratories, 2004.

[3] W. Chen, D. Bonachea, J . Duell, P. Husbands, C. Iancu, and K. Yelick. A
performance analysis of the berkeley UPC compiler . In Proceedings of the 17th
Annual International Conference on Supercomputing (ICS 2003), 2003.

[4] Michael A . Heroux. Trilinos home page . http://software.sandia.gov/trilinos,
2004.

[5] J. JaJa . An Introduction to Parallel Algorithms . Addison Wesley, 1992.

[6] NPACI. SHMEM tutorial page. http://www.npaci.edu/T3E/shmem .html, 2005.

[7] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J . Dongarra . MPI-The
Complete Reference, Volume 1, The MPI core . The MIT Press, 1998.

[8] The UPC Consortium . UPC Language Specification, 2005.

[9] Berkeley UPC Working Group (url) .

	

Berkeley UPC home page.
http://upc .lbl.gov, 2005.

[10] Leslie G. Valiant . A bridging model for parallel computation . Comm. ACM,
August 1990.

[11] E. Wiebel, D . Greenberg, and S . Seidel . UPC collective operations specification.
2003 .

41

This page intentionally left blank

42

DISTRIBUTION:

1 MS 1110
John Aidun, 1435

1 MS 8960
James Handrock, 9151

1 MS 0817
James Ang, 1422

1

	

MS 1110
William Hart, 1415

1 MS 0807
Bob Ballance, 4328

1 MS 0822
Rena Haynes, 1424

1 MS 0817
Bob Benner, 1422

1 MS 1110
Bruce Hendrickson, 1414

1 MS 1110
1 MS 0376

Ted Blacker, 1421
Michael Heroux, 1414

1 MS 0316
1 MS 1110

Ron Brightwell, 1423
Scott Hutchinson, 1437

1 MS 0817
1 MS 1110

Jonathan L . Brown, 1423
Sue Kelly, 1422

1 MS 0378
1 MS 0382

Kevin Brown, 1543
Marlin Kipp, 1431

1 MS 1111
1 MS 0320 Patrick Knupp, 1411

William J . Camp, 1400 1 MS 0801

1 MS 1110 Rob Leland, 4300

S . Scott Collis, 1414 1 MS 0370
Scott Mitchell, 14111 MS 0318

George Davidson, 1412 1 MS 1110
Steve Plimpton, 1412

1 MS 1110
Erik DeBenedictis, 1423 1 MS 0807

Mahesh Raj an, 4328
1 MS 0817

Doug Doerfler, 1422 1 MS 1110
Rolf Riesen, 1423

1 MS 0316
Sudip Dosanjh, 1420 1 MS 0378

Allen Robinson, 1431
b 1 MS 0817

Brice Fisher, 1422
1 MS 0318

Elebeorba May, 1412
1 MS 0382

Mike Glass, 1541
1 MS 0321

Jennifer Nelson, 1430

1 MS 0817
Sue Goudy, 1422

1 MS 1110
Cynthia Phillips, 1415

1

	

MS 1110 1 MS 0817
John VanDyke, 1423Neil Pundit, 1423

1 MS 1111
Mark D. Rintoul, 1412

1 MS 0817
Courtenay Vaughan, 1422

1 MS 1110
Suzanne Rountree, 1415 1 MS 1110

Zhaofang Wen, 1423
1 MS 1111

Andrew Salinger, 1416 1 MS 0822

1 MS 0378
Stewart Silling, 1431

David White, 1424

1 MS 1110
1

	

MS 0378
James Strickland, 1433

David Womble, 1410

1 MS 0823
1 MS 0378

Randall Summers, 1431
John Zepper, 4320

1 MS 1110
Jim Tomkins, 1420

2 MS 9018
Central Technical Files, 8945-1

Second

1 MS 0370
Tim Trucano, 1411

Printing, (March 2006) :

2 MS 0899
Technical Library, 9616

1

	

Dr. Stan Ahalt 1 Dr . Bill Carlson
IDA Center for Computing Sci-
ences
17100 Science Drive
Bowie, MD 20708

205 Dreese Laboratory
Department of Electrical Engi-
neering
The Ohio State University
2015 Neil Avenue
Columbus, OH 43210 USA

1 Dr. Bradford Chamberlain
Cray Inc.
411 First Avenue S, Suite 600

1

	

Dr. David Bailey
Lawrence

	

Berkeley

	

National
Seattle, WA 98104

Laboratory
Mail Stop 50B-2239
Berkeley, CA 94720

1 Dr. Mark Davis
Intel
110 Split Brook Road - SPT 1
Nashua, NH 03062-2711

	

4
1

	

Dr. Dan Bonachea 1 Dr. Jason Duell
777 Soda Hall777 Soda Hall

Computer Science Division Computer Science Division
University

	

of

	

California

	

at University

	

of

	

California

	

at
Berkeley Berkeley
Berkeley, CA 94720-1776 Berkeley, CA 94720-1776

r

1 Dr. Tarek El-Ghazawi
Department of Electrical and
Computer Engineering
The George Washington Univer-
sity
801 22nd Street NW 6th floor
Washington DC 20052

1 Dr. Rob Fowler
Department of Computer Sci-
ence
Rice University
P.O. Box 1892, MS 132
Houston, TX 77251
USA

1 Dr. Al Geist
Oak Ridge National Laboratory
P.O . Box 2008
Bldg 6012
Oak Ridge, TN 37831-6367

1 Dr. Alan George
Department of Electrical and
Computer Engineering
University of Florida
PO Box 116200
327 Larsen Hall
Gainesville, FL 32611-6200

1 Dr. Robert Graybill
DARPA
3701 Fairfax Drive
Arlington, VA 22203

1 Dr. Bill Gropp
Mathematics and Computer Sci-
ence Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

1 Dr. Joseph JaJa
Institute for Advanced Com-
puter Studies (UMIACS)
A.V. Williams Building
University of Maryland
College Park, MD 20742-3251

1 Dr. Fred Johnson
DOE
SC-31/Germantown Building
1000 Independence Avenue SW
Washington, DC 20585-1290

1 Dr. Laxmikant Kale
Department of Computer Sci-
ence
University of Illinois at Urbana-
Champaign
201 N. Goodwin Avenue
Urbana, IL 61801-2302

1 Dr. Ashok Krishnamurthy
Ohio Supercomputer Center
1224 Kinnear Road
Columbus, OH 43212

1 Dr. Vipin Kumar
Department of Computer Sci-
ence and Engineering
University of Minnesota
200 Union Street SE
4-192 EE/CS
Minneapolis, MN 55455

1 Dr. Rusty Lusk
Mathematics and Computer Sci-
ence Division
Argonne National Laboratory
9700 S Cass Ave
Argonne, IL 60439

1 Dr. John Mellor-Crummey
Department of Computer Sci-
ence
Rice University
P.O . Box 1892
Houston, TX 77251
USA

1 Dr. Juan Meza
Lawrence Berkeley National
Laboratory
Mail Stop 50B-2239
Berkeley, CA 94720

1 Dr. Phil Merkey Department of
Computer Science
Michigan Tech University
1400 Townsend Dr.
Houghton, MI 49931

1 Dr . Robert W Numrich
Minnesota Supercomputing In-
stitute
University of Minnesota
599 Walter Library
117 Pleasant St . SE
Minneapolis, MN 55455

1 Dr. Steve Reinhardt
SGI
2750 Blue Water Road
Eagan, MN 55121

1 Dr. Vivek Sarkar
IBM Research
T. J. Watson Research Center
P. O . Box 704
Yorktown Heights, NY 10598

1 Dr. P. Sadayappan
Department of Computer Sci-
ence and Engineering
595 Dreese Lab
2015 Neil Avenue
Ohio State University, Colum-
bus, Ohio 43210 USA

1 Dr. Steve Seidel
Department of Computer Sci-
ence
Michigan Tech University
1400 Townsend Dr.
Houghton, MI 49931

1 Dr. Lauren Smith
NSA
1806 Stonegate Ave.
Corfton, MD 21114

1 Dr. Marc Snir
Department of Computer Sci-
ence
University of Illinois at Urbana-
Champaign
201 N. Goodwin Avenue
Urbana, IL 61801-2302

1 Dr. Guy Steele
Sun Microsystems
1 Network Drive
Burlington, MA 01803

1 Dr. Thomas Sterling
Center for Computation and
Technology
Department of Computer Sci-
ence

202 Johnston Hall
Louisiana State University
Baton Rouge, LA 70803

1 Dr. Uzi Vishkin
Institute for Advanced Com-
puter Studies (UMIACS)
A.V. Williams Building
University of Maryland
College Park, MD 20742-3251

1 Dr. James (Trey) White III
Oak Ridge National Laboratory
1 Bethel Valley Road
PO Box 2008 MS-6008
Oak Ridge, TN 37831-6008

1 Dr. Brian Wibecan
UPC Development Team
Hewlett-Packard Company
110 Split Brook Road
ZKO1-3/D40
Nashua, NH 03062-2698

S

ti

1 Dr. Kathy Yelick
777 Soda Hall
Computer Science Division
University of California at
Berkeley
Berkeley, CA 94720-1776

1 Dr. Thomas Zacharia
Oak Ridge National Laboratory
1 Bethel Valley Road
Box 2008
Oak Ridge, TN 37831

1 Dr. Hans Zima
Principal Scientist
JPL
Caltech
4800 Oak Grove Drive MS 171-
373
Pasadena, CA 91109

	Some Language Issues in High Performance Computing : Translation from Fine-grained Parallelism to Coarse-grained Parallelism
	Abstract
	Acknowledgment
	Contents
	1 Introduction
	2 Features of PRAM C
	2 .1 Parallel Control Constructs
	2 .2 Data Types and Their Physical Layout

	3 UPC Language Features
	4 Overview of BEC
	4.1 Structure of BEC Programs
	4 .2 Language Extensions

	5 Translating PRAM C
	5 .1 General Idea of Translation
	5 .2 High Level C Constructs
	5 .3 VP _info
	5 .4 PRAM_do and Initialization of VP_in f o
	5 .5 Function
	5 .6 Expressions
	5.7 Assignment Statement
	5 .8 Loops
	5 .9 Conditional Statements
	5.10 Other Flow Control Statements

	6 Translating UPC into BEC
	6.1 UPC to BEC Translation Scheme

	7 Comparison of PRAM C and UPC
	7.1 Observations
	7 .2 Differences in Translations

	8 Conclusion
	References
	DISTRIBUTION

