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ABSTRACT 

 
Data Grids provide a convenient environment for researchers to manage and access massively 
distributed bulk data by addressing several system and transfer challenges inherent to these 
environments.  This work addresses issues involved in the efficient selection and access of 
replicated data in Grid environments in the context of the Globus Toolkit™, building middleware 
that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data 
transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive 
statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads 
from mirrored sites.  These efforts have demonstrated a decentralized data scheduling 
architecture, a set of forecasting tools that predict bandwidth availability within 15% error and 
co-allocation architecture, and heuristics that expedites data downloads by up to 2 times. 
 
Keywords: Data Grids, Replica Selection, Predictions, Co-Allocations, Scheduling, Parallel 
Downloading, Data Movement, Middleware. 
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1.0 INTRODUCTION 

 
As the coordinated use of distributed resources, or Grid computing, becomes more commonplace, basic 
resource usage is changing. Many recent applications use Grid systems as distributed data stores 
[DataGrid02, GriPhyN02, HSS00, LIGO02, MMR+01, NM02], where pieces of large datasets are 
replicated over several sites.  For example, several high-energy physics experiments have agreed on a 
tiered Data Grid architecture [HJS+00, Holtman00] in which all data (approximately 20 petabytes by 
2006) is located at a single Tier 0 site; various (overlapping) subsets of this data are located at national 
Tier 1 sites, each with roughly one-tenth the capacity; smaller subsets are cached at smaller Tier 2 
regional sites; and so on.  Therefore, any particular dataset is likely to have replicas located at multiple 
sites [RF01, LSZ+02, LSZ+03].  Such replicated, bulk data is required to be moved across the Grid in 
response to user queries. 
 
Moving bulk data in Grid environments is mired by several nontrivial issues.  First, information on the 
state and behavior of replica/storage locations needs to be identified, gathered and exposed so they can be 
discovered in the context of an information service.  Second, suitable locations from which to fetch the 
dataset needs to be identified based on heuristics that combine user specified requirements/policies and 
current system behavioral trends.  Further, the scheduling needs to be accomplished in a decentralized 
fashion so it can scale to Grid-proportions.  Third, quality of service agreements, negotiations and 
guarantees—pin replicas for future access, reserve storage to stage data in the future, or reserve network 
bandwidth—need to be coordinated to maximize usage.  Fourth, auto-tuning of data movement 
protocols—setting transmission control protocol (TCP) buffers or parallel streams—needs to be enabled 
so data transfer throughput can be maximized.  Large data transfers with default operating system buffer 
sizes (64 KB) and no parallelism will almost certainly result in poor rates rendering them unsuitable for 
Grid environments.  Finally, the bulk data transfer should be monitored for progress and deterioration so 
corrective measures can be taken in case of performance degradation.  Thus, we need performance 
metrics to determine transfer degradation.  
 
Aforementioned are but a few—yet critical—set of activities in Grid scheduling.  Bulk data movement is 
usually associated with some computation to be run alongside, leading to a larger question of finding 
schedules for both data and computation.  In this paper, however, we address a few steps essential to 
orchestrate the movement of massively replicated bulk data (of the order of several hundred megabytes to 
gigabytes) in Grid environments, bringing together, in one fold, several of our previous work. We present 
our work in the context of the Globus ToolkitTM [FK98, Globus02].  The Globus Data Grid provides a 
convenient architecture for scientific experimental groups to share and democratize data access.  
 
We discuss the design and implementation of a scalable, decentralized replica selection service that uses 
information regarding replica location and user preferences to guide selection from among storage replica 
alternatives [VT00, VTF01].  In Section 2 we first present a basic replica selection service design, then 
show how dynamic information collected using Globus information service capabilities concerning 
storage system properties can help improve and optimize the selection process.  We demonstrate the use 
of Condor's [LLM88] ClassAds [RLS98] resource description and matchmaking mechanism as an 
efficient tool for representing and matching storage resource capabilities and policies against application 
requirements.  
 
Different sites may have varying performance characteristics because of diverse storage system 
architectures, network connectivity features, or load characteristics.  Users (or brokers acting on their 
behalf) may want to be able to determine the site from which particular data sets can be retrieved most 
efficiently, especially as data sets of interest tend to be large (1–1000 MB).  Since large file transfers can 
be costly, there is a significant benefit in selecting the most appropriate replica for a given set of 
constraints [ACF+02, VTF01].  One way a more intelligent replica selection can be achieved is by having 
replica locations expose performance information about past data transfers.  This information can, in 
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theory, provide a reasonable approximation of the end-to-end throughput for a particular transfer.  It can 
then be used to make predictions about the future behavior between the sites involved. In our work we use 
GridFTP (file transfer protocol) [AFN+01], part of the Globus ToolkitTM for moving data, and present 
predictions using regression techniques to forecast the performance of GridFTP transfers for large files 
across the Grid [VS03].  Our approach combines end-to-end application throughput observations with 
network and disk load variations and captures whole-system performance and fluctuations in load 
patterns.  Our predictions characterize the effect of load variations of several shared devices (network and 
disk) on file transfer times. In Section 3 we develop a suite of univariate and multivariate predictors that 
can use multiple data sources to improve the accuracy of the predictions as well as address Data Grid 
variations (availability of data and sporadic nature of transfers).  These predictions are thematic to the 
replica selection problem.  Our results indicate a prediction accuracy of 15% error for the testbed sites. 
 
Data locations, once identified and ranked using our selection and prediction techniques respectively, can 
then be grouped together to collectively deliver the replica.  Due to varied performance characteristics of 
the several replica locations and the transient load in the links connecting them to the client, downloading 
datasets even from the best of servers can often result in pedestrian transfer rates.  A promising alternative 
is to download data from multiple locations, establishing multiple connections in parallel.  With this 
approach, instead of downloading the entire dataset from a single sever, unique partial copies of the 
dataset are fetched from multiple servers in parallel that are later reassembled at the client end.  In Section 
4 we develop a basic architecture for co-allocating Grid data transfers and build a few techniques for 
downloading data in parallel, from multiple servers [Vazhkudai03].  We develop three techniques: (1) 
brute force co-allocation, (2) history-based co-allocation of flows and (3) dynamic load balancing.  We 
apply these techniques to the GridFTP data movement tool, and evaluate our approaches by conducting 
performance analysis experiments in a wide-area testbed.  Our results indicate a significant increase in 
bandwidth due to distributed downloads and denote that dynamic solutions outperform static approaches. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

2.0 SCHEDULING GRID DATA TRANSFERS—REPLICA SELECTION 

 
2.1 SCHEDULING ARCHITECTURE 
 
Traditionally, resource brokers have adopted a centralized approach to resource management, wherein a 
single node is responsible for decision making.  An example of such an environment is the Condor 
[LLM88] high-throughput computing platform, wherein a central manager is responsible for matching 
resources against jobs.  Obvious disadvantages to this approach are scalability and a single point of 
failure.  Of course, Condor has an efficient recovery mechanism to address failure and has been proven to 
scale to thousands of resources and users. 
 
But there is a more fundamental problem with this centralized approach when applied to Grids.  In these 
highly distributed environments, there are numerous user communities and shared resources, each with 
distinct security requirements.  No single resource broker is likely to be trusted by all of these 
communities and resources with the necessary information to make decisions.  At the extreme, each user 
may need his or her own resource broker, because only that user has the authorization to gather all of the 
information necessary to make brokering decisions. 
 
Alternatively, we can adopt one of two decentralized models.  First and commonly referred as sender-
initialized scheduling, is an approach wherein entities requiring access to the specific resource initiates 
and performs the scheduling.  Second, is a receiver-initialized scheduling wherein entities in possession 
of the resource perform the selection.  The latter approach would require addressing the motivation for a 
resource owner to volunteer to perform the scheduling.  For this reason, we have designed a decentralized 
storage brokering strategy wherein every client that requires access to a replica performs the selection 
process rather than a central manager performing matches against clients and replicas (Figure 1). 
 
2.2 REPLICA SELECTION SEQUENCE IN GLOBUS DATA GRID 
 
An application that requires access to replicated data begins by querying an application-specific metadata 
repository, specifying the characteristics of the desired data (Figure 2).  The metadata repository 
maintains associations between representative 
characteristics and logical files, thus enabling 
the application to identify logical files based on 
application requirements.  Once the logical file 
has been identified, the application uses the 
replica catalog to locate all replica locations 
containing physical file instances of this logical 
file, from which it can choose a suitable instance 
for retrieval. 
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The entity that identifies the suitable instance of 
a replicated file based on application 
requirements is referred to as a broker.  In effect, 
the responsibility of the broker is to map 
application requirements against storage 
resource capabilities obtained from an aggregate 
information service (Figure 2).  In the following section, we discuss the storage broker in detail. 
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     Fig. 1: Aggregate directory Services (D), with 
resources (R), and Broker (B). Depicts resource registration 
and broker enquiries to directory servers. 

Registration 
 
Inquiry 

B

D 

R

B

R

R

D 

 
 
 
 



  

Replica 
Location 3 

Replica 
Location 2 

GridFTP 
 Data Transfer 

3

Metadata 
Catalog 

Attribute Specification 

Application 

l l
Logical Collection 

Replica 
Catalog 

Replica Selection Selected 
Replica 

Multiple Locations 
1 2

Performance 
Information,  
Predictions 

Information 
Service 

Replica 
Location 1 

 
 
 
 
 
 
 
 
 
 
 
 
 

     Fig. 2: Sequence of event leading to the selection of replicas in the Globus 
DataGrid environment [Globus02].  

 
 
2.3 STORAGE BROKER 
 
Request Specification: Data scheduling requests are represented in terms of classified advertisements, 
used extensively in Condor for job placement.  ClassAds provide a rich environment for resources and 
jobs to specify their requirements and capabilities in terms of attribute-value pairs.  Further, it provides 
efficient matching and ranking mechanisms.  An application might advertise its request to the broker as 
follows: 

hostname = “comet.xyz.com”; 
reqdRDBandwidth = 5M/sec; 
rank = other.AvgRDBandwidth; 
requirement = other.AvgRDBandwidth > 5M/sec; 

 
The application indicates its preference for a storage resource that offers a maximum transfer bandwidth 
greater than 5 MB/sec. 
 
Discovery: Information-discovery primarily involves searching for relevant details and capabilities of 
resources from multiple administrative domains by querying aggregate directory servers (Grid Index 
Information Servers), catalogs, etc.  The GIIS typically caches/obtains data in the form Lightweight 
Directory Access Protocol (LDAP) objectClasses that are essentially groupings of data represented in 
terms attribute-value pairs.  Examples of objectClasses include information on resources such as: cpu, 
storage, networks, etc., that can be obtained from specific information prociders.  Searches can further be 
strengthened by directing more specific queries to individual resources (Grid Resource Information 
Servers, GRISs) based on a subset of matched resources, for up-to-date dynamic information.  The 
following is a simple ClassAd describing the capabilities of a storage resource: 

hostname = “dpsslx04.lbl.gov”; 
volume = “/dev/sandbox”; 
availableSpace = 50G; 
AvgRDBandwidth = 6M/sec; 
requirement = true; 

 
This ClassAd describes a volume of a storage resource by specifying its attributes.  The ClassAd can also 
specify usage policy enforced by the resource using the “requirement” attribute.  When two ClassAds are 
being matched, a MatchClassAd is created that contains both ClassAds.  Each ClassAd can refer to the 
other ClassAd by using the “other” keyword.  We will discuss the storage capability objectClass in more 
detail in subsequent sections. 
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Matching, Ranking, Action: Information obtained through discovery is in the form of LDAP 
objectClasses, while requests are in ClassAds.  Search results are converted to ClassAds and then 
matched and ranked against requirement specification.  A list of resources, once established, can then be 
used to fetch data from, using GridFTP.   
 
2.4 DATA ACCESS SERVICE 
 
In the previous sections we described our decentralized architecture for replica selection.  But, intelligent 
replica selection requires information about the capabilities and performance characteristics of storage 
systems (replica locations).  Broker decisions are only as good as the information they have access to.  In 
the snippet ClassAds above, we used “avgRDbandwidth” as a metric to decide from among a set of 
replica locations.  GridFTP is the tool widely used to move data in the Grid and the avgRDbandwidth is 
the average GridFTP bandwidth between the site hosting the replica and the site requesting it.  It is such 
predictive information we are interested in for brokering.  In this section, we briefly highlight how such 
storage system functionality can be exposed in the context of an information service so it can be 
discovered by a broker.  
 
We are particularly interested in the speed of a storage system, or rather, the time that the storage system 
will take to deliver a replica.  One approach to determining this information is to construct a performance 
model of the relevant components (e.g., see [SC00]).  We favor an alternative approach in which 
historical information concerning GridFTP data transfer rates is used as a predictor of future transfer 
times.  In brief, storage systems are configured to provide information on their own behavior and 
performance. Attributes such as maximum achievable read and write transfer bandwidths across networks 
can help an application choose one replica over another.  Storage replicas monitor their own performance 
to gather and publish attribute data.  This feature can be extended further, to obtain statistical information 
based on the performance data, such as average transfer bandwidths and their standard deviations that can 
help predict the behavior of a particular replica.  Further, we expect that there will be significant reuse of 
storage servers by clients, thereby justifying performance information on a per source basis, which 
provides a client useful information on end-to-end transfer performance.  For example, a simple heuristic 
of combining past observed performance with current load of server might give a client a reasonably good 
choice of server. 
 
We instrumented the GridFTP server by adding mechanisms to log performance information for every file 
transfer.  Log entries include source address, file name, file size, number of parallel streams, TCP buffer 
size for the transfer, start and end timestamps, total time consumed by the transfer, aggregate bandwidth 
achieved for the transfer, nature of the operation (read or write), and logical volume to and from which 
file was transferred.  For the GridFTP 
monitoring data, we built an information 
provider that accesses the log data to 
advertise a set of recent measurements as 
well as some summary statistic data.  To 
generate statistical information on transfers, 
we developed LDAP shell-backend scripts 
to filter the information in the logs.  In 
addition, we developed schemas for this 
data.  Figure 3 presents a fragment of the 
output from a GridFTP information provider 
(details include: prediction information, 
GridFTP server and port information, etc.).  
Combined, these enable a GridFTP 
performance information provider to process 
logs by building schemas and scripts to 

GridFTP Information Provider Output 
dn:"140.221.65.69, 
hostname=dpsslx04.lbl.gov,dc=lbl,dc=gov,o=grid" 
cn:"140.221.65.69" 
hostname:"dpsslx04.lbl.gov" 
gridftpurl:"gsiftp://dpsslx04.lbl.gov:61000" 
minrdbandwidth:1462K 
maxrdbandwidth:12800K 
avgrdbandwidth:6000K 
avgrdbandwidthtenmbrange:5714K 

     Fig. 3: A fragment of the output from the GridFTP 
performance information provider registered with the GRIS at 
LBL.  
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publish statistical information.  Replica locations (sites running GridFTP servers) publish such 
performance information using GRIS servers.  
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3.0 PREDICTING BULK DATA TRANSFERS 

 
In the following sections we discuss statistical techniques to synthesize bulk data transfer forecasts which 
can then be used to differentiate the various replica locations.  Our goal is to obtain accurate predictions 
of file transfer times between a storage system and a client.  Achieving this can be challenging because 
numerous devices are involved in the end-to-end path between the source and the client, and the 
performance of each (shared) device along the end-to-end path may vary in unpredictable ways. 
 
One approach to predicting this information is to construct performance models for each system 
component (central processing units at the level of cache hits and disk access, networks at the level of the 
individual routers, etc.) and then to use these models to determine a schedule for all data transfers [SC00], 
similar to classical scheduling [Adve93, Cole89, CQ93, Crovella99, ML90, Schopf97, TB86, ZLP96].  In 
practice, however, it is often unclear how to combine this data to achieve accurate end-to-end 
measurements.  Also, since system components are shared, their behavior can vary in unpredictable ways 
[SB98].  Further, modeling individual components in a system may not capture the significant effects that 
these components have on each other, thereby leading to inaccuracies [GT99].  
 
Alternatively, observations from past application performance of the entire system can be used to predict 
end-to-end behavior.  The use of whole-system observation has relevant properties for our purposes.  
These predictions can, in principle, capture both evolution in system configuration and temporal patterns 
in load.  A by-product of capturing entire system evolution is enhanced transparency, in that we can 
construct such predictions without detailed knowledge of the underlying physical devices.  This technique 
is used by Downey [Downey97] and Smith et al. [SFT98] to predict queue wait times and by numerous 
tools (Network Weather Service [Wolski98], NetLogger [NetLogger02], Web100 [Web100Project02], 
iperf [TF01], and Netperf [Jones02]) to predict the network behavior of small file transfers.  We adopted 
the use of end-to-end GridFTP measurements, capturing whole-system behavior, obtained through the 
instrumentation process described earlier to derive predictions. 
 
3.1 UNIVARIATE PREDICTORS 
 
In this section we describe some of the predictors we developed, categorize possible approaches into 
mean-based, median-based, and autoregressive techniques.  These predictors are applied to a single 
variable, namely the GridFTP transfer logs between any site pair. We use several variations of each of 
these models in our experiments. 
 
Mean-based, or averaging, techniques are a standard class of predictors that use arithmetic averaging (as 
an estimate of the mean value) over some portion of the measurement history to estimate future behavior.  
The general formula for these techniques is the sum of the previous n values over the number of 
measurements. Mean-based predictors are easy to implement and impose minimally on system resources. 
 
A second class of standard predictors is based on evaluating the median of a set of values.  Given an 
ordered list of t values, if t is odd, the median is the (t+1)/2 value; if t is even, the median is half of the t/2 
value added with the (t+1)/2 value.  Median-based predictors are particularly useful if the measurements 
contain randomly occurring asymmetric outliers that are rejected.  However, they lack some of the 
smoothing that occurs with a mean-based method, possibly resulting in forecasts with a considerable 
amount of jitter [HP91]. 
 
The third class of common predictors is autoregressive models [GP94, HP91, Wolski98].  We use an 
autoregressive integrated moving average (ARIMA) model technique that is constructed using the 
equation  
G' = a + bGt-1, 

 



  

where G' is the GridFTP prediction for time, t, Gt-1 is the previous data occurrence, and a and b are the 
regression coefficients that are computed based on past occurrences of G using the method of least 
squares.  This approach is most appropriate when there are at least fifty measurements and the data is 
measured with equally spaced time intervals.  Our data does not meet these constraints, but we include 
this technique to do a full comparison.  The main advantage of using an ARIMA model is that it gives a 
weighted average of the past values of the series, thereby possibly giving a more accurate prediction.  
However, in addition to requiring a larger data set than the other techniques to achieve a statistically 
significant result, the model can have a much greater computational cost. 
 
Further to this, we use measurement and temporal windows that limit the datasets based on number of 
values or on time.  Filtering in this way is based on the assumption that recent measurements are more 
reflective of current system behavior.  Figure 4 summarizes our various predictors.   
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3.2.1 Matching 
 
Our three data sources 
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match values from th
observations that were 
 

 

 Average based Median based Autoregression 
All data AVG MED AR 
Last 1 Value LV   
Last 5 Values AVG5 MED5  
Last 15 Values AVG15 MED15  
Last 25 Values AVG25 MED25  
Last 5 Hours AVG5hr   
Last 15 Hours AVG15hr   
Last 25 Hours AVG25hr   
Last 5 Days   AR5d 
Last 10 Days   AR10d 

Fig. 4: Univariate predictors. 
ATE PREDICTORS 

 of univariate predictors has nothing to do with the predictors themselves but more 
ata transfers on the Grid.  Because of the sporadic nature of transfers, predictors 
e may fail to factor in current system trends and fluctuations.  To mitigate the 
 problem, we introduce other periodic datastreams to expose the behavior of 

-to-end data path and to reveal the current environment on the Grid.  The working 
pture the ambience in which the GridFTP transfers are performed so we can use it 
 behavior.  From our preliminary assessment we found that networks and disks 

and 30% respectively of the actual transfer time. 

s Network Weather Service (NWS) and iostat to periodically monitor and log 
ior respectively in the form of <timestamp, load-value>. From our studies we also 

stat probes were correlated to the eventual GridFTP throughput achieved (up to 0.7 
sed on this, we developed a set of multivariate predictors using regression models 
ination of several data sources – GridFTP log data and network load data, GridFTP 
 data, or a combination of all three.  The datastreams require some preprocessing 
echniques can be applied to them.  This includes time matching the data streams 
s. 

(GridFTP, disk input/output [I/O], and NWS network data) are collected exclusive 
ly have the same timestamps.  To use regressive models on the data streams, 

ave a one-to-one mapping for the values in each stream.  Hence, we are required to 
e three sets such that for each GridFTP value, we find disk I/O and network 
made around the same time. 
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For each GridFTP data point (TG, G), we match a corresponding disk load (TD, D) and NWS data point 
(TN, N) such that TN and TD are the closest to TG.  By doing this, the triplet (Ni,Dj,Gk) represents an 
observed end-to-end GridFTP throughput (Gk) resulting from a data transfer that occurred with the disk 
load (Dj) and network probe value (Ni) backdrop.   
 
At the end of the matching process, the three datastreams have been combined into the sequence that 
looks like 
(Ni,Dj,Gk)(Ni+1, Dj+1, _)…(Ni+m, Dj+m, Gk+1), 
where Gk, and Gk+1 are two successive GridFTP file transfers, Ni and Ni+m are NWS measurements, and Dj 
and Dj+m are disk load values that occurred in the same timeframe as the two GridFTP transfers. The 
sequence also consists of a number of disk load and NWS measurements between the two transfers for 
which there are no equivalent GridFTP values, such as (Ni+1, Dj+1, _).  Note that these interspersed 
network and disk load values are time-aligned.  Also note that we have described the matching process 
with reference to all three data sources.  In the case where a prediction uses a different number of 
datastreams, similar matching techniques can be employed. 
 
3.2.2 Filling-in Techniques 
 
After matching the datastreams, we need to address the tuples that do not have values for the GridFTP 
data – that is, the NWS data or disk I/O data collected in between the sporadic GridFTP transfers.  
Regression models expect a one-to-one mapping between the data values, so we can either discard the 
network and I/O data for which there are no equivalent GridFTP data (our NoFill technique) or fill in 
synthetic transfer values using either an average over the past day’s data (Avg), or the last value (LV).  
Once filled in, the sequence is as follows: 

(Ni,Dj,Gk)(Ni+1, Dj+1, GFill)…(Ni+m, Dj+m, Gk+1) 
where GFill is the synthetic GridFTP value. Data, once matched and filled in, is fed to regression models 
(Figure 5). 
 

     Fig. 5: Sequence of events for deriving predictions from 
GridFTP (G), disk load (D), and NWS (N) datastreams. 

 
 
 
 
 
 
 
 
 
 
 
 
3.2.3 Regression Models 
 
Simple linear regression attempts to build linear models between dependent and independent variables. 
The following equation builds linear models between several independent variables N1, N2, Nk and 
dependent variable G as follows:  

G'=a+b1N1+b2N2+...+bkNk, 
where G' is the prediction of the observed value of G for the corresponding values of N1, N2, Nk.  The 
coefficients a, b1, b2, and bk are calculated by using the method of least squares [Edwards84].  For our 
case, we built linear models between NWS (N), disk (D), and GridFTP (G) data as explained above, with 
N and D as independent variables.  To improve prediction accuracy, we also developed a set of nonlinear 
models adding polynomial terms to the linear equation. For instance, a quadratic model is as follows:  

G'=a+b1N+b2N2. 
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Cubic and quartic models have additional 
terms b3N3 and b4N4, respectively.  
Similar to the linear model, the 
coefficients in quadratic, cubic, and 
quartic models b2, b3, and b4 are computed 
by using the method of least squares.  
Adding polynomial terms to the regression 
model can reach a saturation point (no 
significant improvement in prediction 
accuracy observed), suggesting that a 
particular model sufficiently captures the 
relationship between the two variables 
[OM88, Pankratz91].  Figure 6 shows a 
bar graph that compares error, complexity 
of algorithm, and components included for 
the site pair, Lawrence Berkeley National 
Laboratory (LBNL) and Argonne National 
Laboratory (ANL).  

    Fig. 6: Visualization comparing error, complexity of 
algorithm, and components included for the site pair LBL 
and ANL.  
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3.3 PREDICTOR PERFORMANCE 
 
We evaluated the performance of our regression techniques on datasets collected over three distinct two-
week durations:  August 2001, December 2001, and January 2002.  In the following subsections, we 
describe the experimental setup, prediction error calculations, and the results obtained from these datasets. 
 
3.3.1 Experimental Setup 
 
The experiments we ran consisted of controlled GridFTP transfers, NWS (64KB probes every five 
minutes) network sensor measurements, and disk throughput monitoring (every five minutes) between 
four sites in our testbed (Figure 7):  ANL, the University of Southern California Information Sciences 
Institute (ISI), LBNL, University of Florida at Gainesville (UFL), and Boston University (BU).  All our 
sites comprised of 100 Mb/sec Ethernets with high-end storage. 
 
GridFTP experiments included transfers comprising several file sizes ranging from 10 MB to 1 GB, 
performed at random time intervals within 12-hour 
periods.  We calculated buffer sizes by using the 
formula 
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     RTT * "bottleneck bandwidth in the link" 
with roundtrip times (RTT) values obtained from 
ping and with bottleneck bandwidth obtained by 
using iperf [TF01].  Figure 7 shows the roundtrip 
times and bottleneck bandwidth for our site pairs.  
Our GridFTP experiments were performed with 
tuned TCP buffer settings (1 MB based on the 
bandwidth delay product) and eight parallel 
streams to achieve enhanced throughput. Logs of 
these transfers were maintained at the respective 
sites and can be found at [Traces02].  For each 
data set and predictor, we used a 15-value training 
set; that is, we assumed that at the start of a predictive technique there were at least 15 GridFTP values in 
the log file (approximately two days worth of data). 

     Fig. 7: Network settings for our testbed sites.  
All sites are connected through OC-12 or OC-48 
network links. For each site pair round trip times and 
network bottleneck bandwidths for the link between 
them is shown. 
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3.3.2 Metrics 
 
We calculate the prediction accuracy using the normalized percentage error calculation: 

∑ | MeasuredBW – PredictedBW | 
% Error =                * 100, 

(size * MeanBW) 
 
where size is the total number of predictions and the Mean is the average measured GridFTP throughput. 
In this subsection we show results based on the August 2001 dataset Tables 4.  Complete results can be 
found in [VS03]. 
 
In addition to evaluating the error of our predictions, we evaluate information about the variance in the 
error.  Depending on the use case, a user may be more interested in selecting a site that has reasonable 
performance bandwidth estimates with a relatively low prediction error than in selecting a resource with 
higher performance estimates and a possibly much higher error in prediction.  In such cases, it can be 
useful if the forecasting error can be stated with some confidence and with a maximum/minimum 
variation range.  These limits can also, in theory, be used as catalysts for corrective measures in case of 
performance degradation.  
 
In our case, we can also use these limits to verify the inherent cost of accuracy of the predictors.  By 
comparing the confidence intervals of these prediction error rates, we can determine whether the accuracy 
achieved is at the cost of greater variability, in which case there is little gain in increasing the component 
complexity of our prediction approach.  Thus, for any predictor (for any site pair and a given dataset), the 
information denoted by the following triplet can be used as a metric to gauge its accuracy: 

Accuracy-Metric = [PredictedThroughput, AvgPast % Error-Rate, ConfidenceLimit], 
where PredictedThroughput is the predicted GridFTP value (higher the better), with a certain percentage 
prediction error (the lower the better) and a percentage confidence interval for the error (the smaller the 
better).  
 
3.3.3 Univariate Predictor Performance 
 
The major result from these predictions is that even simple techniques have a worst-case prediction of 
about 25%, quite respectable for pragmatic prediction systems.  Figure 8 shows the result of sorting the 
data by file size, since GridFTP throughput varied with transfer file sizes.  We grouped several file sizes 
into categories:  0–50 MB as 10M, 50–250 MB as 100M, 250–750 MB as 500M, and more than 750 MB 
as 1G, based on the achievable bandwidth.  We observe almost up to 10% increase in accuracy with 
context sensitive filtering. 
 
In general, for our univariate predictors, we did not see a noticeable advantage of limiting either average 
or median techniques using a sliding window or time frames.  The ARIMA models did not see improved 
performance for our data, although they are significantly more expensive compared to simple means and 
medians.  This is likely due to the irregular nature of our data.  Average and median based predictors (and 
their temporal variants) for a GridFTP dataset size of 50 values was computed under a millisecond, while 
autoregression on the same set consumed a few milliseconds. 
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3.3.4 Multivariate Predictor Performance 
 
Table 4 shows the performance gains of using a regression prediction with GridFTP and NWS network 
data (G+N) over using the GridFTP log data univariate predictor in isolation (first two shaded columns in 
the table).  We use the moving average (AVG25) as a representative of univariate predictor performance.  
For our datasets, we observed a 4% to 6% improvement in prediction accuracy when the regression 
techniques with LV or AVG filling were used.  Regression with NoFill (throwing away the unmatched 
GridFTP data) shows no significant improvement when compared with univariate predictors. 
 
Table 4 also shows that including disk I/O component load variations in the regression model provides us 
with gains of 2% to 4% (G+D Avg) when compared with AVG25 (first and third shaded columns in the 
table).  Different filling techniques (G+D Avg and G+D LV) perform similarly, and again NoFill shows 
no improvement, or even a decrease in accuracy, when compared with univariate predictors. 
 

 

Table 1: Normalized percent prediction error rates for the testbed site pairs for the August 2001 dataset.  
The figure denotes four categories: (1) prediction based on GridFTP data in isolation (AVG25), (2) regression between 
GridFTP and NWS network data with the three filling in techniques (G+N), (3) regression between GridFTP and disk I/O data 
with the three filling in techniques (G+D), and (4) regression based on all three data sources (G+N+D). Shaded portions 
indicate a “best of class” comparison between the approaches. All percentage values are averages based on different file 
categories. 

 

Only 
GidFTP 

Logs 
[VSF02] 

Linear Regression between GridFTP 
Logs and Network Load [VS02] 

Linear Regression between GridFTP 
Logs and Disk Load 

Linear Regression using all Three Data 
Sources 

  
AVG25 G+N 

NoFill 
G+N 
LV 

G+N 
Avg 

G+D 
NoFill 

G+D 
LV 

G+D 
Avg 

G+N+D 
NoFill 

G+N+D 
LV 

G+N+D 
Avg 

LBL-ANL 24.4% 22.4% 20.6% 20% 25.2% 21.7% 21.4% 22.3% 17.7% 17.5% 
LBL-UFL 15% 18.8% 11.1% 11% 20.1% 11.6% 11.9% 11.1% 8.7% 8% 
ISI-ANL 15% 12% 9.5% 9% 13.1% 13% 11.4% 11% 8.9% 8.3% 
ISI-UFL 21% 21.9% 16% 14.5% 22.7% 19.7% 18.8% 14.7% 13% 12% 

ANL-UFL 20% 21% 20% 16% 21.8% 19.9% 19.3% 15.3% 16.7% 15.5%

 
Comparing the second and third block of data in Table 4 shows that all variations of predictors using 
NWS data (G+N) perform better than predictors using disk I/O data (G+D) in general.  This observation 
agrees with our initial measurements that only 15% to 30% of the total transfer time is spent in I/O, while 
the majority of the transfer time (in our experiments) is spent performing network transport. 
 
When we include both disk I/O and NWS network data in the regression model (G+N+D) along with 
GridFTP transfer logs, we see prediction error drop of 8% to 17% and up to 3% improvement when 
compared with G+N (second and fourth shaded columns in Table 4) and a 6% improvement over G+D 
(third and fourth shaded columns in Table 4).  Overall, we see up to 9% improvement when we compare 
G+N+D with the original univariate prediction based on AVG25. 
 
Figure 9a compares the average prediction error for Moving Avg, G+D Avg, G+N Avg, and G+N+D Avg 
for all of our site pairs (represents the shaded columns in Table 4) and also presents 95% confidence 
limits for our prediction error rates.  The prediction accuracy trend is as follows: 

Moving Avg < (G+D Avg) < (G+N Avg) < (G+N+D Avg) 
Figure 9b shows that the confidence interval (the variance in the error) does in fact reduce with more 
accurate predictors, but the reduction is not significant for our datasets.  We observed no noticeable 
improvements in using polynomial models for our experiments.  
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     Fig. 8: Impact of classification and the reduction in percent error rates for the testbed (context-sensitive 
filtering). 
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(b) Comparison of intervals for the predictors 
 
     Fig. 9: (a) Normalized percent prediction error and 95% confidence limits for August 2001 dataset based 
on (1) prediction based on GridFTP in isolation (MovingAvg), (2) regression between GridFTP and disk I/O with 
Avg filling strategy (G+D Avg); (3) regression between GridFTP and NWS network data with Avg filling strategy 
(G+N Avg), and (4) regressing all three datasets (G+N+D Avg). Confidence Limits denote the upper and lower 
bounds of prediction error. For instance, the LBL-ANL pair had a prediction range of [17.3% + 5.2%]. (b) 
Comparison of the percentage of variability among the predictors. 
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4.0 CO-ALLOCATING DATA TRANSFERS 

 
Replica locations once identified and ranked using our selection (Section 2) and prediction (Section 3) 
heuristics can then be used to deliver the dataset collectively to the client.  Due to the varied performance 
characteristics in the replica locations and the links connecting them to the client, downloading large 
datasets (10 MB – 1 GB) can result in varied end-user experience. 
 
A typical Internet download between a client and a server is mired by several bottlenecks (Figure 10a) 
[Akamai00].  First, the bandwidth achievable by the client is limited by the bandwidth of the server’s 
connection to the Internet – commonly referred as the First-Mile problem.  The first-mile bottleneck is 
further compounded by simultaneous requests to a server from multiple clients. Second, the achievable 
bandwidth is further limited by the congestion in the link connecting the server and the client.  Third, the 
bottleneck could be in the client’s own connectivity to the Internet – the Last-Mile.  Thus, the download 
speed is only as fast as the slowest link in the aforementioned setup. Sophisticated solutions are required 
to significantly address this issue. 
 
One way to improve download speeds is to employ complex server selection techniques to determine the 
best replica location, offering high transfer rates, using a combination of server and network load details 
[Akamai02, VTF01].  In practice, however, due to the shared nature of network links the load on them 
can vary unpredictably.  Thus, in the face of transient network conditions, downloading datasets even 
from the best of servers can often result in pedestrian transfer rates. 
 
A promising alternative is to download data from multiple locations, establishing multiple connections in 
parallel (Figure 10a).  With this approach, instead of downloading the entire dataset from a single sever, 
unique partial copies of the dataset are fetched from multiple servers in parallel that are later reassembled 
at the client end. 
 
This co-allocation of data transfers has several relevant properties of significant interest to us.  First, it 
obviates the need for complex server selection.  Second, due to its decentralized nature the eventual 
performance achieved may not be adversely affected by degradation in any of the co-allocated flows 
while also being resilient to server failures.  Third, the client download experience can be positively 
amplified with the aggregate bandwidth commensurate to the summation of the individual transfer rates 
of each flow.  Fourth, it significantly alleviates the first-mile (slow server, serving a fast client) and the 
Internet congestion problem by distributing load to multiple servers and different routes (Figure 10b).  
Even in the case of a slow client served by a fast server, co-allocation can offer significant benefits due to 
fluctuations in network conditions. 
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Co-allocating data 
transfers across 
multiple replica 
locations can have 
widespread 
applicability beyond 
scientific data-sharing 
communities.  For 
instance, Internet 
content providers rely 
heavily on content 
distribution networks 
[JCD+00] for managing 
consistent replicas of 
popular content on surrogate, edge-servers, closer to end-users [Akamai00].  Content distribution 
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(a) Typical Internet Download  (b) Co-Allocated Download 
 
     Fig. 10: (a) Various bottlenecks in the Internet document download – the 
first mile problem, the congestion in the links connecting server and client and 
the last mile problem. (b) Co-Allocated download model minimizes the first mile 
and the link congestion bottlenecks. 



  

networks such as Akamai [Akamai02] and Speedera [Speedera02] improve download speeds by 
employing techniques such as request redirection [WPP02, KRR00] (to select best servers) to fetch data 
from less congested links.  Thus, parallel-downloading techniques can find significant use in such 
scenarios.  
 
Peer-to-peer file sharing, where peers come 
together in a cooperative, decentralized 
manner to locate and share content, is yet 
another candidate for parallel downloading 
[CP02].  The enormous popularity of file 
sharing means that networked content 
sharing systems are likely to siphon much of 
the available Internet bandwidth.  In fact, 
recent studies indicate that file sharing 
activity contributes up to 60 percent on any 
service provider network [Sandvine02, 
SGG02].  Co-allocations in such cases can 
help improve download speeds, reduce load 
on certain parts of the network, alleviate 
loaded peers, etc. 
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Developing techniques for parallel 
downloads of Internet documents is of 
significant interest in the networking 
community and can be broadly classified into stateless and stateful approaches. 

     Fig. 11: Resource management architecture and the 
role of co-allocation. Co-allocator combines broker decisions 
and information services to map data transfer requests onto 
storage systems using GridFTP and Globus Access to 
Secondary Storage (GASS). 

 
Stateless approaches to the parallel access problem rely on clients subscribing to several mirror sites to 
restitute the data.  This approach further makes extensive use of erasure codes (error correction codes) 
[Rizzo97] to develop an “n” packet encoding of a “k” packet file, with the property that the file can be 
reassembled from any “k” packet subset of the encoding [BCM+02, BLM02, BLM99].  Pros of this 
approach are: obviates the need for maintaining file ranges and renegotiations on a per flow basis, fault 
tolerance and scalability; while the cons are: constructing an “n” packet encoding is nontrivial, cost of 
encoding and decoding can be significant for large dataset size, and clients and servers are required to 
agree, apriori, on common encoding schemes.  Other related effort includes Rabin’s [Rabin89] and 
Maxemchuk’s [Maxemchuk75] work on dispersing pieces of the file on different nodes in the network for 
fault tolerance and dispersity routing respectively. 
 
On the contrary, stateful techniques divide the file into disjoint sets, downloading different ranges from 
different servers.  In [RKB00, Gkantsidis02], the authors develop previous history-based and dynamic 
solutions, demonstrating their techniques for web-based documents of the order of several hundred 
kilobytes.  Accurate predictions of range distributions are required for several stateful techniques, which 
are often quite difficult to obtain in the face of changing network conditions.  In [RKB00, Gkantsidis02], 
the authors rely on simple averages of previous transfer rates as an estimate for range calculations per 
flow.  Work from Beck et. al., demonstrated the usefulness of dynamic distributed downloads in the 
context of streaming applications by fetching multiple copies of file blocks in order to address jitter 
[PAD+02]. 
 
In our work we develop history-based and dynamic solutions similar to that of [RKB00, Gkantsidis02, 
PAD+02], but extend it by addressing network fluctuations.  Further, we employ prediction techniques 
(previous section) to predict data transfer rates between sources and sinks, and use those for range 
calculations per flow that can significantly improve our performance and reduce renegotiations.  The use 
of encoding schemes, and thus the stateless alternative, may not be suited for our purposes due to our 
concentration on large datasets, for which encoding and decoding times can be quite significant.  
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4.1 CO-ALLOCATION ARCHITECTURE 
 
The Globus ToolkitTM [FK98] provides a basic template for resource management [CFK99], which can be 
extended to support the co-allocation of Grid data transfers.  As illustrated in Figure 11, the architecture 
comprises of three main components: an information service, local storage systems, and broker/co-
allocator. 
 
An application requiring access to data presents a description of the data to the broker.  The broker, in 
conjunction with information services [CFF+01], identifies possible alternatives from where the dataset in 
question can be fetched.  This set is then presented to the co-allocation agent, which uses a combination 
of information services and some heuristics to map the data transfer request across multiple replica 
locations to download the data in parallel using GridFTP. 
 
4.2 PARTIAL COPY IN GRIDFTP 
 
GridFTP extends standard FTP implementations with several features needed in Grid environments, such 
as security on control and data channels, multiple data channels for parallel streams, partial file transfers, 
and third party transfers.  Of particular interest to us is the ability to fetch partial copies of a file. Partial 
copy, and several other features, is part of GridFTP’s extended retrieve functionality, which is used to 
request that a retrieve be done with some additional processing on the server.  This command is an 
extensible way of providing server-side data reduction.  With partial copy, a section of the file, defined by 
the starting offset and extent, will be retrieved from the data server. 
 
4.3 CO-ALLOCATION MECHANISMS 
 
We now proceed to describe the co-allocation mechanisms that we have developed.  Co-allocation is the 
idea of splitting the data transfer among available servers to improve client perceived throughput. 
 
4.3.1 Brute-Force Co-Allocation 
 
Brute-force co-allocation is a basic scheme that works by dividing the file size equally among available 
flows.  Thus, if the data to be fetched is of size, “S” and there are “n” locations to fetch it from, then this 
technique assigns to each flow a data block of size, “S/n”.  With this technique, although all the available 
servers are utilized, bandwidth differences among the various client-server links are not exploited. 
 
4.3.2 History-based Co-Allocation 
 
To address and exploit transfer rate differences among the various co-allocated flows, we develop a 
history-based allocation scheme.  With this technique, the block size per flow is commensurate to its 
predicted transfer rate, based on a previous history of GridFTP transfers.  Thus, the file-range distribution 
is based on the predicted merit of the flow.  If these predictions are not accurate enough, renegotiations of 
flow sizes might be necessary as slower links can be assigned larger portions of data, which could weigh 
heavily on the eventual bandwidth achieved. 
 
In order to obtain accurate predictions of transfer rates for the various links, we derived predictions based 
upon our previous work on forecasting GridFTP transfers (Section 3).  Our previous work delved into 
deriving accurate predictions in the face of network and system load fluctuations.  We developed a series 
of univariate and multivariate predictors that forecast GridFTP transfers in isolation and in conjunction 
with network and disk load data respectively.  We used extensive regression analysis to predict within 
15% error.  Logs of previous GridFTP transfers are fed to univariate or multivariate predictors to forecast. 
For purposes concerning co-allocations, we use a temporal variation of univariate, average predictor 
(moving average over time).  
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With the history-based approach, the client divides a file into “n” disjoint blocks, corresponding to “n” 
servers. Each server, “i”, 1 ≤ i ≤ n, has a predicted transfer rate of “Bi” to the client.  In theory then, the 
aggregate bandwidth achievable by the client for the entire download is: 

       i=n 
A = Σ Bi
       i=1 

where “Bi” is the predicted bandwidth per flow and “A” is the aggregate bandwidth. Such a speedup can 
only be achieved when all servers keep sending data until the file is fully received – i.e., all servers being 
busy at all times during the entire download.  In practice, however, the achieved bandwidth is limited due 
to network congestion in the various flows (resulting in some servers finishing earlier than others) and the 
client’s ability to handle the bandwidth surplus.  Thus, the rate-limiting factor could be anyone of the 
slowest links in the setup – the servers themselves, the links connecting the client and servers, or the 
client itself. 
 
Assuming the client is capable of handling the bandwidth surplus, range distributions are calculated as 
follows. For each server “i”, 1 ≤ i ≤ n, and for a replica size, “S”, the block size per flow is: 
                Bi

si =  ______   * S 
         A 

where “si” is the block size per flow.  Thus, the block size per flow is commensurate to its transfer rate 
and its ratio of contribution to the achievable aggregate bandwidth.  Faster servers are assigned to deliver 
bigger portions of the file, while slower servers are assigned smaller pieces.  Ranges of partial transfers 
can then be formulated based on this and the whole file reassembled at the client as follows: 

      i=n 
S = Σ si
      i=1 

The time taken for the entire download is: 
           i=n      si

T = Σ   ______

       i=1     Bi
where “T” is the total download time.  In this manner, this scheme addresses the transfer rate differences 
among the various co-allocated flows. 
 
4.3.3 Dynamic Co-Allocation 
 
Although we have addressed the rate differences in the flows and exploited it to deliver proportionate 
pieces of the file per flow, we do not address dynamic network variations that can cause degradation in 
transfer rates.  In spite of careful bandwidth estimates per flow, network traffic and system load can cause 
servers, previously determined as fast or slow, to behave differently.  This can significantly affect the 
download time.  Thus, an end-user is typically interested in dynamic rate adaptation – an allocation 
scheme that can dynamically adapt to changing network conditions. 
 
One way to address this is to monitor the progress of history-based co-allocated flows, to perform 
corrective measures in case of performance degradation.  For instance, if the performance in a particular 
flow drops below a threshold, the transfer can be migrated to an alternate location or remaining data can 
be equally distributed among other existing flows.  
 
Although in theory, these are feasible alternatives, in practice, however, such techniques are quite 
complex to realize for the following reasons.  First, we need to add additional dynamic monitoring 
capability to our data movement protocol to monitor each flow, which can significantly contribute to the 
overhead.  Second, we need criteria to determine performance degradation, which can be difficult due to 
changing network/system conditions.  Third, even if degradation could be determined, corrective 
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measures such as transfer migration or resizing may require significant renegotiation between clients and 
servers, which can be more costly than the existing decrease in performance. 
 
A promising alternative is the use of dynamic co-allocation.  We developed two variations of dynamic co-
allocation: (1) Conservative Load Balancing and (2) Aggressive Load Balancing. 
 
Conservative Load Balancing:  With this approach, the rate, and thus how much a server delivers, is 
decided dynamically instead of being based on previous history.  The dataset in question is divided into 
“k” disjoint blocks of equal size and each one of the available servers is assigned to deliver, in parallel, 
one block initially.  Once a server delivers the block, another block is requested and so on, until the entire 
file is downloaded. 
 
Faster servers and servers connected to the client through less congested or faster links will deliver 
quickly, thus serving larger portions of the file when compared to their slower counterparts.  Thus, with 
this technique, the load on the co-allocated flows is automatically adjusted so that congested links and 
loaded or slower servers are not further burdened. 
 
With this technique, the number of blocks per download can affect the throughput achieved.  We could 
either have a large number of small blocks or a small number of large blocks.  We study the effect of 
using different block counts and sizes in Section 4. 
 
The key to achieving maximum aggregate bandwidth, as stated earlier, is to keep all available servers 
busy at all times.  In the best case, each server is only idle for duration “t”, where “t” is the time elapsed 
since the server delivered the last block and until it receives a request for a new block.  Neglecting client 
side processing and multiprogramming at both ends, this is roughly equivalent to one round-trip time, 
which is insignificant compared to the entire download time. 
 
One obvious downside to this approach is the eventuality of waiting on the slowest server to deliver the 
final block (same as history-based allocation).  An alternative is to stop the slowest flow or dynamically 
resize blocks to fetch the remaining data from the other servers, although we do not employ this 
technique. 
 
Aggressive Load Balancing: With the previous method, although faster servers deliver quickly, we only 
fetch one-block size each time around.  Similarly, slower servers would again be assigned to deliver 
blocks.  To address these issues, we add the following functionality to our load balancing scheme: (1) 
progressively increase the amount of data requested from faster servers; and (2) reduce the amount of data 
requested from slower servers or stop requesting data altogether.  
 
In order to achieve the stated effect, we develop a few heuristics.  For each block delivered by each flow, 
we compute the rate achieved and compare it against the running maximum of all flow rates.  If the rate at 
which a flow delivered the block is greater than the running maximum, we double the block size for that 
flow and reset the maximum; if it is less, we maintain the one-block size for the flow; and if the rate is 
significantly less than the maximum, we stop using the flow.  Thus, using these techniques, we address 
dynamic rate changes in the various co-allocated flows. 
 
4.4 RESULTS AND ANALYSIS 
 
We evaluated the performance of our co-allocation schemes on data collected over two distinct two-week 
periods during October and December 2002. In the following sections we describe the experimental setup, 
traces and our results. 
 



  

4.4.2 Experiment Setup 
 
Our experiments comprised GridFTP transfers, using our co-allocation clients, between five sites in our 
testbed (Figure 7).  A prerequisite for downloading data from multiple servers is that the various links 
connecting the client and servers be bottleneck disjoint [RKB00, BLM99].  If the client-server links share 
the same bottleneck then there can be little improvement due to co-allocation.  From Figure 3, it is evident 
that the various client-server links for our setup are bottleneck-disjoint (bottleneck bandwidths were 
determined using iperf [TF01]). 
 
We performed wide-area data transfer experiments using the GridFTP data movement tool.  Our servers 
were standard GridFTP available from the Globus 2.0 ToolkitTM, while our clients included the various 
co-allocation schemes.  Transfers comprised several file sizes ranging from 10 MB to 1 GB.  These 
transfers were performed with tuned TCP buffer settings (calculated using the bandwidth delay product as 
shown in Figure 3) and eight parallel streams (per co-allocated flow) to achieve enhanced throughput. All 
our transfers were performed with co-allocation clients at either ANL or UFL.  Table 2 summarizes our 
trace characteristics.  We use a mix of fast and slow servers to study the effect therein. 
 

 20 

4.4.3 Performance 
 
In this section, we discuss the performance 
of our co-allocation clients based on the data 
collected during October and December 
2002.  We evaluate four co-allocation 
schemes: (1) Brute-Force Co-allocation 
(Brute), (2) History-based Co-allocation 
(History), (3) Conservative Load Balancing 
(Conservative) and (4) Aggressive Load 
Balancing (Aggressive).  For the two load 
balancing techniques, we study the effect of 
various block counts (Conservative-5, 
Conservative-10, Conservative-15, 
Aggressive-5, Aggrssive-10 and Aggressive-
15) on the bandwidth achieved.  We 
compare each co-allocation scheme against 
the base case of fetching the entire file from 
a single server and study the bandwidth 
improvements therein.  The bandwidth 
measures are averages based on two-week’s 
worth of transfers. 
 
Impact of Client-Server Configurations 
on Downloads 

Trace Characteristics 
Server GridFTP with support for 

partial copy 
Download Client Schemes 
No co-allocation 
Static 
Dynamic  

 
Base client,  
Brute and History  
Conservative and Aggressive 

When October and December 2002 
Duration Two weeks in each month 
Client Locations ANL, UFL 
File Sizes 10MB, 100MB, 500MB, 1GB 
Transfers per file size per co-
allocation scheme 

50 to 100 

Total Transfers (each month) 1000 – 1200 
Prediction Strategy for 
History-based downloads 

Moving average (over time) 
of previous transfers 

Block Counts for Dynamic 
downloads 

5, 10 and 15 

Number of Parallel Streams 
per co-allocated flow 

8 

Tuned TCP buffers per 
stream 

Yes 

Table 2: Trace characteristics for Co-Allocation 
experiments during October and December 2002. 

 
In Figures 12 and 13, we study the effect of slow servers (or links) with similar performance, serving a 
fast client.  We see that all co-allocation schemes perform better than the base case of downloading the 
entire file from a single server.  We observe that load balancing schemes (conservative and aggressive 
with block counts of 5) perform better than brute-force or history-based co-allocation and load balancing 
offers almost double the performance (for our experiments) when compared with the base case.  In the 
case of slow servers serving fast clients there is usually residual bandwidth available that goes unused 
with typical downloads.  With a distributed download, this residual bandwidth is utilized to achieve 
enhanced throughput. 
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In Figures 14, 15 and 16, we use a mix of slow and fast servers to study its effect on download.  We 
observe that co-allocation schemes are either better (improvements of up to 2 MB/sec) than or 
comparable to faster servers in isolation.  The figures indicate that the gain due to co-allocation is 
inversely proportional to the performance gap between the servers.  In Figure 14, a faster server saturates 
a client quickly, leaving available little residual bandwidth for other servers.  Co-allocation in such cases 
offers very little improvement.  In Figures 15 and 16, as the performance gap between the servers is low, 
we observe gains due to co-allocation.  
 
Shared Bottlenecks 
 
As mentioned earlier, in order for a distributed download to payoff, there should exist residual network 
bandwidth from the client to the additional servers.  If not, then accessing additional sites will interfere 
with existing connections and contribute to the congestion.  To study the effect of shared bottlenecks we 
choose two servers each from the LBL and ISI domains respectively.  As stated earlier, in our 
experiments, each flow uses parallel streams and tuned TCP buffers to fully utilize the available 
bandwidth.  Thus, adding another server (with the same bottleneck) interferes with existing connections.  
In Figure 17, we can see that the bandwidth achieved due to a distributed download is much less than that 
achieved by individual servers in isolation. 
 
Sensitivity of Schemes towards Parameters 
 
We analyzed the effect of file sizes, number of flows and block counts on the download performance – 
i.e., threshold values beyond which co-allocation offered gains or saturated.  Figures 12 through 16 shows 
that all our co-allocation schemes offer significant performance improvements (when compared with the 
base case) as the file size increases.  For smaller file sizes we see no improvements in using co-allocation 
using our data movement tool.  A low value for the performance ratio, R, where R is: 

R = Co-allocation Cost / Total Time to Download, 
results in gains due to co-allocation.  The cost of co-allocation involves connection establishment, 
negotiations, reassembly, resizing, etc.  For smaller files, this co-allocation cost is high compared to the 
total download time. 
 
In increasing the number of co-allocated flows (Figures 15 and 16) we observed that for our testbed and 
client-server configurations, download performance reached saturation at about 3 or 4 flows.  The natural 
question then is “With how many flows should a transfer be launched?”  While this is subjective to client-
server configurations, choosing an appropriate number of flows is vital to the performance achieved.  One 
way to address this would be to start with a subset of servers ranked using our prediction strategies and 
applying load balancing techniques to this set.  This way we can exploit the merits inherent to both static 
and dynamic models. 



  

 

     Fig. 12: Servers are at ISI and UFL with client at 
ANL (Oct’02). First two bars in each file size denote 
downloading the entire file from either ISI or UFL, while 
others denote co-allocated downloads using the two servers. 
Depicts 95% confidence ranges for bandwidth. 

     Fig. 13: Servers are at ISI and BU with client at UFL 
(Dec’02). Depicts 95% confidence ranges for bandwidth. 
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     Fig. 15: Servers are at ANL and ISI with client at 
UFL (Dec’02). Depicts 95% confidence ranges for bandwidth. 

     Fig. 14: Servers are at LBL and UFL with client at 
ANL (Oct’02). Depicts 95% confidence ranges for 

For our various load balancing techniques, we studied the effect of using different block counts (5, 10 and 
15).  Figure 18 compares the variations of conservative and aggressive load balancing techniques.  From 
the figure we can infer that for smaller file sizes the load balancing schemes perform better with less 
number of blocks, while for larger file sizes more blocks result in better performance.  For our 
experiments and our block counts we saw performance improvements of up to 1-2 MB/sec.  With small 
files more blocks will result in more overhead in terms of connection establishment, reassembly, etc., 
when compared to the total download time; while with large files less blocks can mean slower servers 
delivering bigger portions of the file. 
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Waiting on Slow Servers 
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For the load balancing schemes, we analyzed 
the effect of faster servers waiting on slow 
servers to deliver the last block.  From Figure 
19, we can observe that with conservative load 
balancing (out of the times when slower 
servers finished last), faster servers are idle for 
up to 17% of the total download time waiting 
for slower servers to finish delivering the last 
block.  While aggressive balancing is not 
altogether devoid of this trend, we observe 
almost up to 40% reduction in wait times due 
to a progressive increase in the amount of data 
fetched from faster servers.  The figures also 
imply that using less number of blocks with 
larger files results in slower servers having to 
deliver larger pieces of data, thereby 
increasing the idle time of faster servers.  This 
suggests that further techniques such as 
preempting flows or dynamic block sizing, to fetch more from faster servers, are worth investigating. 
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     Fig. 16: Servers are at ANL, ISI and BU with client 
at UFL (Dec’02). Depicts 95% confidence ranges for 
bandwidth.

  

(b) Two servers at ISI sharing the same bottleneck to the client at 
UFL (Dec’02). 
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(a) Two servers at LBL sharing the same bottleneck to the client 
at ANL (Oct’02). 

Fig. 17: Servers sharing the same network bottleneck to the client. Depicts 95% confidence ranges for bandwidth. 
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 (d) Aggressive Load Balancing with servers at ISI and UFL 
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(a) Conservative Load Balancing with servers at ISI and UFL 
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(e) Aggressive Load Balancing with servers at LBL and ISI 
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(b) Conservative Load Balancing with servers at LBL and ISI  
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(f) Aggressive Load Balancing with servers at LBL, ISI and 
UFL 
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(c) Conservative Load Balancing with servers at LBL, ISI and 
UFL 

 

     Fig. 18: Comparison between the variants of conservative and aggressive load balancing schemes using 
different block counts for a client at ANL (Oct’02). Conservative-5 denotes a block count of 5. 
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(a) Servers at ANL and ISI with client at UFL (Dec’02). 

     Fig. 19: (a) ANL is the faster server having to wait on ISI. (b) LBL is the faster server having to wait 
on UFL. Bars denote the wait time of the faster server as a percentage of total download time. Also depicts 
95% confidence for the % wait times.

(b) Servers at LBL and UFL with client at ANL (Oct’02).  

 
 
 
 

 
 

 25 



  

 26 

5.0 CONCLUSION AND DISCUSSION 

In this paper, we have analyzed the orchestration of bulk data movement in Grid environments.  We 
discuss in detail the backdrop of events required to facilitate rapid, efficient and expedited access to 
massively replicated bulk data. In this regard, we summarize our previous efforts from three fronts, all in 
the context of the Globus ToolkitTM.  First, we describe a scalable, decentralized replica selection 
architecture that uses a combination of user specified policies and performance heuristics to locate data 
from among numerous replicated alternatives.  Some of our heuristics include the use of performance 
estimates of data transfer times, exposed by replica locations, as a key metric of distinction. Second, we 
develop forecasting machinery to predict future performance rates between sources and sinks.  We 
demonstrate our prediction mechanisms using the GridFTP data movement protocol, progressing from 
forecasts based on GridFTP transfer logs in isolation to a combination of logs and ambient monitoring 
data capturing networks and disks.  Using these techniques we demonstrate prediction efficacy to be well 
within 15% error for our testbed sites.  Third and finally, we develop co-allocation architecture to use 
these “selected” and “ranked” sites in unison to download bulk datasets in parallel.  With our history 
based and dynamic load balancing techniques we observe up to almost 2x performance improvements 
using the GridFTP tool for our sites. 
 
As we alluded before, there is more to bulk data movement than those presented in this paper.  In this 
following discussion, we will briefly highlight some issues.  At a very high level, we could classify data 
management in terms of “system challenges” and “transfer challenges”.  By system challenges we refer to 
all things except the act of data transfer.  For instance, this might include ensuring that the dataset in 
question is available for access which would require the underlying storage system to provide “pinning” 
abilities; or might require ensuring enough space availability on the remote system for data staging which 
involves reservation abilities; storage quality of service agreements and guarantees, etc.  Other, equally 
important, issues concern dynamic replica management (replication keeping in mind temporal access 
patterns) and intelligent scheduling of data transfer requests alongside computation.  
 
Thematic to this paper is the transfer challenge. A bulk of our discussion earlier revolved around transfer-
rate estimates and parallel downloading which are key questions guiding several research endeavors.  Yet, 
more needs to be addressed.  Tuning of transfer settings is an often used practice in high throughput 
scientific environments.  Bulk data transfers of the order of several gigabytes are usually performed with 
optimized TCP buffer windows, parallel streams, etc., to achieve enhanced throughput.  In fact, all our 
GridFTP transfer experiments were performed with a 1 MB TCP buffer size and eight parallel streams as 
opposed to system defaults of 64 KB and a single stream.  System defaults are naturally not tuned for the 
special use case of the high throughput community for reasons concerning fair sharing.  Although, with 
the proliferation of Grid based systems we are quickly faced with the need to provide solutions that 
exploit the bandwidth explosion.  A common rule-of-thumb for buffer tuning is to use “RTT * Bottleneck 
Bandwidth” as an optimal window size between any client-server pair.  Tools such as Enable from LBNL 
extend this further by providing auto-tuning of buffers between any site pair, by exploiting previous 
history of transfers [TGL+01]. No such service exists for automatically determining the appropriate 
number of parallel streams for any given site pair.  One way to address this issue is to perhaps use 
previous history of transfers (consisting of bandwidth measures due to various parallel stream counts) 
between any site pair in conjunction with a network monitoring tool to arrive at educated guesses. 
 
In a related vein, checkpoint file management poses interesting data movement questions.  Grid 
environments consist of multiple sub-jobs with associated data running on different locations.  Machines 
may be reclaimed and might become unavailable in the immediate future. In such cases, checkpoint data 
or results from computations thus far may have to be moved to the source in an optimal fashion from 
many locations.  Kangaroo, a hop-based checkpoint management system, from Condor addresses some 
issues therein [TBS+01].  Thus, in order to facilitate efficient bulk data movement, we need to address 
several of the aforementioned system and transfer challenges. 
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