
ORNL/TM-2004/121

Orchestrating Bulk Data Movement in
Grid Environments

June 21, 2004

Prepared by
Sudharshan S. Vazhkudai
Researcher

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71314714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy
(DOE) Information Bridge:

 Web site: http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone: 703-605-6000 (1-800-553-6847)
 TDD: 703-487-4639
 Fax: 703-605-6900
 E-mail: infor@ntis.fedworld.gov
 Web site: http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE)
representatives, and International Nuclear Information System (INIS) representatives from the following
source:

 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831
 Telephone: 865-576-8401
 Fax: 865-576-5728
 E-Mail: reports@adonis.osti.gov

Web site: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency
thereof.

http://www.osti.gov/bridge
mailto:infor@ntis.fedworld.gov
http://www.ntis.gov/support/ordernowabout.htm
mailto:reports@adonis.osti.gov
http://www.osti.gov/contact.html

ORNL/TM-2004/121

ORCHESTRATING BULK DATA MOVEMENT IN GRID ENVIRONMENTS

Sudharshan Vazhkudai

Date Published: June 2004

Prepared by
OAK RIDGE NATIONAL LABORATORY

P.O. BOX 2008
Oak Ridge, Tennessee 37831-6285

managed by
UT-Battelle, LLC

for the
U.S. Department of Energy

under contract DE-AC05-00OR22725

CONTENTS

Page

LIST OF FIGURES.. iv
ACKNOWLEDGEMENTS .. v
ABSTRACT ... vi
1.0 INTRODUCTION.. 1
2.0 SCHEDULING GRID DATA TRANSFERS—REPLICA SELECTION......................... 3

2.1 Scheduling Architecture... 3
2.2 Replica Selection Sequence in Globus Data Grid.. 3
2.3 Storage Broker ... 4
2.4 Data Access Service... 5

3.0 PREDICTING BULK DATA TRANSFERS... 7
3.1 Univariate Predictors.. 7
3.2 Multivariate Predictors... 8
3.3 Predictor Performance.. 10

3.3.1 Experimental Setup.. 10
3.3.2 Metrics ... 11

4.0 CO-ALLOCATING DATA TRANSFERS.. 15
4.1 Co-Allocation Architecture.. 17
4.2 Partial Copy in GridFTP .. 17
4.3 Co-Allocation Mechanisms.. 17

4.3.1 Brute-Force Co-Allocation .. 17
4.3.2 History-based Co-Allocation ... 17
4.3.3 Dynamic Co-Allocation... 18

4.4 Results and Analysis .. 19
4.4.2 Experiment Setup .. 20
4.4.3 Performance... 20

5.0 CONCLUSION AND DISCUSSION .. 26
AUTHOR BIOGRAPHY .. 27
REFERENCES.. 28

iii

LIST OF FIGURES

Figure Page

1 Aggregate directory services (D), with resources (R), and Broker (B) 3
2 Sequence of event leading to the selection of replicas in the Globus

DataGrid environment 4
3 A fragment of the output from the GridFTP performance information

Provider registered with the GRIS at LBL 5
4 Univariate predictors 8
5 Sequence of events for deriving predictions from GridFTP 9
6 Visualization comparing error, complexity of algorithm and components 10
7 Network settings for our testbed sites 10
8 Impact of classification and the reduction in percent error rates for the testbed 11
9 Normalized percent prediction error and 95% confidence limit 14
10 Various bottlenecks in the Internet document download 15
11 Resource management architecture and the role of co-allocation 16
12 Servers are at ISI and UFL with client at ANL 22
13 Servers are at ISI and BU with client at UFL 22
14 Servers are at LBL and UFL with client at ANL 22
15 Servers are at ANL and ISI with client at UFL 22
16 Servers are at ANL, ISI and BU with client at UFL 23
17 Servers sharing the same network bottleneck to the client 23
18 Comparison between the variants of conservative and aggressive load
 balancing 24
19 ANL is the fastest server having to wait on ISL 25

iv

ACKNOWLEDGEMENTS

This research was supported in part by fellowships from Argonne National Laboratory and The
University of Mississippi. The fellowship from ANL (Summer of 2000 and academic years 2001
and 2002) was due to support by the Mathematics, Information and Computational Sciences
Office, Office of Advanced Scientific Computing Research, U. S. Department of Energy, under
contract No. W-31-109-Eng-38. The fellowship from The University of Mississippi (Spring
2003) was due to support from the Graduate School’s Doctoral Dissertation Award. This
research was also supported by the U.S. Department of Energy under contract no.
DE-AC05-00OR22725 with UT-Battelle, LLC. We further thank all the system administrators of
our testbed sites for their valuable assistance.

v

vi

ABSTRACT

Data Grids provide a convenient environment for researchers to manage and access massively
distributed bulk data by addressing several system and transfer challenges inherent to these
environments. This work addresses issues involved in the efficient selection and access of
replicated data in Grid environments in the context of the Globus Toolkit™, building middleware
that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data
transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive
statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads
from mirrored sites. These efforts have demonstrated a decentralized data scheduling
architecture, a set of forecasting tools that predict bandwidth availability within 15% error and
co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.

Keywords: Data Grids, Replica Selection, Predictions, Co-Allocations, Scheduling, Parallel
Downloading, Data Movement, Middleware.

1

1.0 INTRODUCTION

As the coordinated use of distributed resources, or Grid computing, becomes more commonplace, basic
resource usage is changing. Many recent applications use Grid systems as distributed data stores
[DataGrid02, GriPhyN02, HSS00, LIGO02, MMR+01, NM02], where pieces of large datasets are
replicated over several sites. For example, several high-energy physics experiments have agreed on a
tiered Data Grid architecture [HJS+00, Holtman00] in which all data (approximately 20 petabytes by
2006) is located at a single Tier 0 site; various (overlapping) subsets of this data are located at national
Tier 1 sites, each with roughly one-tenth the capacity; smaller subsets are cached at smaller Tier 2
regional sites; and so on. Therefore, any particular dataset is likely to have replicas located at multiple
sites [RF01, LSZ+02, LSZ+03]. Such replicated, bulk data is required to be moved across the Grid in
response to user queries.

Moving bulk data in Grid environments is mired by several nontrivial issues. First, information on the
state and behavior of replica/storage locations needs to be identified, gathered and exposed so they can be
discovered in the context of an information service. Second, suitable locations from which to fetch the
dataset needs to be identified based on heuristics that combine user specified requirements/policies and
current system behavioral trends. Further, the scheduling needs to be accomplished in a decentralized
fashion so it can scale to Grid-proportions. Third, quality of service agreements, negotiations and
guarantees—pin replicas for future access, reserve storage to stage data in the future, or reserve network
bandwidth—need to be coordinated to maximize usage. Fourth, auto-tuning of data movement
protocols—setting transmission control protocol (TCP) buffers or parallel streams—needs to be enabled
so data transfer throughput can be maximized. Large data transfers with default operating system buffer
sizes (64 KB) and no parallelism will almost certainly result in poor rates rendering them unsuitable for
Grid environments. Finally, the bulk data transfer should be monitored for progress and deterioration so
corrective measures can be taken in case of performance degradation. Thus, we need performance
metrics to determine transfer degradation.

Aforementioned are but a few—yet critical—set of activities in Grid scheduling. Bulk data movement is
usually associated with some computation to be run alongside, leading to a larger question of finding
schedules for both data and computation. In this paper, however, we address a few steps essential to
orchestrate the movement of massively replicated bulk data (of the order of several hundred megabytes to
gigabytes) in Grid environments, bringing together, in one fold, several of our previous work. We present
our work in the context of the Globus ToolkitTM [FK98, Globus02]. The Globus Data Grid provides a
convenient architecture for scientific experimental groups to share and democratize data access.

We discuss the design and implementation of a scalable, decentralized replica selection service that uses
information regarding replica location and user preferences to guide selection from among storage replica
alternatives [VT00, VTF01]. In Section 2 we first present a basic replica selection service design, then
show how dynamic information collected using Globus information service capabilities concerning
storage system properties can help improve and optimize the selection process. We demonstrate the use
of Condor's [LLM88] ClassAds [RLS98] resource description and matchmaking mechanism as an
efficient tool for representing and matching storage resource capabilities and policies against application
requirements.

Different sites may have varying performance characteristics because of diverse storage system
architectures, network connectivity features, or load characteristics. Users (or brokers acting on their
behalf) may want to be able to determine the site from which particular data sets can be retrieved most
efficiently, especially as data sets of interest tend to be large (1–1000 MB). Since large file transfers can
be costly, there is a significant benefit in selecting the most appropriate replica for a given set of
constraints [ACF+02, VTF01]. One way a more intelligent replica selection can be achieved is by having
replica locations expose performance information about past data transfers. This information can, in

2

theory, provide a reasonable approximation of the end-to-end throughput for a particular transfer. It can
then be used to make predictions about the future behavior between the sites involved. In our work we use
GridFTP (file transfer protocol) [AFN+01], part of the Globus ToolkitTM for moving data, and present
predictions using regression techniques to forecast the performance of GridFTP transfers for large files
across the Grid [VS03]. Our approach combines end-to-end application throughput observations with
network and disk load variations and captures whole-system performance and fluctuations in load
patterns. Our predictions characterize the effect of load variations of several shared devices (network and
disk) on file transfer times. In Section 3 we develop a suite of univariate and multivariate predictors that
can use multiple data sources to improve the accuracy of the predictions as well as address Data Grid
variations (availability of data and sporadic nature of transfers). These predictions are thematic to the
replica selection problem. Our results indicate a prediction accuracy of 15% error for the testbed sites.

Data locations, once identified and ranked using our selection and prediction techniques respectively, can
then be grouped together to collectively deliver the replica. Due to varied performance characteristics of
the several replica locations and the transient load in the links connecting them to the client, downloading
datasets even from the best of servers can often result in pedestrian transfer rates. A promising alternative
is to download data from multiple locations, establishing multiple connections in parallel. With this
approach, instead of downloading the entire dataset from a single sever, unique partial copies of the
dataset are fetched from multiple servers in parallel that are later reassembled at the client end. In Section
4 we develop a basic architecture for co-allocating Grid data transfers and build a few techniques for
downloading data in parallel, from multiple servers [Vazhkudai03]. We develop three techniques: (1)
brute force co-allocation, (2) history-based co-allocation of flows and (3) dynamic load balancing. We
apply these techniques to the GridFTP data movement tool, and evaluate our approaches by conducting
performance analysis experiments in a wide-area testbed. Our results indicate a significant increase in
bandwidth due to distributed downloads and denote that dynamic solutions outperform static approaches.

2.0 SCHEDULING GRID DATA TRANSFERS—REPLICA SELECTION

2.1 SCHEDULING ARCHITECTURE

Traditionally, resource brokers have adopted a centralized approach to resource management, wherein a
single node is responsible for decision making. An example of such an environment is the Condor
[LLM88] high-throughput computing platform, wherein a central manager is responsible for matching
resources against jobs. Obvious disadvantages to this approach are scalability and a single point of
failure. Of course, Condor has an efficient recovery mechanism to address failure and has been proven to
scale to thousands of resources and users.

But there is a more fundamental problem with this centralized approach when applied to Grids. In these
highly distributed environments, there are numerous user communities and shared resources, each with
distinct security requirements. No single resource broker is likely to be trusted by all of these
communities and resources with the necessary information to make decisions. At the extreme, each user
may need his or her own resource broker, because only that user has the authorization to gather all of the
information necessary to make brokering decisions.

Alternatively, we can adopt one of two decentralized models. First and commonly referred as sender-
initialized scheduling, is an approach wherein entities requiring access to the specific resource initiates
and performs the scheduling. Second, is a receiver-initialized scheduling wherein entities in possession
of the resource perform the selection. The latter approach would require addressing the motivation for a
resource owner to volunteer to perform the scheduling. For this reason, we have designed a decentralized
storage brokering strategy wherein every client that requires access to a replica performs the selection
process rather than a central manager performing matches against clients and replicas (Figure 1).

2.2 REPLICA SELECTION SEQUENCE IN GLOBUS DATA GRID

An application that requires access to replicated data begins by querying an application-specific metadata
repository, specifying the characteristics of the desired data (Figure 2). The metadata repository
maintains associations between representative
characteristics and logical files, thus enabling
the application to identify logical files based on
application requirements. Once the logical file
has been identified, the application uses the
replica catalog to locate all replica locations
containing physical file instances of this logical
file, from which it can choose a suitable instance
for retrieval.

 3

The entity that identifies the suitable instance of
a replicated file based on application
requirements is referred to as a broker. In effect,
the responsibility of the broker is to map
application requirements against storage
resource capabilities obtained from an aggregate
information service (Figure 2). In the following section, we discuss the storage broker in detail.

Inquiry

Registration

 Fig. 1: Aggregate directory Services (D), with
resources (R), and Broker (B). Depicts resource registration
and broker enquiries to directory servers.

Registration

Inquiry

B

D

R

B

R

R

D

Replica
Location 3

Replica
Location 2

GridFTP
 Data Transfer

3

Metadata
Catalog

Attribute Specification

Application

l l
Logical Collection

Replica
Catalog

Replica Selection Selected
Replica

Multiple Locations
1 2

Performance
Information,
Predictions

Information
Service

Replica
Location 1

 Fig. 2: Sequence of event leading to the selection of replicas in the Globus
DataGrid environment [Globus02].

2.3 STORAGE BROKER

Request Specification: Data scheduling requests are represented in terms of classified advertisements,
used extensively in Condor for job placement. ClassAds provide a rich environment for resources and
jobs to specify their requirements and capabilities in terms of attribute-value pairs. Further, it provides
efficient matching and ranking mechanisms. An application might advertise its request to the broker as
follows:

hostname = “comet.xyz.com”;
reqdRDBandwidth = 5M/sec;
rank = other.AvgRDBandwidth;
requirement = other.AvgRDBandwidth > 5M/sec;

The application indicates its preference for a storage resource that offers a maximum transfer bandwidth
greater than 5 MB/sec.

Discovery: Information-discovery primarily involves searching for relevant details and capabilities of
resources from multiple administrative domains by querying aggregate directory servers (Grid Index
Information Servers), catalogs, etc. The GIIS typically caches/obtains data in the form Lightweight
Directory Access Protocol (LDAP) objectClasses that are essentially groupings of data represented in
terms attribute-value pairs. Examples of objectClasses include information on resources such as: cpu,
storage, networks, etc., that can be obtained from specific information prociders. Searches can further be
strengthened by directing more specific queries to individual resources (Grid Resource Information
Servers, GRISs) based on a subset of matched resources, for up-to-date dynamic information. The
following is a simple ClassAd describing the capabilities of a storage resource:

hostname = “dpsslx04.lbl.gov”;
volume = “/dev/sandbox”;
availableSpace = 50G;
AvgRDBandwidth = 6M/sec;
requirement = true;

This ClassAd describes a volume of a storage resource by specifying its attributes. The ClassAd can also
specify usage policy enforced by the resource using the “requirement” attribute. When two ClassAds are
being matched, a MatchClassAd is created that contains both ClassAds. Each ClassAd can refer to the
other ClassAd by using the “other” keyword. We will discuss the storage capability objectClass in more
detail in subsequent sections.

 4

Matching, Ranking, Action: Information obtained through discovery is in the form of LDAP
objectClasses, while requests are in ClassAds. Search results are converted to ClassAds and then
matched and ranked against requirement specification. A list of resources, once established, can then be
used to fetch data from, using GridFTP.

2.4 DATA ACCESS SERVICE

In the previous sections we described our decentralized architecture for replica selection. But, intelligent
replica selection requires information about the capabilities and performance characteristics of storage
systems (replica locations). Broker decisions are only as good as the information they have access to. In
the snippet ClassAds above, we used “avgRDbandwidth” as a metric to decide from among a set of
replica locations. GridFTP is the tool widely used to move data in the Grid and the avgRDbandwidth is
the average GridFTP bandwidth between the site hosting the replica and the site requesting it. It is such
predictive information we are interested in for brokering. In this section, we briefly highlight how such
storage system functionality can be exposed in the context of an information service so it can be
discovered by a broker.

We are particularly interested in the speed of a storage system, or rather, the time that the storage system
will take to deliver a replica. One approach to determining this information is to construct a performance
model of the relevant components (e.g., see [SC00]). We favor an alternative approach in which
historical information concerning GridFTP data transfer rates is used as a predictor of future transfer
times. In brief, storage systems are configured to provide information on their own behavior and
performance. Attributes such as maximum achievable read and write transfer bandwidths across networks
can help an application choose one replica over another. Storage replicas monitor their own performance
to gather and publish attribute data. This feature can be extended further, to obtain statistical information
based on the performance data, such as average transfer bandwidths and their standard deviations that can
help predict the behavior of a particular replica. Further, we expect that there will be significant reuse of
storage servers by clients, thereby justifying performance information on a per source basis, which
provides a client useful information on end-to-end transfer performance. For example, a simple heuristic
of combining past observed performance with current load of server might give a client a reasonably good
choice of server.

We instrumented the GridFTP server by adding mechanisms to log performance information for every file
transfer. Log entries include source address, file name, file size, number of parallel streams, TCP buffer
size for the transfer, start and end timestamps, total time consumed by the transfer, aggregate bandwidth
achieved for the transfer, nature of the operation (read or write), and logical volume to and from which
file was transferred. For the GridFTP
monitoring data, we built an information
provider that accesses the log data to
advertise a set of recent measurements as
well as some summary statistic data. To
generate statistical information on transfers,
we developed LDAP shell-backend scripts
to filter the information in the logs. In
addition, we developed schemas for this
data. Figure 3 presents a fragment of the
output from a GridFTP information provider
(details include: prediction information,
GridFTP server and port information, etc.).
Combined, these enable a GridFTP
performance information provider to process
logs by building schemas and scripts to

GridFTP Information Provider Output
dn:"140.221.65.69,
hostname=dpsslx04.lbl.gov,dc=lbl,dc=gov,o=grid"
cn:"140.221.65.69"
hostname:"dpsslx04.lbl.gov"
gridftpurl:"gsiftp://dpsslx04.lbl.gov:61000"
minrdbandwidth:1462K
maxrdbandwidth:12800K
avgrdbandwidth:6000K
avgrdbandwidthtenmbrange:5714K

 Fig. 3: A fragment of the output from the GridFTP
performance information provider registered with the GRIS at
LBL.

 5

 6

publish statistical information. Replica locations (sites running GridFTP servers) publish such
performance information using GRIS servers.

 7

3.0 PREDICTING BULK DATA TRANSFERS

In the following sections we discuss statistical techniques to synthesize bulk data transfer forecasts which
can then be used to differentiate the various replica locations. Our goal is to obtain accurate predictions
of file transfer times between a storage system and a client. Achieving this can be challenging because
numerous devices are involved in the end-to-end path between the source and the client, and the
performance of each (shared) device along the end-to-end path may vary in unpredictable ways.

One approach to predicting this information is to construct performance models for each system
component (central processing units at the level of cache hits and disk access, networks at the level of the
individual routers, etc.) and then to use these models to determine a schedule for all data transfers [SC00],
similar to classical scheduling [Adve93, Cole89, CQ93, Crovella99, ML90, Schopf97, TB86, ZLP96]. In
practice, however, it is often unclear how to combine this data to achieve accurate end-to-end
measurements. Also, since system components are shared, their behavior can vary in unpredictable ways
[SB98]. Further, modeling individual components in a system may not capture the significant effects that
these components have on each other, thereby leading to inaccuracies [GT99].

Alternatively, observations from past application performance of the entire system can be used to predict
end-to-end behavior. The use of whole-system observation has relevant properties for our purposes.
These predictions can, in principle, capture both evolution in system configuration and temporal patterns
in load. A by-product of capturing entire system evolution is enhanced transparency, in that we can
construct such predictions without detailed knowledge of the underlying physical devices. This technique
is used by Downey [Downey97] and Smith et al. [SFT98] to predict queue wait times and by numerous
tools (Network Weather Service [Wolski98], NetLogger [NetLogger02], Web100 [Web100Project02],
iperf [TF01], and Netperf [Jones02]) to predict the network behavior of small file transfers. We adopted
the use of end-to-end GridFTP measurements, capturing whole-system behavior, obtained through the
instrumentation process described earlier to derive predictions.

3.1 UNIVARIATE PREDICTORS

In this section we describe some of the predictors we developed, categorize possible approaches into
mean-based, median-based, and autoregressive techniques. These predictors are applied to a single
variable, namely the GridFTP transfer logs between any site pair. We use several variations of each of
these models in our experiments.

Mean-based, or averaging, techniques are a standard class of predictors that use arithmetic averaging (as
an estimate of the mean value) over some portion of the measurement history to estimate future behavior.
The general formula for these techniques is the sum of the previous n values over the number of
measurements. Mean-based predictors are easy to implement and impose minimally on system resources.

A second class of standard predictors is based on evaluating the median of a set of values. Given an
ordered list of t values, if t is odd, the median is the (t+1)/2 value; if t is even, the median is half of the t/2
value added with the (t+1)/2 value. Median-based predictors are particularly useful if the measurements
contain randomly occurring asymmetric outliers that are rejected. However, they lack some of the
smoothing that occurs with a mean-based method, possibly resulting in forecasts with a considerable
amount of jitter [HP91].

The third class of common predictors is autoregressive models [GP94, HP91, Wolski98]. We use an
autoregressive integrated moving average (ARIMA) model technique that is constructed using the
equation
G' = a + bGt-1,

where G' is the GridFTP prediction for time, t, Gt-1 is the previous data occurrence, and a and b are the
regression coefficients that are computed based on past occurrences of G using the method of least
squares. This approach is most appropriate when there are at least fifty measurements and the data is
measured with equally spaced time intervals. Our data does not meet these constraints, but we include
this technique to do a full comparison. The main advantage of using an ARIMA model is that it gives a
weighted average of the past values of the series, thereby possibly giving a more accurate prediction.
However, in addition to requiring a larger data set than the other techniques to achieve a statistically
significant result, the model can have a much greater computational cost.

Further to this, we use measurement and temporal windows that limit the datasets based on number of
values or on time. Filtering in this way is based on the assumption that recent measurements are more
reflective of current system behavior. Figure 4 summarizes our various predictors.

3.2 MULTIVARI

The obvious downside
so with the nature of d
based on log data alon
adverse effects of this
components in the end
hypothesis here is to ca
to better explain future
contributed up to 70%

We used tools such a
network and disk behav
found that NWS and io
correlation value). Ba
to predict from a comb
log data and disk load
before the regression t
and filling-in technique

3.2.1 Matching

Our three data sources
of each other and rare
however, we need to h
match values from th
observations that were

 Average based Median based Autoregression
All data AVG MED AR
Last 1 Value LV
Last 5 Values AVG5 MED5
Last 15 Values AVG15 MED15
Last 25 Values AVG25 MED25
Last 5 Hours AVG5hr
Last 15 Hours AVG15hr
Last 25 Hours AVG25hr
Last 5 Days AR5d
Last 10 Days AR10d

Fig. 4: Univariate predictors.
ATE PREDICTORS

 of univariate predictors has nothing to do with the predictors themselves but more
ata transfers on the Grid. Because of the sporadic nature of transfers, predictors
e may fail to factor in current system trends and fluctuations. To mitigate the
 problem, we introduce other periodic datastreams to expose the behavior of

-to-end data path and to reveal the current environment on the Grid. The working
pture the ambience in which the GridFTP transfers are performed so we can use it
 behavior. From our preliminary assessment we found that networks and disks

and 30% respectively of the actual transfer time.

s Network Weather Service (NWS) and iostat to periodically monitor and log
ior respectively in the form of <timestamp, load-value>. From our studies we also

stat probes were correlated to the eventual GridFTP throughput achieved (up to 0.7
sed on this, we developed a set of multivariate predictors using regression models
ination of several data sources – GridFTP log data and network load data, GridFTP
 data, or a combination of all three. The datastreams require some preprocessing
echniques can be applied to them. This includes time matching the data streams
s.

(GridFTP, disk input/output [I/O], and NWS network data) are collected exclusive
ly have the same timestamps. To use regressive models on the data streams,

ave a one-to-one mapping for the values in each stream. Hence, we are required to
e three sets such that for each GridFTP value, we find disk I/O and network
made around the same time.

8

For each GridFTP data point (TG, G), we match a corresponding disk load (TD, D) and NWS data point
(TN, N) such that TN and TD are the closest to TG. By doing this, the triplet (Ni,Dj,Gk) represents an
observed end-to-end GridFTP throughput (Gk) resulting from a data transfer that occurred with the disk
load (Dj) and network probe value (Ni) backdrop.

At the end of the matching process, the three datastreams have been combined into the sequence that
looks like
(Ni,Dj,Gk)(Ni+1, Dj+1, _)…(Ni+m, Dj+m, Gk+1),
where Gk, and Gk+1 are two successive GridFTP file transfers, Ni and Ni+m are NWS measurements, and Dj
and Dj+m are disk load values that occurred in the same timeframe as the two GridFTP transfers. The
sequence also consists of a number of disk load and NWS measurements between the two transfers for
which there are no equivalent GridFTP values, such as (Ni+1, Dj+1, _). Note that these interspersed
network and disk load values are time-aligned. Also note that we have described the matching process
with reference to all three data sources. In the case where a prediction uses a different number of
datastreams, similar matching techniques can be employed.

3.2.2 Filling-in Techniques

After matching the datastreams, we need to address the tuples that do not have values for the GridFTP
data – that is, the NWS data or disk I/O data collected in between the sporadic GridFTP transfers.
Regression models expect a one-to-one mapping between the data values, so we can either discard the
network and I/O data for which there are no equivalent GridFTP data (our NoFill technique) or fill in
synthetic transfer values using either an average over the past day’s data (Avg), or the last value (LV).
Once filled in, the sequence is as follows:

(Ni,Dj,Gk)(Ni+1, Dj+1, GFill)…(Ni+m, Dj+m, Gk+1)
where GFill is the synthetic GridFTP value. Data, once matched and filled in, is fed to regression models
(Figure 5).

 Fig. 5: Sequence of events for deriving predictions from
GridFTP (G), disk load (D), and NWS (N) datastreams.

3.2.3 Regression Models

Simple linear regression attempts to build linear models between dependent and independent variables.
The following equation builds linear models between several independent variables N1, N2, Nk and
dependent variable G as follows:

G'=a+b1N1+b2N2+...+bkNk,
where G' is the prediction of the observed value of G for the corresponding values of N1, N2, Nk. The
coefficients a, b1, b2, and bk are calculated by using the method of least squares [Edwards84]. For our
case, we built linear models between NWS (N), disk (D), and GridFTP (G) data as explained above, with
N and D as independent variables. To improve prediction accuracy, we also developed a set of nonlinear
models adding polynomial terms to the linear equation. For instance, a quadratic model is as follows:

G'=a+b1N+b2N2.

 9

Cubic and quartic models have additional
terms b3N3 and b4N4, respectively.
Similar to the linear model, the
coefficients in quadratic, cubic, and
quartic models b2, b3, and b4 are computed
by using the method of least squares.
Adding polynomial terms to the regression
model can reach a saturation point (no
significant improvement in prediction
accuracy observed), suggesting that a
particular model sufficiently captures the
relationship between the two variables
[OM88, Pankratz91]. Figure 6 shows a
bar graph that compares error, complexity
of algorithm, and components included for
the site pair, Lawrence Berkeley National
Laboratory (LBNL) and Argonne National
Laboratory (ANL).

 Fig. 6: Visualization comparing error, complexity of
algorithm, and components included for the site pair LBL
and ANL.

Li
ne

ar

Q
ua

dr
at

ic

C
ub

ic

Q
ua

rti
c

Netw ork+Disk
Netw ork

Disk
0
5

10
15
20
25

Pe
rf

or
m

an
ce

(%

 E
rr

or
)

Re gre s s ion M ode l
Com ple xity

Com pone nt
Com ple xity

Network+Disk Network Disk

I

3.3 PREDICTOR PERFORMANCE

We evaluated the performance of our regression techniques on datasets collected over three distinct two-
week durations: August 2001, December 2001, and January 2002. In the following subsections, we
describe the experimental setup, prediction error calculations, and the results obtained from these datasets.

3.3.1 Experimental Setup

The experiments we ran consisted of controlled GridFTP transfers, NWS (64KB probes every five
minutes) network sensor measurements, and disk throughput monitoring (every five minutes) between
four sites in our testbed (Figure 7): ANL, the University of Southern California Information Sciences
Institute (ISI), LBNL, University of Florida at Gainesville (UFL), and Boston University (BU). All our
sites comprised of 100 Mb/sec Ethernets with high-end storage.

GridFTP experiments included transfers comprising several file sizes ranging from 10 MB to 1 GB,
performed at random time intervals within 12-hour
periods. We calculated buffer sizes by using the
formula

 10

 RTT * "bottleneck bandwidth in the link"
with roundtrip times (RTT) values obtained from
ping and with bottleneck bandwidth obtained by
using iperf [TF01]. Figure 7 shows the roundtrip
times and bottleneck bandwidth for our site pairs.
Our GridFTP experiments were performed with
tuned TCP buffer settings (1 MB based on the
bandwidth delay product) and eight parallel
streams to achieve enhanced throughput. Logs of
these transfers were maintained at the respective
sites and can be found at [Traces02]. For each
data set and predictor, we used a 15-value training
set; that is, we assumed that at the start of a predictive technique there were at least 15 GridFTP values in
the log file (approximately two days worth of data).

 Fig. 7: Network settings for our testbed sites.
All sites are connected through OC-12 or OC-48
network links. For each site pair round trip times and
network bottleneck bandwidths for the link between
them is shown.

ANL

74 ms
86 Mb/sec

LBL

71 ms
 60.4 Mb/sec

57 ms
 66.6 Mb/sec

ISI UFL

29 ms
87.3 Mb/sec

51 ms
96.6 Mb/sec BU

40 ms
60 Mb/sec

3.3.2 Metrics

We calculate the prediction accuracy using the normalized percentage error calculation:

∑ | MeasuredBW – PredictedBW |
% Error = * 100,

(size * MeanBW)

where size is the total number of predictions and the Mean is the average measured GridFTP throughput.
In this subsection we show results based on the August 2001 dataset Tables 4. Complete results can be
found in [VS03].

In addition to evaluating the error of our predictions, we evaluate information about the variance in the
error. Depending on the use case, a user may be more interested in selecting a site that has reasonable
performance bandwidth estimates with a relatively low prediction error than in selecting a resource with
higher performance estimates and a possibly much higher error in prediction. In such cases, it can be
useful if the forecasting error can be stated with some confidence and with a maximum/minimum
variation range. These limits can also, in theory, be used as catalysts for corrective measures in case of
performance degradation.

In our case, we can also use these limits to verify the inherent cost of accuracy of the predictors. By
comparing the confidence intervals of these prediction error rates, we can determine whether the accuracy
achieved is at the cost of greater variability, in which case there is little gain in increasing the component
complexity of our prediction approach. Thus, for any predictor (for any site pair and a given dataset), the
information denoted by the following triplet can be used as a metric to gauge its accuracy:

Accuracy-Metric = [PredictedThroughput, AvgPast % Error-Rate, ConfidenceLimit],
where PredictedThroughput is the predicted GridFTP value (higher the better), with a certain percentage
prediction error (the lower the better) and a percentage confidence interval for the error (the smaller the
better).

3.3.3 Univariate Predictor Performance

The major result from these predictions is that even simple techniques have a worst-case prediction of
about 25%, quite respectable for pragmatic prediction systems. Figure 8 shows the result of sorting the
data by file size, since GridFTP throughput varied with transfer file sizes. We grouped several file sizes
into categories: 0–50 MB as 10M, 50–250 MB as 100M, 250–750 MB as 500M, and more than 750 MB
as 1G, based on the achievable bandwidth. We observe almost up to 10% increase in accuracy with
context sensitive filtering.

In general, for our univariate predictors, we did not see a noticeable advantage of limiting either average
or median techniques using a sliding window or time frames. The ARIMA models did not see improved
performance for our data, although they are significantly more expensive compared to simple means and
medians. This is likely due to the irregular nature of our data. Average and median based predictors (and
their temporal variants) for a GridFTP dataset size of 50 values was computed under a millisecond, while
autoregression on the same set consumed a few milliseconds.

 11

3.3.4 Multivariate Predictor Performance

Table 4 shows the performance gains of using a regression prediction with GridFTP and NWS network
data (G+N) over using the GridFTP log data univariate predictor in isolation (first two shaded columns in
the table). We use the moving average (AVG25) as a representative of univariate predictor performance.
For our datasets, we observed a 4% to 6% improvement in prediction accuracy when the regression
techniques with LV or AVG filling were used. Regression with NoFill (throwing away the unmatched
GridFTP data) shows no significant improvement when compared with univariate predictors.

Table 4 also shows that including disk I/O component load variations in the regression model provides us
with gains of 2% to 4% (G+D Avg) when compared with AVG25 (first and third shaded columns in the
table). Different filling techniques (G+D Avg and G+D LV) perform similarly, and again NoFill shows
no improvement, or even a decrease in accuracy, when compared with univariate predictors.

Table 1: Normalized percent prediction error rates for the testbed site pairs for the August 2001 dataset.
The figure denotes four categories: (1) prediction based on GridFTP data in isolation (AVG25), (2) regression between
GridFTP and NWS network data with the three filling in techniques (G+N), (3) regression between GridFTP and disk I/O data
with the three filling in techniques (G+D), and (4) regression based on all three data sources (G+N+D). Shaded portions
indicate a “best of class” comparison between the approaches. All percentage values are averages based on different file
categories.

Only
GidFTP

Logs
[VSF02]

Linear Regression between GridFTP
Logs and Network Load [VS02]

Linear Regression between GridFTP
Logs and Disk Load

Linear Regression using all Three Data
Sources

AVG25 G+N

NoFill
G+N
LV

G+N
Avg

G+D
NoFill

G+D
LV

G+D
Avg

G+N+D
NoFill

G+N+D
LV

G+N+D
Avg

LBL-ANL 24.4% 22.4% 20.6% 20% 25.2% 21.7% 21.4% 22.3% 17.7% 17.5%
LBL-UFL 15% 18.8% 11.1% 11% 20.1% 11.6% 11.9% 11.1% 8.7% 8%
ISI-ANL 15% 12% 9.5% 9% 13.1% 13% 11.4% 11% 8.9% 8.3%
ISI-UFL 21% 21.9% 16% 14.5% 22.7% 19.7% 18.8% 14.7% 13% 12%

ANL-UFL 20% 21% 20% 16% 21.8% 19.9% 19.3% 15.3% 16.7% 15.5%

Comparing the second and third block of data in Table 4 shows that all variations of predictors using
NWS data (G+N) perform better than predictors using disk I/O data (G+D) in general. This observation
agrees with our initial measurements that only 15% to 30% of the total transfer time is spent in I/O, while
the majority of the transfer time (in our experiments) is spent performing network transport.

When we include both disk I/O and NWS network data in the regression model (G+N+D) along with
GridFTP transfer logs, we see prediction error drop of 8% to 17% and up to 3% improvement when
compared with G+N (second and fourth shaded columns in Table 4) and a 6% improvement over G+D
(third and fourth shaded columns in Table 4). Overall, we see up to 9% improvement when we compare
G+N+D with the original univariate prediction based on AVG25.

Figure 9a compares the average prediction error for Moving Avg, G+D Avg, G+N Avg, and G+N+D Avg
for all of our site pairs (represents the shaded columns in Table 4) and also presents 95% confidence
limits for our prediction error rates. The prediction accuracy trend is as follows:

Moving Avg < (G+D Avg) < (G+N Avg) < (G+N+D Avg)
Figure 9b shows that the confidence interval (the variance in the error) does in fact reduce with more
accurate predictors, but the reduction is not significant for our datasets. We observed no noticeable
improvements in using polynomial models for our experiments.

 12

ISI-ANL

0
5

10
15
20
25
30

A A5 M5 A5hr LV AR5d

%
 E

rr
or

Non Sorted 10MB 100MB 500MB 1GB

LBL-ANL

0

10

20

30

40

A A5 M5 A5hr LV AR5d

%
 E

rr
or

Non Sorted 10MB 100MB 500MB 1GB

LBL-UFL

0

10

20

30

A A5 M5 A5hr LV AR5d

%
 E

rr
or

Non Sorted 10MB 100MB 500MB 1GB

ISI-UFL

0

10

20

30

40

A A5 M5 A5hr LV AR5d

%
 E

rr
or

Non Sorted 10MB 100MB 500MB 1GB

ANL-UFL

0

10

20

30

40

A A5 M5 A5hr LV AR5d

%
 E

rr
or

Non Sorted 10MB 100MB 500MB 1GB

 Fig. 8: Impact of classification and the reduction in percent error rates for the testbed (context-sensitive
filtering).

13

0%

5%

10%

15%

20%

25%

30%

35%
%

 E
rro

r
Moving Avg G+D Avg G+N Avg G+N+D Avg

(a) Comparison of normalized percent errors for the predictors with 95% confidence limits

0%

1%

2%

3%

4%

5%

6%

7%

LBL-ANL LBL-UFL ISI-ANL ISI-UFL ANL-UFL

+
%

 C
on

fid
en

ce
 In

te
rv

al

Moving Avg G+D Avg G+N Avg G+N+D Avg

(b) Comparison of intervals for the predictors

 Fig. 9: (a) Normalized percent prediction error and 95% confidence limits for August 2001 dataset based
on (1) prediction based on GridFTP in isolation (MovingAvg), (2) regression between GridFTP and disk I/O with
Avg filling strategy (G+D Avg); (3) regression between GridFTP and NWS network data with Avg filling strategy
(G+N Avg), and (4) regressing all three datasets (G+N+D Avg). Confidence Limits denote the upper and lower
bounds of prediction error. For instance, the LBL-ANL pair had a prediction range of [17.3% + 5.2%]. (b)
Comparison of the percentage of variability among the predictors.

 14

4.0 CO-ALLOCATING DATA TRANSFERS

Replica locations once identified and ranked using our selection (Section 2) and prediction (Section 3)
heuristics can then be used to deliver the dataset collectively to the client. Due to the varied performance
characteristics in the replica locations and the links connecting them to the client, downloading large
datasets (10 MB – 1 GB) can result in varied end-user experience.

A typical Internet download between a client and a server is mired by several bottlenecks (Figure 10a)
[Akamai00]. First, the bandwidth achievable by the client is limited by the bandwidth of the server’s
connection to the Internet – commonly referred as the First-Mile problem. The first-mile bottleneck is
further compounded by simultaneous requests to a server from multiple clients. Second, the achievable
bandwidth is further limited by the congestion in the link connecting the server and the client. Third, the
bottleneck could be in the client’s own connectivity to the Internet – the Last-Mile. Thus, the download
speed is only as fast as the slowest link in the aforementioned setup. Sophisticated solutions are required
to significantly address this issue.

One way to improve download speeds is to employ complex server selection techniques to determine the
best replica location, offering high transfer rates, using a combination of server and network load details
[Akamai02, VTF01]. In practice, however, due to the shared nature of network links the load on them
can vary unpredictably. Thus, in the face of transient network conditions, downloading datasets even
from the best of servers can often result in pedestrian transfer rates.

A promising alternative is to download data from multiple locations, establishing multiple connections in
parallel (Figure 10a). With this approach, instead of downloading the entire dataset from a single sever,
unique partial copies of the dataset are fetched from multiple servers in parallel that are later reassembled
at the client end.

This co-allocation of data transfers has several relevant properties of significant interest to us. First, it
obviates the need for complex server selection. Second, due to its decentralized nature the eventual
performance achieved may not be adversely affected by degradation in any of the co-allocated flows
while also being resilient to server failures. Third, the client download experience can be positively
amplified with the aggregate bandwidth commensurate to the summation of the individual transfer rates
of each flow. Fourth, it significantly alleviates the first-mile (slow server, serving a fast client) and the
Internet congestion problem by distributing load to multiple servers and different routes (Figure 10b).
Even in the case of a slow client served by a fast server, co-allocation can offer significant benefits due to
fluctuations in network conditions.

 15

Co-allocating data
transfers across
multiple replica
locations can have
widespread
applicability beyond
scientific data-sharing
communities. For
instance, Internet
content providers rely
heavily on content
distribution networks
[JCD+00] for managing
consistent replicas of
popular content on surrogate, edge-servers, closer to end-users [Akamai00]. Content distribution

Last
Mile

First
Mile

S CInternet

Last
Mile

S CInternet

S

S

(a) Typical Internet Download (b) Co-Allocated Download

 Fig. 10: (a) Various bottlenecks in the Internet document download – the
first mile problem, the congestion in the links connecting server and client and
the last mile problem. (b) Co-Allocated download model minimizes the first mile
and the link congestion bottlenecks.

networks such as Akamai [Akamai02] and Speedera [Speedera02] improve download speeds by
employing techniques such as request redirection [WPP02, KRR00] (to select best servers) to fetch data
from less congested links. Thus, parallel-downloading techniques can find significant use in such
scenarios.

Peer-to-peer file sharing, where peers come
together in a cooperative, decentralized
manner to locate and share content, is yet
another candidate for parallel downloading
[CP02]. The enormous popularity of file
sharing means that networked content
sharing systems are likely to siphon much of
the available Internet bandwidth. In fact,
recent studies indicate that file sharing
activity contributes up to 60 percent on any
service provider network [Sandvine02,
SGG02]. Co-allocations in such cases can
help improve download speeds, reduce load
on certain parts of the network, alleviate
loaded peers, etc.

 16

Developing techniques for parallel
downloads of Internet documents is of
significant interest in the networking
community and can be broadly classified into stateless and stateful approaches.

 Fig. 11: Resource management architecture and the
role of co-allocation. Co-allocator combines broker decisions
and information services to map data transfer requests onto
storage systems using GridFTP and Globus Access to
Secondary Storage (GASS).

Stateless approaches to the parallel access problem rely on clients subscribing to several mirror sites to
restitute the data. This approach further makes extensive use of erasure codes (error correction codes)
[Rizzo97] to develop an “n” packet encoding of a “k” packet file, with the property that the file can be
reassembled from any “k” packet subset of the encoding [BCM+02, BLM02, BLM99]. Pros of this
approach are: obviates the need for maintaining file ranges and renegotiations on a per flow basis, fault
tolerance and scalability; while the cons are: constructing an “n” packet encoding is nontrivial, cost of
encoding and decoding can be significant for large dataset size, and clients and servers are required to
agree, apriori, on common encoding schemes. Other related effort includes Rabin’s [Rabin89] and
Maxemchuk’s [Maxemchuk75] work on dispersing pieces of the file on different nodes in the network for
fault tolerance and dispersity routing respectively.

On the contrary, stateful techniques divide the file into disjoint sets, downloading different ranges from
different servers. In [RKB00, Gkantsidis02], the authors develop previous history-based and dynamic
solutions, demonstrating their techniques for web-based documents of the order of several hundred
kilobytes. Accurate predictions of range distributions are required for several stateful techniques, which
are often quite difficult to obtain in the face of changing network conditions. In [RKB00, Gkantsidis02],
the authors rely on simple averages of previous transfer rates as an estimate for range calculations per
flow. Work from Beck et. al., demonstrated the usefulness of dynamic distributed downloads in the
context of streaming applications by fetching multiple copies of file blocks in order to address jitter
[PAD+02].

In our work we develop history-based and dynamic solutions similar to that of [RKB00, Gkantsidis02,
PAD+02], but extend it by addressing network fluctuations. Further, we employ prediction techniques
(previous section) to predict data transfer rates between sources and sinks, and use those for range
calculations per flow that can significantly improve our performance and reduce renegotiations. The use
of encoding schemes, and thus the stateless alternative, may not be suited for our purposes due to our
concentration on large datasets, for which encoding and decoding times can be quite significant.

 17

4.1 CO-ALLOCATION ARCHITECTURE

The Globus ToolkitTM [FK98] provides a basic template for resource management [CFK99], which can be
extended to support the co-allocation of Grid data transfers. As illustrated in Figure 11, the architecture
comprises of three main components: an information service, local storage systems, and broker/co-
allocator.

An application requiring access to data presents a description of the data to the broker. The broker, in
conjunction with information services [CFF+01], identifies possible alternatives from where the dataset in
question can be fetched. This set is then presented to the co-allocation agent, which uses a combination
of information services and some heuristics to map the data transfer request across multiple replica
locations to download the data in parallel using GridFTP.

4.2 PARTIAL COPY IN GRIDFTP

GridFTP extends standard FTP implementations with several features needed in Grid environments, such
as security on control and data channels, multiple data channels for parallel streams, partial file transfers,
and third party transfers. Of particular interest to us is the ability to fetch partial copies of a file. Partial
copy, and several other features, is part of GridFTP’s extended retrieve functionality, which is used to
request that a retrieve be done with some additional processing on the server. This command is an
extensible way of providing server-side data reduction. With partial copy, a section of the file, defined by
the starting offset and extent, will be retrieved from the data server.

4.3 CO-ALLOCATION MECHANISMS

We now proceed to describe the co-allocation mechanisms that we have developed. Co-allocation is the
idea of splitting the data transfer among available servers to improve client perceived throughput.

4.3.1 Brute-Force Co-Allocation

Brute-force co-allocation is a basic scheme that works by dividing the file size equally among available
flows. Thus, if the data to be fetched is of size, “S” and there are “n” locations to fetch it from, then this
technique assigns to each flow a data block of size, “S/n”. With this technique, although all the available
servers are utilized, bandwidth differences among the various client-server links are not exploited.

4.3.2 History-based Co-Allocation

To address and exploit transfer rate differences among the various co-allocated flows, we develop a
history-based allocation scheme. With this technique, the block size per flow is commensurate to its
predicted transfer rate, based on a previous history of GridFTP transfers. Thus, the file-range distribution
is based on the predicted merit of the flow. If these predictions are not accurate enough, renegotiations of
flow sizes might be necessary as slower links can be assigned larger portions of data, which could weigh
heavily on the eventual bandwidth achieved.

In order to obtain accurate predictions of transfer rates for the various links, we derived predictions based
upon our previous work on forecasting GridFTP transfers (Section 3). Our previous work delved into
deriving accurate predictions in the face of network and system load fluctuations. We developed a series
of univariate and multivariate predictors that forecast GridFTP transfers in isolation and in conjunction
with network and disk load data respectively. We used extensive regression analysis to predict within
15% error. Logs of previous GridFTP transfers are fed to univariate or multivariate predictors to forecast.
For purposes concerning co-allocations, we use a temporal variation of univariate, average predictor
(moving average over time).

 18

With the history-based approach, the client divides a file into “n” disjoint blocks, corresponding to “n”
servers. Each server, “i”, 1 ≤ i ≤ n, has a predicted transfer rate of “Bi” to the client. In theory then, the
aggregate bandwidth achievable by the client for the entire download is:

 i=n
A = Σ Bi
 i=1

where “Bi” is the predicted bandwidth per flow and “A” is the aggregate bandwidth. Such a speedup can
only be achieved when all servers keep sending data until the file is fully received – i.e., all servers being
busy at all times during the entire download. In practice, however, the achieved bandwidth is limited due
to network congestion in the various flows (resulting in some servers finishing earlier than others) and the
client’s ability to handle the bandwidth surplus. Thus, the rate-limiting factor could be anyone of the
slowest links in the setup – the servers themselves, the links connecting the client and servers, or the
client itself.

Assuming the client is capable of handling the bandwidth surplus, range distributions are calculated as
follows. For each server “i”, 1 ≤ i ≤ n, and for a replica size, “S”, the block size per flow is:
 Bi

si = ______ * S
 A

where “si” is the block size per flow. Thus, the block size per flow is commensurate to its transfer rate
and its ratio of contribution to the achievable aggregate bandwidth. Faster servers are assigned to deliver
bigger portions of the file, while slower servers are assigned smaller pieces. Ranges of partial transfers
can then be formulated based on this and the whole file reassembled at the client as follows:

 i=n
S = Σ si
 i=1

The time taken for the entire download is:
 i=n si

T = Σ ______

 i=1 Bi
where “T” is the total download time. In this manner, this scheme addresses the transfer rate differences
among the various co-allocated flows.

4.3.3 Dynamic Co-Allocation

Although we have addressed the rate differences in the flows and exploited it to deliver proportionate
pieces of the file per flow, we do not address dynamic network variations that can cause degradation in
transfer rates. In spite of careful bandwidth estimates per flow, network traffic and system load can cause
servers, previously determined as fast or slow, to behave differently. This can significantly affect the
download time. Thus, an end-user is typically interested in dynamic rate adaptation – an allocation
scheme that can dynamically adapt to changing network conditions.

One way to address this is to monitor the progress of history-based co-allocated flows, to perform
corrective measures in case of performance degradation. For instance, if the performance in a particular
flow drops below a threshold, the transfer can be migrated to an alternate location or remaining data can
be equally distributed among other existing flows.

Although in theory, these are feasible alternatives, in practice, however, such techniques are quite
complex to realize for the following reasons. First, we need to add additional dynamic monitoring
capability to our data movement protocol to monitor each flow, which can significantly contribute to the
overhead. Second, we need criteria to determine performance degradation, which can be difficult due to
changing network/system conditions. Third, even if degradation could be determined, corrective

 19

measures such as transfer migration or resizing may require significant renegotiation between clients and
servers, which can be more costly than the existing decrease in performance.

A promising alternative is the use of dynamic co-allocation. We developed two variations of dynamic co-
allocation: (1) Conservative Load Balancing and (2) Aggressive Load Balancing.

Conservative Load Balancing: With this approach, the rate, and thus how much a server delivers, is
decided dynamically instead of being based on previous history. The dataset in question is divided into
“k” disjoint blocks of equal size and each one of the available servers is assigned to deliver, in parallel,
one block initially. Once a server delivers the block, another block is requested and so on, until the entire
file is downloaded.

Faster servers and servers connected to the client through less congested or faster links will deliver
quickly, thus serving larger portions of the file when compared to their slower counterparts. Thus, with
this technique, the load on the co-allocated flows is automatically adjusted so that congested links and
loaded or slower servers are not further burdened.

With this technique, the number of blocks per download can affect the throughput achieved. We could
either have a large number of small blocks or a small number of large blocks. We study the effect of
using different block counts and sizes in Section 4.

The key to achieving maximum aggregate bandwidth, as stated earlier, is to keep all available servers
busy at all times. In the best case, each server is only idle for duration “t”, where “t” is the time elapsed
since the server delivered the last block and until it receives a request for a new block. Neglecting client
side processing and multiprogramming at both ends, this is roughly equivalent to one round-trip time,
which is insignificant compared to the entire download time.

One obvious downside to this approach is the eventuality of waiting on the slowest server to deliver the
final block (same as history-based allocation). An alternative is to stop the slowest flow or dynamically
resize blocks to fetch the remaining data from the other servers, although we do not employ this
technique.

Aggressive Load Balancing: With the previous method, although faster servers deliver quickly, we only
fetch one-block size each time around. Similarly, slower servers would again be assigned to deliver
blocks. To address these issues, we add the following functionality to our load balancing scheme: (1)
progressively increase the amount of data requested from faster servers; and (2) reduce the amount of data
requested from slower servers or stop requesting data altogether.

In order to achieve the stated effect, we develop a few heuristics. For each block delivered by each flow,
we compute the rate achieved and compare it against the running maximum of all flow rates. If the rate at
which a flow delivered the block is greater than the running maximum, we double the block size for that
flow and reset the maximum; if it is less, we maintain the one-block size for the flow; and if the rate is
significantly less than the maximum, we stop using the flow. Thus, using these techniques, we address
dynamic rate changes in the various co-allocated flows.

4.4 RESULTS AND ANALYSIS

We evaluated the performance of our co-allocation schemes on data collected over two distinct two-week
periods during October and December 2002. In the following sections we describe the experimental setup,
traces and our results.

4.4.2 Experiment Setup

Our experiments comprised GridFTP transfers, using our co-allocation clients, between five sites in our
testbed (Figure 7). A prerequisite for downloading data from multiple servers is that the various links
connecting the client and servers be bottleneck disjoint [RKB00, BLM99]. If the client-server links share
the same bottleneck then there can be little improvement due to co-allocation. From Figure 3, it is evident
that the various client-server links for our setup are bottleneck-disjoint (bottleneck bandwidths were
determined using iperf [TF01]).

We performed wide-area data transfer experiments using the GridFTP data movement tool. Our servers
were standard GridFTP available from the Globus 2.0 ToolkitTM, while our clients included the various
co-allocation schemes. Transfers comprised several file sizes ranging from 10 MB to 1 GB. These
transfers were performed with tuned TCP buffer settings (calculated using the bandwidth delay product as
shown in Figure 3) and eight parallel streams (per co-allocated flow) to achieve enhanced throughput. All
our transfers were performed with co-allocation clients at either ANL or UFL. Table 2 summarizes our
trace characteristics. We use a mix of fast and slow servers to study the effect therein.

 20

4.4.3 Performance

In this section, we discuss the performance
of our co-allocation clients based on the data
collected during October and December
2002. We evaluate four co-allocation
schemes: (1) Brute-Force Co-allocation
(Brute), (2) History-based Co-allocation
(History), (3) Conservative Load Balancing
(Conservative) and (4) Aggressive Load
Balancing (Aggressive). For the two load
balancing techniques, we study the effect of
various block counts (Conservative-5,
Conservative-10, Conservative-15,
Aggressive-5, Aggrssive-10 and Aggressive-
15) on the bandwidth achieved. We
compare each co-allocation scheme against
the base case of fetching the entire file from
a single server and study the bandwidth
improvements therein. The bandwidth
measures are averages based on two-week’s
worth of transfers.

Impact of Client-Server Configurations
on Downloads

Trace Characteristics
Server GridFTP with support for

partial copy
Download Client Schemes
No co-allocation
Static
Dynamic

Base client,
Brute and History
Conservative and Aggressive

When October and December 2002
Duration Two weeks in each month
Client Locations ANL, UFL
File Sizes 10MB, 100MB, 500MB, 1GB
Transfers per file size per co-
allocation scheme

50 to 100

Total Transfers (each month) 1000 – 1200
Prediction Strategy for
History-based downloads

Moving average (over time)
of previous transfers

Block Counts for Dynamic
downloads

5, 10 and 15

Number of Parallel Streams
per co-allocated flow

8

Tuned TCP buffers per
stream

Yes

Table 2: Trace characteristics for Co-Allocation
experiments during October and December 2002.

In Figures 12 and 13, we study the effect of slow servers (or links) with similar performance, serving a
fast client. We see that all co-allocation schemes perform better than the base case of downloading the
entire file from a single server. We observe that load balancing schemes (conservative and aggressive
with block counts of 5) perform better than brute-force or history-based co-allocation and load balancing
offers almost double the performance (for our experiments) when compared with the base case. In the
case of slow servers serving fast clients there is usually residual bandwidth available that goes unused
with typical downloads. With a distributed download, this residual bandwidth is utilized to achieve
enhanced throughput.

 21

In Figures 14, 15 and 16, we use a mix of slow and fast servers to study its effect on download. We
observe that co-allocation schemes are either better (improvements of up to 2 MB/sec) than or
comparable to faster servers in isolation. The figures indicate that the gain due to co-allocation is
inversely proportional to the performance gap between the servers. In Figure 14, a faster server saturates
a client quickly, leaving available little residual bandwidth for other servers. Co-allocation in such cases
offers very little improvement. In Figures 15 and 16, as the performance gap between the servers is low,
we observe gains due to co-allocation.

Shared Bottlenecks

As mentioned earlier, in order for a distributed download to payoff, there should exist residual network
bandwidth from the client to the additional servers. If not, then accessing additional sites will interfere
with existing connections and contribute to the congestion. To study the effect of shared bottlenecks we
choose two servers each from the LBL and ISI domains respectively. As stated earlier, in our
experiments, each flow uses parallel streams and tuned TCP buffers to fully utilize the available
bandwidth. Thus, adding another server (with the same bottleneck) interferes with existing connections.
In Figure 17, we can see that the bandwidth achieved due to a distributed download is much less than that
achieved by individual servers in isolation.

Sensitivity of Schemes towards Parameters

We analyzed the effect of file sizes, number of flows and block counts on the download performance –
i.e., threshold values beyond which co-allocation offered gains or saturated. Figures 12 through 16 shows
that all our co-allocation schemes offer significant performance improvements (when compared with the
base case) as the file size increases. For smaller file sizes we see no improvements in using co-allocation
using our data movement tool. A low value for the performance ratio, R, where R is:

R = Co-allocation Cost / Total Time to Download,
results in gains due to co-allocation. The cost of co-allocation involves connection establishment,
negotiations, reassembly, resizing, etc. For smaller files, this co-allocation cost is high compared to the
total download time.

In increasing the number of co-allocated flows (Figures 15 and 16) we observed that for our testbed and
client-server configurations, download performance reached saturation at about 3 or 4 flows. The natural
question then is “With how many flows should a transfer be launched?” While this is subjective to client-
server configurations, choosing an appropriate number of flows is vital to the performance achieved. One
way to address this would be to start with a subset of servers ranked using our prediction strategies and
applying load balancing techniques to this set. This way we can exploit the merits inherent to both static
and dynamic models.

 Fig. 12: Servers are at ISI and UFL with client at
ANL (Oct’02). First two bars in each file size denote
downloading the entire file from either ISI or UFL, while
others denote co-allocated downloads using the two servers.
Depicts 95% confidence ranges for bandwidth.

 Fig. 13: Servers are at ISI and BU with client at UFL
(Dec’02). Depicts 95% confidence ranges for bandwidth.

0

1

2

3

4

5

6

7

8

9

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)
ISI UFL Brute History Conservative-5 Aggressive-5

0

1

2

3

4

5

6

7

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

ISI BU Brute History Conservative-5 Aggressive-5

0

2

4

6

8

10

12

14

16

18

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

LBL UFL Brute History Conservative-5 Aggressive-5

0

1

2

3

4

5

6

7

8

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

ANL ISI Brute History Conservative-5 Aggressive-5

 Fig. 15: Servers are at ANL and ISI with client at
UFL (Dec’02). Depicts 95% confidence ranges for bandwidth.

 Fig. 14: Servers are at LBL and UFL with client at
ANL (Oct’02). Depicts 95% confidence ranges for

For our various load balancing techniques, we studied the effect of using different block counts (5, 10 and
15). Figure 18 compares the variations of conservative and aggressive load balancing techniques. From
the figure we can infer that for smaller file sizes the load balancing schemes perform better with less
number of blocks, while for larger file sizes more blocks result in better performance. For our
experiments and our block counts we saw performance improvements of up to 1-2 MB/sec. With small
files more blocks will result in more overhead in terms of connection establishment, reassembly, etc.,
when compared to the total download time; while with large files less blocks can mean slower servers
delivering bigger portions of the file.

 22

Waiting on Slow Servers

 23

For the load balancing schemes, we analyzed
the effect of faster servers waiting on slow
servers to deliver the last block. From Figure
19, we can observe that with conservative load
balancing (out of the times when slower
servers finished last), faster servers are idle for
up to 17% of the total download time waiting
for slower servers to finish delivering the last
block. While aggressive balancing is not
altogether devoid of this trend, we observe
almost up to 40% reduction in wait times due
to a progressive increase in the amount of data
fetched from faster servers. The figures also
imply that using less number of blocks with
larger files results in slower servers having to
deliver larger pieces of data, thereby
increasing the idle time of faster servers. This
suggests that further techniques such as
preempting flows or dynamic block sizing, to fetch more from faster servers, are worth investigating.

0

1

2

3

4

5

6

7

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

ANL ISI BU
Brute History Conservative-5
Aggressive-5

 Fig. 16: Servers are at ANL, ISI and BU with client
at UFL (Dec’02). Depicts 95% confidence ranges for
bandwidth.

(b) Two servers at ISI sharing the same bottleneck to the client at
UFL (Dec’02).

0

2

4

6

8

10

12

14

16

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

LBL1 LBL2 Brute
History Conservative-5 Aggressive-5

0

1

2

3

4

5

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

ISI1 ISI2 Brute History Conservative-5 Aggressive-5

(a) Two servers at LBL sharing the same bottleneck to the client
at ANL (Oct’02).

Fig. 17: Servers sharing the same network bottleneck to the client. Depicts 95% confidence ranges for bandwidth.

0
1
2
3
4
5
6
7
8
9

10M 100M 500M 1G
File Sie

B
W

 (M
B

/s
ec

)

Aggressive-5 Aggressive-10 Aggressive-15

 (d) Aggressive Load Balancing with servers at ISI and UFL

0
1
2
3
4
5
6
7
8

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)
Conservative-5 Conservative-10 Conservative-15

(a) Conservative Load Balancing with servers at ISI and UFL

0

2

4

6

8

10

12

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

Aggressive-5 Aggressive-10 Aggressive-15

(e) Aggressive Load Balancing with servers at LBL and ISI

0

2

4

6

8

10

12

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

Conservative-5 Conservative-10 Conservative-15

(b) Conservative Load Balancing with servers at LBL and ISI

0

2

4

6

8

10

12

14

10M 100M 500M 1G
File Size

B
W

 (M
B

/s
ec

)

Aggressive-5 Aggressive-10 Aggressive-15

(f) Aggressive Load Balancing with servers at LBL, ISI and
UFL

0

2

4

6

8

10

12

14

10M 100M 500M 1G
File Sie

B
W

 (M
B

/s
ec

)

Conservative-5 Conservative-10 Conservative-15

(c) Conservative Load Balancing with servers at LBL, ISI and
UFL

 Fig. 18: Comparison between the variants of conservative and aggressive load balancing schemes using
different block counts for a client at ANL (Oct’02). Conservative-5 denotes a block count of 5.

 24

0

2

4

6

8

10

12

14

10M 100M 500M 1G
File Size

W
ai

t t
im

e
as

 a
 p

er
ce

nt
 o

f
to

ta
l d

ow
nl

oa
d

tim
e

Conservative-5 Aggressive-5

0
2
4
6
8

10
12
14
16
18
20

10M 100M 500M 1G
File Size

W
ai

t t
im

e
as

 a
 p

er
ce

nt
 o

f t
ot

al

do
w

nl
oa

d
tim

e

Conservative-5 Aggressive-5

(a) Servers at ANL and ISI with client at UFL (Dec’02).

 Fig. 19: (a) ANL is the faster server having to wait on ISI. (b) LBL is the faster server having to wait
on UFL. Bars denote the wait time of the faster server as a percentage of total download time. Also depicts
95% confidence for the % wait times.

(b) Servers at LBL and UFL with client at ANL (Oct’02).

 25

 26

5.0 CONCLUSION AND DISCUSSION

In this paper, we have analyzed the orchestration of bulk data movement in Grid environments. We
discuss in detail the backdrop of events required to facilitate rapid, efficient and expedited access to
massively replicated bulk data. In this regard, we summarize our previous efforts from three fronts, all in
the context of the Globus ToolkitTM. First, we describe a scalable, decentralized replica selection
architecture that uses a combination of user specified policies and performance heuristics to locate data
from among numerous replicated alternatives. Some of our heuristics include the use of performance
estimates of data transfer times, exposed by replica locations, as a key metric of distinction. Second, we
develop forecasting machinery to predict future performance rates between sources and sinks. We
demonstrate our prediction mechanisms using the GridFTP data movement protocol, progressing from
forecasts based on GridFTP transfer logs in isolation to a combination of logs and ambient monitoring
data capturing networks and disks. Using these techniques we demonstrate prediction efficacy to be well
within 15% error for our testbed sites. Third and finally, we develop co-allocation architecture to use
these “selected” and “ranked” sites in unison to download bulk datasets in parallel. With our history
based and dynamic load balancing techniques we observe up to almost 2x performance improvements
using the GridFTP tool for our sites.

As we alluded before, there is more to bulk data movement than those presented in this paper. In this
following discussion, we will briefly highlight some issues. At a very high level, we could classify data
management in terms of “system challenges” and “transfer challenges”. By system challenges we refer to
all things except the act of data transfer. For instance, this might include ensuring that the dataset in
question is available for access which would require the underlying storage system to provide “pinning”
abilities; or might require ensuring enough space availability on the remote system for data staging which
involves reservation abilities; storage quality of service agreements and guarantees, etc. Other, equally
important, issues concern dynamic replica management (replication keeping in mind temporal access
patterns) and intelligent scheduling of data transfer requests alongside computation.

Thematic to this paper is the transfer challenge. A bulk of our discussion earlier revolved around transfer-
rate estimates and parallel downloading which are key questions guiding several research endeavors. Yet,
more needs to be addressed. Tuning of transfer settings is an often used practice in high throughput
scientific environments. Bulk data transfers of the order of several gigabytes are usually performed with
optimized TCP buffer windows, parallel streams, etc., to achieve enhanced throughput. In fact, all our
GridFTP transfer experiments were performed with a 1 MB TCP buffer size and eight parallel streams as
opposed to system defaults of 64 KB and a single stream. System defaults are naturally not tuned for the
special use case of the high throughput community for reasons concerning fair sharing. Although, with
the proliferation of Grid based systems we are quickly faced with the need to provide solutions that
exploit the bandwidth explosion. A common rule-of-thumb for buffer tuning is to use “RTT * Bottleneck
Bandwidth” as an optimal window size between any client-server pair. Tools such as Enable from LBNL
extend this further by providing auto-tuning of buffers between any site pair, by exploiting previous
history of transfers [TGL+01]. No such service exists for automatically determining the appropriate
number of parallel streams for any given site pair. One way to address this issue is to perhaps use
previous history of transfers (consisting of bandwidth measures due to various parallel stream counts)
between any site pair in conjunction with a network monitoring tool to arrive at educated guesses.

In a related vein, checkpoint file management poses interesting data movement questions. Grid
environments consist of multiple sub-jobs with associated data running on different locations. Machines
may be reclaimed and might become unavailable in the immediate future. In such cases, checkpoint data
or results from computations thus far may have to be moved to the source in an optimal fashion from
many locations. Kangaroo, a hop-based checkpoint management system, from Condor addresses some
issues therein [TBS+01]. Thus, in order to facilitate efficient bulk data movement, we need to address
several of the aforementioned system and transfer challenges.

 27

AUTHOR BIOGRAPHY

Sudharshan S. Vazhkudai is a Research Staff Member at the Computer Science and Mathematics Division
of Oak Ridge National Laboratory (ORNL) where he is part of the Network and Cluster Computing
Group. His current work revolves around constructing a Distributed Data Grid infrastructure intended to
bring massive neutron source data to the TeraGrid. He received his Ph.D. and M.S. in Computer Science
from The University of Mississippi in 2003 and 1998 respectively. Prior to that, he received his B.E. in
Computer Science from Karnatak University, India in 1996. His doctoral research was on facilitating
efficient, rapid access to data in massively distributed Grid environments using user guided selections,
transfer-rate predictions and co-allocations. His doctorate was in conjunction with Argonne National
Laboratory’s Globus Toolkit Project where he was a Research Associate for three years receiving a
Givens fellowship (Summer 2000) and a doctoral dissertation fellowship (academic years 2001 and
2002). From 1998 to 2000 he was the project leader of PODOS (Performance Oriented Distributed OS)
leading the design and development of a distributed Linux effort, building a high-performance
communication architecture, a networked file system and a load sharing environment. His current
research interests are distributed resource management in extensible terascale systems, distributed storage
management, directory services and peer-to-peer systems.

 28

REFERENCES

[Akamai00] Internet Bottlenecks: The Case of Edge Delivery Services, Akamai Whitepaper, 2000.
[Akamai02] Akamai, http://www.akamai.com, 2002.
[ACF+02] Allcock, W., A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, The Data
Grid: Towards an Architecture for the Distributed Management and Analysis of Large Scientific
Datasets, Network and Computer Applications, 2002.
[Adve93] Adve, V.S., Analyzing the Behavior and Performance of Parallel Programs, in Department of
Computer Science, University of Wisconsin, 1993.
[AFN+01] Allcock, W., I. Foster, V. Nefedova, A. Chevrenak, E. Deelman, C. Kesselman, A. Sim,
A. Shoshani, B. Drach, and D. Williams, High-Performance Remote Access to Climate Simulation Data:
A Challenge Problem for Data Grid Technologie, in 2001 Supercomputing, 2001.
[BCM+02] Byers, J.W., et al., Informed Content Delivery Across Overlay Networks, Proceedings of
ACM SIGCOMM'02, 2002.
[BLM99] Byers, J.W., M. Luby, and M. Mitzenmacher, Accessing Multiple Mirror Sites in Parallel:
Using Tornado Codes to Speed Up Downloads, Proceedings of IEEE INFOCOM, 1999.
[BLM02] Byers, J.W., M. Luby, and M. Mitzenmacher, A Digital Fountain Approach to Asynchronous
Reliable Multicast, IEEE J-SAC, Special Issue on Network Support for Multicast Communication, 20(8):
p. 1528-1540, 2002.
[BMK96] Basu, S., A. Mukherjee, and S. Kilvansky, Time Series Models for Internet Traffic, Georgia
Institute of Technology, 1996.
[BMR+98] Baru, C., R. Moore, A. Rajasekar, and M. Wan, The SDSC Storage Resource Broker,
CASCON’98, 1998.
[CFF+01] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, Grid Information Services for
Distributed Resource Sharing, Proceedings of the Tenth IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10), IEEE Press, August 2001.
[Cole89] Cole, M., Algorithmic Skeletons: Structured Management of Parallel Computation, Pitman/MIT
Press, 1989.
[CQ93] Clement, M.J. and M.J. Quinn, Analytical Performance Prediction on Multicomputers,
Supercomputing'93, 1993.
[Crovella99] Crovella, M.E., Performance Prediction and Tuning of Parallel Programs, in Department of
Computer Science, University of Rochester, 1999.
[CSA98] Cardwell, N., S. Savage, and T. Anderson, Modeling the Performance of Short TCP
Connections, Computer Science Department, Washington University, 1998.
[CW95] Coyne, R.A. and R.W. Watson, The Parallel I/O Architecture of the High-Performance Storage
System (HPSS), IEEE MSS Symposium, IEEE Computer Society Press, 1995.
[DataGrid02] The Data Grid Project, http://www.eu-datagrid.org, 2002.
[DO00] Dinda, P. and D. O'Hallaron, Host Load Prediction Using Linear Models, Cluster Computing,
3(4), 2000.
[Downey97] Downey, A., Queue Times on Space-Sharing Parallel Computers, 11th International
Parallel Processing Symposium, 1997.
[Edwards84] Edwards, A.L., An Introduction to Linear Regression and Correlation, W.H. Freeman and
Company, 1984.
[FK98] Foster, I. and C. Kesselman, The Globus Project: A Status Report, IPPS/SPDP '98 Heterogeneous
Computing Workshop, 1998.
[FSW+99] Faerman, M., A. Su, R. Wolski, and F. Berman, Adaptive Performance Prediction for
Distributed Data-Intensive Applications, in ACM/IEEE SC99 Conference on High Performance
Networking and Computing, Portland, Oregon, 1999.
[Globus02] The Globus Project, http://www.globus.org, 2002.
[Gkantsidis02] Gkantsidis, C. Parallel Download,
http://www.cc.gatech.edu/~gantsich/parallel_download.htm, 2002.

http://www.akamai.com/
http://www.eu-datagrid.org/
http://www.globus.org/
http://www.cc.gatech.edu/~gantsich/parallel_download.htm

 29

[GM01] Guo, L. and I. Matta, The War between Mice and Elephant, Computer Science Department,
Boston University, 2001.
[GP94] Groschwitz, N. and G. Polyzos, A Time Series Model of Long-Term Traffic on the NSFnet
Backbone, IEEE Conference on Communications (ICC'94), 1994.
[GriPhyN02] The GriPhyN Project, http://www.griphyn.org, 2002.
[GS00] Gray, J. and P. Shenoy, Rules of Thumb in Data Engineering, International Conference on Data
Engineering ICDE2000, San Diego, California: IEEE Press, 2000.
[GT99] Geisler, J. and V. Taylor, Performance Coupling: Case Studies for Measuring the Interactions of
Kernels in Modern Applications, SPEC Workshop on Performance Evaluation with Realistic
Applications, 1999.
[HD96] Harchol-balter, M. and A. Downey, Exploiting Process Lifetime Distributions for Dynamic Load
Balancing, 1996 Sigmetrics Conference on Measurement and Modeling of Computer Systems, 1996.
[HJS+00] Hoschek, W., J. Jaen-Martinez, A. Samar, and H. Stockinger, Data Management in an
International Grid Project, 2000 Internationsl Workshop on Grid Computing (GRID 2000),
Bangalore, India, 2000.
[Holtman00] Holtman, K., Object Level Replication for Physics, 4th Annual Globus Retreat,
Pittsburgh, Pennsylvania, 2000.
[HP91] Haddad, R. and T. Parsons, Digital Signal Processing: Theory, Applications and Hardware,
Computer Science Press, 1991.
[HS97] Howes, T.A. and M.C. Smith, LDAP Programming Directory Enabled Application with
Lightweight Directory Access Protocol, Technology Series, MacMillan, 1997.
[HSS00] Hafeez, M., A. Samar, and H. Stockinger, Prototype for Distributed Data Production in CMS,
7th International Workshop on Advanced Computing and Analysis Techniques in Physics Research
(ACAT2000), 2000.
[JCD+00] Johnson, K., et al., The Measured Performance of Content Distribution Networks, Proceedings
of the 5th International Web Caching and Content Delivery Workshop, Lisbon, Portugal, 2000.
[Jones02] Jones, R., The Public Netperf Homepage, http://www.netperf.org/netperf/NetperfPage.html.
2002.
[KRR00] Kangasharju, J., K. Ross, and J.W. Roberts, Performance Evaluation of Redirection Schemes in
Content Distribution Networks, Proceedings of 4th Web Caching Workshop, San Diego, California, 1999.
[LLM88] M. Litzkow, M. Livny, and M. Mutka, Condor – A Hunter of Idle Workstations, Proc. 8th Intl
Conf. on Distributed Computing Systems, pages 104–111, 1988.
[LSZ+02] Lamehamedi, H., B. Szymanski, S. Zujun, and E. Deelman, Data Replication Strategies in
Grid Environments, in 5th International Conference on Algorithms and Architecture for Parallel
Processing, ICA3PP'2002, IEEE Computer Science Press, Los Alamitos, CA, 2002, pp. 378-383,
Bejing, China, October 2002
[LSZ+03] Lamehamedi, H., B. Szymanski, S. Zujun, and E. Deelman, Simulation of Dynamic
Replication Strategies in Data Grids, 12th Heterogeneous Computing Workshop (HCW2003),
Nice, France, April 2003.
[LIGO02] The LIGO Experiment, http://www.ligo.caltech.edu/, 2002.
[Mach97] The Mach Project Home Page,
http://www-2.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html, 1997.
[Maxemchuk75] Maxemchuk, N.F., Dispersity Routing, Proceedings of the International Conference on
Communications, 1975.
[Merkey94] Merkey, P., Beowulf Project at CESDIS, http://beowulf.gsfc.nasa.gov/, 1994.
[ML90] Mak, V.W. and S.F. Lundstrom, Predicting the Performance of Parallel Computations, IEEE
Transactions on Parallel and Distributed Systems, pp. 106-113, 1990.
[MLB95] Malpani, R., J. Lorch, and D. Berge, Making World Wide Web Caching Servers Cooperate,
Proceedings of the Fourth International WWW Conference, 1995.
[MMR+01] Malon, D., E. May, S. Resconi, J. Shank, A. Vaniachine, T. Wenaus, and S. Youssef, Grid-
enabled Data Access in the ATLAS Athena Framework,Computing and High Energy Physics 2001
(CHEP'01) Conference, 2001.
[NetLogger02] NetLogger: A Methodology for Monitoring and Analysis of Distributed Systems, 2002.

http://www.griphyn.org/
http://www.netperf.org/netperf/NetperfPage.html
http://www.ligo.caltech.edu/

 30

[NM02] Newman, H. and R. Mount, The Particle Physics Data Grid, www.cacr.caltech.edu/ppdg.
[OM88] Ostle, B. and L.C. Malone, Statistics in Research, Iowa State University Press, 1998.
[PAD+02] Planck, J.S., et al., Algorithms for High Performance, Wide-Area, Distributed File Downloads,
University of Tennessee, Department of Computer Science, 2002.
[Pankratz91] Pankratz, A., Forecasting with Dynamic Regression Models, John Wiley & Sons Inc., 1991.
[Rabin89] Rabin, M.O., Efficient Dispersal of Information for Security, Journal of the ACM, 38,
pp. 335-348, 1989.
[RF01] Rangahathan, K., and I. Foster, Design and Evaluation of Replication Strategies for a High
Performance Data Grid, Computing and High Energy and Nuclear Physics 2001 (CHEP’01) Conference,
2001.
[Rizzo97] Rizzo, L., Effective Erasure Codes for Reliable Computing, Computer Communications
Review, 1997.
[RKB00] Rodriguez, P., A. Kirpal, and W.E. Biersack, Parallel-access for Mirror Sites in the Internet,
Proceedings of IEEE INFOCOM, 2000.
[RLS98] Raman, R., M. Livny, and M. Solomon, Matchmaking: Distributed Resource Management for
High Throughput Computing, Proc. 7th IEEE Symp. on High Performance Distributed Computing, IEEE
Computer Society Press, 1998.
[Sandvine02] Peer-to-Peer File Sharing: The Effects of File Sharing on a Service Provider's Network,
Sandvine Whitepaper, 2002.
[SB98] Schopf, J.M. and F. Berman, Performance Predictions in Production Environments,
IPPS/SPDP'98, 1998.
[SC00] Shen, X. and A. Choudhary, A Multi-Storage Resource Architecture and I/O, Performance
Prediction for Scientific Computing, 9th IEEE Symposium on High Performance Distributed Computing,
IEEE Press, 2000.
[Schopf97] Schopf, J.M., Structural Prediction Models for High Performance Distributed Applications,
Cluster Computing (CCC'97), 1997.
[SDSS03] Sloan Digital Sky Survey, http://www.sdss.org/, 2003.
[SFT98] Smith, W., I. Foster, and V. Taylor, Predicting Application Run Times Using Historical
Information, IPPS/SPDP '98 Workshop on Job Scheduling Strategies for Parallel Processing, 1998.
[SGG02] Saroiu, S., P.K. Gummadi, and S. Gribble, A Measurement Study of Peer-to-Peer File Sharing
Systems, Proceedings of Multimedia Computing and Networking (MMCN'02), 2002.
[Speedera02] Speedera, http://www.speedera.com, 2002.
[SW02] Swany, M. and R. Wolski, Multivariate Resource Performance Forecasting in the Network
Weather Service, Submitted for Publication, 2002.
[SYSSTAT02] SYSSTAT Utilities Homepage, http://perso.wanadoo.fr/sebastien.godard/, 2002.
[Tanenbaum95] Tanenbaum, A., Distributed Operating Systems, Prentice Hall, Englewood Cliffs, NJ,
1995.
[TB86] Thomasian, A. and P.F. Bay, Queuing Network Models for Parallel Processing of Task Systems.
IEEE Transactions on Computers, 35(12), 1986.
[TBS+01] Thain. D, J. Basney, S. Son, and M. Livny, The Kangaroo Approach to Data Movement on the
Grid ,Tenth IEEE Symposium on High Performance Distributed Computing (HPDC10),
San Francisco, California, August 2001.
[TF01] Tirumala, A. and J. Ferguson, Iperf 1.2 - The TCP/UDP Bandwidth Measurement Tool,
http://dast.nlanr.net/Projects/Iperf, 2001.
[TGL+01] Tierney, B., D. Gunter, J. Lee, and M. Stoufer, Enabling Network-Aware Applications, 10th
IEEE Symposium on High Performance Distributed Computing (HPDC-10), August 2001.
[Vazhkudai03] Vazhkudai, S., Enabling the Co-Allocation of Grid Data Transfer, 4th International
Workshop on Grid Computing (GRID 2003), Phoenix, Arizona, November 2003.
[VS03] Vazhkudai, S., and J. Schopf, Using Regression Techniques to Predict Large Data Transfers,
Journal of High Performance Computing Applications - Special Issue on Grid Computing: Infrastructure
and Applications, 2003.

http://www.cacr.caltech.edu/ppdg
http://www.speedera.com/
http://perso.wanadoo.fr/sebastien.godard/
http://dast.nlanr.net/Projects/Iperf

 31

[VTF01] Vazhkudai, S., S. Tuecke, and I. Foster, Replica Selection in the Globus Data Grid, First
IEEE/ACM International Conference on Cluster Computing and the Grid (CCGRID 2001),
Brisbane, Australia, IEEE Press, 2001.
[Wang99] Wang, J., A Survey of Web Caching Schemes for the Internet, ACM Computer Communication
Review, 1999.
[Web100Project02] The Web100 Project, http://www.web100.org, 2002.
[WPP02] Wang, L., V. Pai, and L. Peterson, The Effectiveness of Request Redirection, Proceedings of the
5th OSDI Symposium, 2002.
[Wolski98] Wolski, R., Dynamically Forecasting Network Performance Using the Network Weather
Service, Cluster Computing, 1998.
[YM01] Yilmaz, S. and I. Matta, On Class-based Isolation of UDP, Short-lived and Long-lived TCP
Flows, Computer Science Department, Boston University, 2001.
[ZLP96] Zaki, M.J., W. Li, and S. Parthasarathy, Customized Dynaimic Lad Balancing for Network of
Workstations, High Performance Distributed Computing (HPDC'96), 1996.
[ZMF98] Zhang, L., S. Michel, and S. Floyd, Adaptive Web Caching: Towards a New Global Caching
Architecture, Proceedings of the Third International Caching Workshop, 1998.
[ZQK00] Zhang, Y., L. Qiu, and S. Keshav, Speeding Up Short Data Transfers: Theory, Architecture
Support and Simulation Results, NOSSDAV 2000, Chapel Hill, North Carolina, 2000.
[ZQK99] Zhang, Y., L. Qiu, and S. Keshav, Optimizing {TCP} Start-up Performance, Department of
Computer Science, Cornell University, 2000.

http://www.web100.org/

	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1.0 INTRODUCTION
	2.0 SCHEDULING GRID DATA TRANSFERS—REPLICA SELECTION
	2.1 SCHEDULING ARCHITECTURE
	2.2 REPLICA SELECTION SEQUENCE IN GLOBUS DATA GRID
	2.3 STORAGE BROKER
	2.4 DATA ACCESS SERVICE

	3.0 PREDICTING BULK DATA TRANSFERS
	3.1 UNIVARIATE PREDICTORS
	3.2 MULTIVARIATE PREDICTORS
	3.3 PREDICTOR PERFORMANCE
	3.3.1 Experimental Setup
	3.3.2 Metrics

	4.0 CO-ALLOCATING DATA TRANSFERS
	4.1 CO-ALLOCATION ARCHITECTURE
	4.2 PARTIAL COPY IN GRIDFTP
	4.3 CO-ALLOCATION MECHANISMS
	4.3.1 Brute-Force Co-Allocation
	4.3.2 History-based Co-Allocation
	4.3.3 Dynamic Co-Allocation

	4.4 RESULTS AND ANALYSIS
	4.4.2 Experiment Setup
	4.4.3 Performance

	5.0 CONCLUSION AND DISCUSSION
	AUTHOR BIOGRAPHY
	REFERENCES

