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ABSTRACT 
 
 

The movement of high-specific-activity radioactive particles (i.e., alpha recoil) has been 

observed and studied since the early 1900s. These studies have been motivated by concerns about 

containment of radioactivity and the protection of human health. Additionally, studies have 

investigated the potential advantage of alpha recoil to effect separations of various isotopes. This 

report provides a review of the observations and results of a number of the studies. 
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1.  INTRODUCTION 
 

 

The movement of high-specific-activity particles as a result of alpha recoil is a phenomenon that has 

been observed and studied since the early 1900s.  Such phenomena have direct implications for the 

transport and dispersal of radioactive materials.  These studies have been motivated by concerns about the 

containment of radioactive material and the increased potential for uptake of material by humans. 

Additionally, studies have investigated the potential advantage of alpha recoil to effect separations of 

isotopes. This report reviews the observations and studies performed to date, analyzes the results of these 

studies in the context of the release and transport of radioactive material, and describes the types of 

parameters that have been used to quantify movement by alpha recoil.  

 

 
2.  REVIEW OF REPORTED ALPHA-RECOIL PHENOMENA 

 

 

Alpha-recoil phenomena have been studied for a variety of reasons.  These studies can be divided into 

several categories:  early observations, filter studies, fragmentation, and resuspension.  These areas are 

discussed in the following subsections.  Additionally, the experience with 238Pu at the Savannah River 

Site (SRS) is described. 

 

2.1  EARLY OBSERVATIONS 
 

One of the earliest published descriptions of recoil transport was by Makower and Russ (1910), who 

noted that Radium B (214Pb) appeared to be transported by the Radium C (214Bi) recoil atom. (Figure 1 

depicts the decay scheme for these 222Rn progeny.)  Such an event was later termed “aggregate recoil” by 

Lawson (1919) and others.  In the case of “aggregate recoil,” the recoiling atom has sufficient energy to 

move additional particles that are attached to it (i.e., the aggregates).  Lawson (1924) attributes anomalous 

counting results for polonium to aggregate recoil, whereby the movement and electrostatic attraction of 

charged recoil nuclei (and associated aggregates) to aluminum filters changed the measured counts.  He 

observed that such anomalies should decrease with time as the number of aggregates is reduced (either by 

fragmentation of the aggregate or by transport of particles away from the surface being counted). 
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Harrington (1928) provided experimental evidence for the formation of particulate aggregates in 

radon gas.  He suggested that some of the aggregates that settle out may be suspended back into the gas 

by alpha recoil.  However, this idea was not explored further.  Harrington and Gratias (1931), who 

performed experiments on mixtures of radon gas and polar molecules, found that the presence of polar 

molecules favored, and might be essential in, the formation of large aggregates. 

Rutherford, Chadwick, and Ellis (1930) described the aggregate-recoil phenomenon in terms of 

separations of atoms. In this case, the daughter of a decaying atom will recoil from a radioactive deposit 

and, because it is positively charged, can be collected on a negative electrode.  This event should thereby 

effect a separation of a pure daughter product from the deposit.  However, activity from the parent is often 

found with the “separated” daughter, showing that some atoms from the deposit were transferred along 

with the recoiling daughter. 
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Fig. 1. Major decay mode of 222Rn and its daughters. 
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2.2  FILTER STUDIES 
 

A number of studies have been performed with respect to the transport of alpha-active particles 

through filters.  The distribution of 239Pu in a high-efficiency particulate air (HEPA) filter was studied 

using autoradiography by Ryan, McDowell, and Case (1977).  They found that the plutonium was 

transported through the filter by aggregate alpha recoil (i.e., aggregate recoil particles, which are 

produced from larger particles, are reentrained in the airflow and then deposit deeper in the filter). 

Ryan, Skrable, and Chabot (1975) studied the aggregate recoil of 212Pb particles through glass fiber 

filters.  They state that the recoil energy of the 212Pb daughter is about 100 keV, which is about 105 times 

the chemical bond energy of lead atoms.  Consequently, to conserve momentum, a large number of parent 

atoms must recoil with the daughter nucleus.  Their work showed that aggregate recoil “can increase the 

effective penetration of aggregate recoil particles through glass fiber filters.”  They found penetration of 

particles through multiple filters arranged in series.  An aggregate particle may be initially attached to a 

filter. However, through subsequent decay, a portion of the particle may become detached (i.e., a new, 

smaller aggregate is formed) and move through the filter.  Such phenomena can cause movement of 

particles through multiple filters.  Ryan, Skrable, and Chabot identified two key parameters that influence 

the aggregate-recoil phenomenon—the specific activity of the alpha-emitting material and the number of 

active atoms per aggregate.  The size distribution of the recoiling particles in terms of the number of 

active atoms per particle is useful in evaluating the  hazard from recoil transport.  Measurements for 

aggregate recoil particles of 212Pb resulted in a size distribution of about 1000 atoms per particle, with a 

diameter of about 3 µm [McDowell, Seeley, and Ryan (1976), a publication that cites thesis results by  

J. A. Vento].   

McDowell, Seeley, and Ryan (1977) have shown that alpha-emitting particulates penetrate HEPA 

filters much more easily than do nonradioactive or beta-gamma-emitting aerosols.  They have observed 

such phenomena with 212Pb, 253Es, 238Pu, and 239Pu.  Beta-gamma-emitting materials did not migrate 

through the filters.  However, when mixed with alpha-emitting material, the beta-gamma activity did 

migrate.  This migration occurred by the dislodging of small active particles from the surface of an alpha-

active material (by alpha recoil).  Such dislodging is repeated, and the radioactivity then migrates.  Oxide, 

nitrate, and plated metal forms of sources all were found to effectively generate recoil particles. 

In a more detailed report of their work, McDowell, Seeley, and Ryan (1976) developed a simple 

mathematical model for the transport of alpha-recoil aggregates through filters.  The basic equation 

governing the release of particles from a filter is   
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where 

 

 Ns(t)  =  the number of active atoms on a source, 

 Ks  =  the rate constant for transfer of atoms by the aggregate-recoil process, and 

 λ   =  the radioactive decay constant. 

 

The rate of release of atoms from the source by aggregate recoil is then given by the product KsNs.  Note 

that this equation was developed for transport through filters and that a similar equation could be written 

for each filter stage (i.e., with the release rate from one stage becoming the deposition rate in the next).  

However, the basic equation is applicable for release of particles from a source.  Values of the transfer 

rate constant were reported for three radioisotopes:  238Pu (2.44 × 10−6 day−1), 253Es (1.16 × 10−6 h−1), and 
212Pb (4.17 × 10−8 h−1).  (Note that 212Pb decays by beta emission, however, its daughters 212Bi and 212Po 

decay rapidly by alpha emission.) 

 

2.3  FRAGMENTATION 
 

Fragmentation of high-specific-activity particles has been a concern because smaller particles can be 

more easily taken up by the body. Consequently, the fragmentation of particles as a result of recoil has 

been the subject of several studies.  Fleischer (1975), and Fleischer and Raabe (1977) examined the 

solubility of PuO2 in simulated lung fluid.  Here solubility refers to the “conversion of plutonium in the 

extremely insoluble particles of PuO2 to more dispersed forms.”  These authors observed that 238PuO2 

dissolves at a rate that is about 200 times faster than 239PuO2, which has a much lower specific activity (17 

Ci/g for 238Pu versus 0.062 Ci/g for 239Pu).  Fleischer and Raabe (1977) measured the size distribution of 

clustered 239Pu atoms resulting from PuO2 fragmentation by observing fission fragment tracks after 

neutron activation.  They observed that such fragments contained 50 to 10,000 239Pu atoms. Fleischer 

(1975) developed a simple model for the fragmentation (i.e., dissolution) of particles: 
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where 

 

 V   =  volume of the particle, 

 t    =  time, 

 λ   =  radioactive decay constant, 

 n   =  number of atoms ejected per recoil nucleus that leaves the particle, 

 r    =  particle radius, and 

 δ   =  recoil nucleus range. 

 

For 239Pu decay to 235U, δ ~ 200 Å.  The value of n is estimated to be about 104 atoms per decay. 

Because they did not observe significant “direct spraying-out of multi-atom fragments” for an 

experiment that they performed in a dry vacuum system, Fleischer and Raabe (1978) contend that 

moisture plays a role in the release of aggregate recoils (perhaps by some etching mechanism along the 

recoil tracks). 

Clinard and Rohr (1981) studied fragmentation of PuO2 from the perspective of the potential for the 

release and leaching of plutonium from waste forms.  They observed that 238PuO2 undergoes spontaneous 

fragmentation and that the relatively short-lived 238PuO2 is more prone to fragmentation than is 239PuO2.  

For their experiments, Clinard and Rohr prepared samples by hot pressing at 1530°C and then firing in an 

oxidizing atmosphere at 1440°C.  They measured the fragmentation rate of 238Pu samples, which was 

defined as the rate at which −420 mesh (<34-µm) fines were produced.  From the data presented, this rate 

is about 0.001%/day.  Fragmentation was found to continue into submicroscopic particles (i.e., 10-µm 

particles continued to break up).  Clinard and Rohr determined by calculation that thermal stresses were 

not responsible for the fragmentation.  They concluded that lattice damage by recoil nuclei and alpha 

particles, as well as radiolytic effects (e.g., the production of species that attack the lattice) may play a 

role in fragmentation.  

Although the mechanism may not necessarily be fully established, from the experimental work  it is 

clear that in the case of high-specific-activity alpha materials, submicroscopic particles are spontaneously 

formed. 
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2.4  RESUSPENSION 
 

Several studies have focused on the release or resuspension of radioactive particles. Such particles 

can become entrained in air currents and be transported to another location. Coombs and Cuddihy (1983) 

studied the emanation of 232U- daughter products by recoil and inert-gas diffusion (of radon) from thorium 

and uranium oxide particles that were doped with ~1 wt % 232U.  Recoil daughters were collected on a 

cathode at −8000 V, while radon daughters that diffused out of the particles were swept away to a 

separate chamber where they decayed.  The radon daughters that decayed were then collected on another 

cathode at −8000 V.  Based on calibration data, about 42% of the recoils were estimated to be collected 

on the recoil cathode, while ~ 70% of the radon daughters were estimated to be collected on the radon-

daughter cathode.  The recoil range of 228Th inside of UOx and ThO2 particles was reported to be about  

17–22 µg/cm2.  The authors found that about 30% of the 232U daughters escaped the particle by recoil.  

About 30–40% of the 220Rn that formed in the particles escaped by diffusion.  While the authors did not 

mention aggregate recoil, such a phenomenon could certainly contribute to the release that was measured. 

Bigu (1991) states that frequent collisions of radioactive aerosols results in their attachment and 

ultimately in the settling of these particles on surfaces.  He lists several mechanisms by which particles 

may leave a surface:  fluid forces, molecular or atomic diffusion, thermal desorption (i.e., off-gassing), 

electrical desorption (i.e., migration of charged particles under the influence of an electric field), and 

nuclear recoil.  The range of recoiling particles in air resulting from alpha decay with an energy of about  

6 MeV is about 0.12 mm [based on data reported by Mercer (1976) for the recoil of RaB (214Pb) from 

RaA (218Po) decay; see Fig. 1].  According to Bigu, desorption by beta recoil is also possible, although not 

as likely because the recoil energy is much less.  However, because some of the early experiments used 

methods to collect particles that might perturb the measurement (e.g., collection of charged recoil 

particles by an electric field could lead to electric desorption), one must be careful concerning recoil 

measurements.  Bigu states that for submicron particles, such as radon daughters, airflow-mediated 

reentrainment of particles from a surface is not a likely desorption mechanism.  

Bierman, da Roza, and Chang (1991) performed a theoretical study of the migration of alpha-emitting 

particles through HEPA filters.  Based on this study they developed a numerical model for the 

resuspension and transport of particles.  In this model, nanometer-sized fragments are produced from 

larger particles by alpha decay (i.e., fragmentation). Fragments migrate through the filter after 

resuspension by either alpha-recoil or thermal mechanisms. For thermal resuspension, particles that are 

entrained on filter fibers (or surfaces) receive thermal energy by collisions with passing gas molecules 
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and cause these particles to be detached. The recoil energy resulting from alpha decay is sufficient to 

resuspend nanometer-sized particles from a filter fiber.  Particles with densities of 10 g/cm3 and up to  

20 nm in diameter can be dislodged.  While alpha-recoil energy is not sufficient to resuspend micron or 

submicron particles, fragmentation can lead to the production of even smaller particles that can be 

resuspended.  Bierman, da Roza, and Chang (1991) provide a formulation for the mass percentage release 

per unit time (M %) that results from alpha recoil: 

 

d
hlrS

M
ρπ f

2
fa50

  % 
∆

=    ,    (2.3) 

 

where 

 

 Sa  =  specific activity, 

 ∆l   =  thickness of the shell about the parent particle from which fragments are released, 

 rf  =  fragment radius, 

 hf  =  fragment height, 

 ρ  =  fragment density, and 

 d  =  diameter of the parent particle. 

 

The fragments are assumed to be cone shaped.  Table 1 provides estimated fragment release rates for 
238PuO2 and 239PuO2 using the above formulation. 

 

Table 1. Estimated fragment release rates from particles of 238PuO2 and 239PuO2 

 Particle and fragment characteristics 

∆ l, nm 5 2 

rf , nm 5 2 

hf , nm 5 2 

d, µm 0.3 0.14 
238Pu release rate, wt %/month 5 0.1 
239Pu release rate, wt %/month 0.02 0.0005 

Number of molecules per fragment 3000 200 
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Yamada, Koizumi, and Miyamoto (1999) studied the reentrainment of plutonium particles that had 

initially been captured on HEPA filter fibers.  They prepared source filters by collecting 107 to 108 Bq/m2 

of 0.1- to 0.2-µm 239PuO2 particles.  Experiments lasted for 20 days, and the air velocity and flow pattern 

were varied for each of the experiments.  The dispersion rates [activity of the sampling (or downstream) 

filter divided by the activity on the source filter and the sampling time] were measured and found to be 

2.3 × 10−7/h for the forward flow direction. 

Johnston et al. (1993) studied the resuspension of plutonium and americium particles in an Australian 

desert.  They quantified the resuspension in terms of a “resuspension factor,” which is defined as the 

airborne activity concentration divided by the surface activity density (i.e., activity per unit area).  The 

studies were performed over a 1-year period, and an average resuspension factor of 4 × 10−10 m−1 was 

measured.  The resuspension can increase by up to 3 orders of magnitude for winds greater than 10 m/s.  

The authors did not assess the effects of alpha recoil on resuspension.  However, they do assume that only 

particles less than 75 µm can be resuspended.  Therefore, fragmentation by alpha recoil can increase the 

amount of material available for resuspension. 

Leonard (1995) made measurements of the resuspension of 222Rn particulate progeny from residential 

materials.  In this case, Leonard defined a resuspension factor (different from that above) as the fraction 

of plated-out atoms (e.g., 218Po and 214Pb) whose progeny become resuspended upon radioactive decay 

(i.e., by alpha recoil of the progeny).  Measurements were performed in a closed, environmentally-

controlled test chamber—with typical residential temperature and airflow rates—using a number of 

different residential materials as the plating-out surface.  The measured resuspension factors for 214Pb 

recoil ranged from 0.29 to 0.55. 

 

2.5  SRS EXPERIENCE WITH 238Pu 
 

A description of the SRS experience with high-mobility 238PuO2 particles is provided by Congdon 

(1996).  Plutonium-238 was produced in SRS reactors and separated in the HB-line canyon building.  

Initially, pellets were fabricated at Mound, then at the Plutonium Fuel Fabrication Facility (PuFF) at SRS, 

and finally at Los Alamos National Laboratory (LANL).  The following discussion details the experience 

at the SRS PuFF facility. 

Plutonium oxalate was produced from the SRS separations process.  The subsequent calcination of 

the oxalate resulted in 5- to 10-µm-sized particles.  The material was further ball milled, creating particles 

less than 2 µm, with a significant fraction in the submicron range.  (Note: Materials at LANL are still 
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prepared in a similar manner.)  Fines were generated by a number of steps that were performed during 

pellet processing:  ball milling, sieving, mixing, and sectioning of pellets for metallographic analysis. 

Congdon (1996) described significant evidence of high 238Pu mobility.  The number of contamination 

incidents involving 238Pu was 3.5 times those for 239Pu. However, more than 100 times the quantity of  
239Pu was processed.  The incident rate is close to the ratio of the specific activities and the amount of 

material processed [i.e., (17 Ci/g) × 1 g /(0.062 Ci/g) × 100 g = 2.7]. Clearly, the 238Pu was more difficult 

to control and contain than the 239Pu.  Personnel involved with processing 238Pu indicated that it had 

“lifelike” characteristics, as the fines appeared to “fly” through the air or “walk” along pipes.  Congdon 

states that “in some cases, the fine particles appear to behave more like a gas than a solid.”  Additionally, 

“alpha decay and heat cause numerous failures of 35 mil thick rubber gloves,” even in a matter of days.  

When 238Pu particles got outside of containment, they sometimes traveled for hundreds of feet, rather than 

directly settling.  According to Congdon, “other types of radioactive materials do not appear to be nearly 

as mobile as 238Pu and are usually spread by physically spreading the material from one surface to 

another.” Such surfaces were difficult to decontaminate.  Fine particles of 238Pu were easily dispersed 

(resuspended) into the air, and previously decontaminated surfaces were found to be recontaminated after 

several hours or days.  Because of self-heating, 238Pu oxide does not tend to absorb water.  Furthermore, 
238Pu tends to remain as individual particles rather than forming agglomerates. (Note that one cause of 

agglomeration would be adsorption of water, thereby causing the particles to stick together.)  

Additionally, alpha emissions and the concomitant recoil may act to break up agglomerates.  Such small 

particles are then easily dispersed, especially since the dry 238Pu particles do not adhere to surfaces. A 

recent assessment of the contamination problem and the mobility of 238Pu particles is also provided by 

Reichel (2004).  

  

 
3.  DISCUSSION 

 

 

The experience with 238Pu reported at SRS is a clear example of the high mobility (and containment 

difficulty) of high-specific-activity alpha-emitting radionuclides. Such characteristics often dictate 

processing requirements for these materials. For example, the processing of 244Cm and 252Cf at the Oak 

Ridge National Laboratory (ORNL) is performed in the liquid phase as much as practical. Powders are 

produced only when absolutely necessary. Such a philosophy has been carried into recent design efforts 
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by ORNL for 238Pu processing. In this case, the handling of highly dispersable powders is avoided until 

the production of the final material for shipment. 

A large body of evidence exists that describes the movement of high-specific-activity alpha material. 

This movement has been quantified by a number of methods. Releases have been reported in terms of a 

transfer rate constant, KS, with values given for the isotopes 238Pu, 253Es, and 212Pb. These rate constants 

can be used to calculate the rate of release of atoms from a source by aggregate recoil. The number of 

atoms released per recoil atom ranges from 50 to 10,000. 

The movement of particles has also been described in terms of fragmentation. Models have been 

developed that describe the rate of fragmentation (and, hence, the rate of production of smaller particles). 

The fragmentation rate of 238Pu has been measured to be ~ 0.001%/day (to produce <34-µm fines). 

The resuspension of alpha-active particles has been quantified by a number of techniques. Estimates 

of the mass percentage release by alpha recoil for 238PuO2 range from 0.1 to 5 wt % per month, with  

200 to 3000 molecules per fragment. Another method used to quantify resuspension is the dispersion rate, 

which is the activity deposited on a filter that is downstream from a source filter divided by the source 

activity and the sampling time.  This idea can be extended to the activity released per unit time per unit 

source activity. The dispersion rate for 239PuO2 has been measured to be 2.3 × 10−7/h. Finally, 

resuspension factors have been measured to quantify the fraction of a source that becomes airborne. Two 

different types of resuspension factors have been described in the literature.  The first is the ratio of the 

airborne concentration divided by the surface activity density. An average value of 4 × 10−10 m−1 was 

measured for plutonium and americium isotopes in a desert environment. However, this value was very 

sensitive to the wind speed—increasing by up to 3 orders of magnitude for winds >10 m/s. Another form 

of the resuspension factor is defined as the fraction of plated-out atoms whose progeny become 

resuspended. For studies with radon in a residential environment, resuspension of 29 to 55% of the 

plated-out atoms has been measured. 

The foregoing discussion illustrates the variety of methods used to measure the movement of 

radionuclides by alpha recoil. In the context of modeling the transport of radionuclides, the contribution 

of alpha recoil (e.g., resuspension of particulates) could be incorporated into environmental models. 

Depending on the details of the particular model, quantities such as transfer rates, fragmentation rates, 

dispersion rates, and resuspension factors can be used to quantify the rate of production, size, and release 

of active particles from a source on which they are deposited. Certainly, there are limited data available 

on these quantities for a small number of nuclides. In the absence of additional data, reasonable estimates 

can be made for other radionuclides on the basis of specific activity, decay energy, and density of 
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materials. To further quantify the movement and dispersion of initial deposits of high-specific-activity 

alpha materials, experiments have been designed at ORNL to measure such movement. 

When making decisions about containment strategies for radioactive materials, the special 

characteristics of the high-specific-activity alpha-emitting radionuclides must be considered, in particular. 

In the case of a deposit of such material, a factor to consider is where to set the boundaries because of 

alpha mobility and for the protection of responding personnel. The fragmentation of these particles can 

increase the concentration of respirable particles with time. Additionally, the recoil of aggregates, 

combined with increasingly small aggregate sizes, can lead to resuspension and further airborne transport. 

Finally, these characteristics make filtration of these materials difficult and therefore close monitoring of 

personnel is required to prevent uptake in a cleanup or repose situation. 

 

4.  CONCLUSION 
 

 

This report describes the results of an extensive survey of the literature with regard to alpha-recoil 

transport. While specific citations used in the text of the report are listed in the reference section within 

the body of the report, an appendix has also been included to list all the relevant literature consulted 

during the course of this review.  

Alpha decay can result in the fragmentation of particles into smaller respirable fractions. 

Additionally, recoil nuclei can cause the movement or resuspension of radioactive material. Such 

movement must be considered when modeling the release of such material. Studies, especially with 

filtration media, have shown that the effects of aggregate recoil transport should be considered in 

response to and cleanup of release events.  Aggregate recoil increases the penetration of filtration media, 

thereby lowering its effectiveness. 
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