
SANDIA REPORT
SAND2006-0420
Unlimited Release
Printed April 2006

Supersedes SAND99-2959
Dated December 1999

The Portals 3.3 Message Passing Interface
Document Revision 2.1

Rolf Riesen, Ron Brightwell, and Kevin Pedretti, Arthur B. Maccabe,
and Trammell Hudson
Trammell Hudson, Rotomotion

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71314662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2006-0420
Unlimited Release
Printed April 2006

Supersedes SAND99-2959
dated December 1999

The Portals 3.3 Message Passing Interface
Document Revision 2.1

Rolf Riesen
Ron Brightwell
Kevin Pedretti

Scalable Computing Systems Department
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-1110

rolf@cs.sandia.gov
bright@cs.sandia.gov
ktpedre@sandia.gov

Arthur B. Maccabe
Computer Science Department

University of New Mexico
Albuquerque, NM 87131-1386

maccabe@cs.unm.edu

Trammell Hudson
c/o OS Research

1527 16th NW #5
Washington, DC 20036
hudson@osresearch.net

Abstract

This report presents a specification for the portals 3.3 message passing interface. Portals 3.3 are intended to
allow scalable, high-performance network communication between nodes of a parallel computing system.
Specifically, it is designed to support a parallel computing platform composed of clusters of commodity
workstations connected by a commodity system area network fabric. In addition, Portals 3.3 are well suited
to massively parallel processing and embedded systems. Portals 3.3 represent an adaption of the data
movement layer developed for massively parallel processing platforms, such as the 4500-node Intel
TeraFLOPS machine. Version 3.0 of Portals runs on the Cplant cluster at Sandia National Laboratories, and
version 3.3 is running on Cray’s Red Storm system.

3

The Portals 3.3 Message Passing Interface
 Document Revision 2.1

Acknowledgments

Over the years, many people have helped shape, design, and write portals code. We wish to thank: Eric
Barton, Peter Braam, Lee Ann Fisk, David Greenberg, Eric Hoffman, Gabi Istrail, Jeanette Johnston, Chu
Jong, Clint Kaul, Mike Levenhagen, Kevin McCurley, Jim Otto, David Robboy, Mark Sears, Lance Shuler,
Jim Schutt, Mack Stallcup, Todd Underwood, David van Dresser, Dena Vigil, Lee Ward, and Stephen
Wheat.

People who were influential in managing the project were: Bill Camp, Ed Barsis, Art Hale, and Neil Pundit

While we have tried to be comprehensive in our listing of the people involved, it is very likely that we have
missed at least one important contributor. The omission is a reflection of our poor memories and not a
reflection of the importance of their contributions. We apologize to the unnamed contributor(s).

4

Contents

List of Figures 9

List of Tables 10

List of Implementation Notes 11

Preface 12

Nomenclature 13

1 Introduction 15

1.1 Overview . 15

1.2 Purpose . 16

1.3 Background . 16

1.4 Scalability . 17

1.5 Communication Model . 17

1.6 Zero Copy, OS Bypass, and Application Bypass . 18

1.7 Faults . 18

2 An Overview of the Portals API 21

2.1 Data Movement . 21

2.2 Portals Addressing . 21

2.3 Access Control . 24

2.4 Multi-Threaded Applications . 26

3 The Portals API 27

3.1 Naming Conventions and Typeface Usage . 27

3.2 Base Types . 27

3.2.1 Sizes . 28

3.2.2 Handles . 28

3.2.3 Indexes . 28

3.2.4 Match Bits . 28

3.2.5 Network Interfaces . 28

3.2.6 Identifiers . 28

3.2.7 Status Registers . 29

3.3 Return Codes . 29

3.4 Initialization and Cleanup . 29

3.4.1 PtlInit . 29

3.4.2 PtlFini . 30

5

3.5 Network Interfaces . 30

3.5.1 The Network Interface Limits Type . 31

3.5.2 PtlNIInit . 32

3.5.3 PtlNIFini . 33

3.5.4 PtlNIStatus . 33

3.5.5 PtlNIDist . 34

3.5.6 PtlNIHandle . 35

3.6 User Identification . 36

3.6.1 PtlGetUid . 36

3.7 Process Identification . 36

3.7.1 The Process Identification Type . 37

3.7.2 PtlGetId . 37

3.8 Process Aggregation . 37

3.8.1 PtlGetJid . 38

3.9 Match List Entries and Match Lists . 38

3.9.1 Match Entry Type Definitions . 38

3.9.2 PtlMEAttach . 39

3.9.3 PtlMEAttachAny . 40

3.9.4 PtlMEInsert . 41

3.9.5 PtlMEUnlink . 42

3.10 Memory Descriptors . 42

3.10.1 The Memory Descriptor Type . 43

3.10.2 The Memory Descriptor I/O Vector Type . 45

3.10.3 PtlMDAttach . 45

3.10.4 PtlMDBind . 47

3.10.5 PtlMDUnlink . 47

3.10.6 PtlMDUpdate . 48

3.10.7 Thresholds and Unlinking . 49

3.11 Events and Event Queues . 50

3.11.1 Kinds of Events . 50

3.11.2 Event Occurrence . 51

3.11.3 Event Ordering . 53

3.11.4 Failure Notification . 53

3.11.5 The Event Queue Type . 54

3.11.6 The Event Queue Handler Type . 55

3.11.7 PtlEQAlloc . 55

3.11.8 Event Queue Handler Semantics . 56

3.11.9 PtlEQFree . 57

3.11.10 PtlEQGet . 58

6

3.11.11 PtlEQWait . 58

3.11.12 PtlEQPoll . 59

3.11.13 Event Semantics . 60

3.12 The Access Control Table . 61

3.12.1 PtlACEntry . 61

3.13 Data Movement Operations . 62

3.13.1 Portals Acknowledgment Type Definition . 62

3.13.2 PtlPut . 62

3.13.3 PtlPutRegion . 64

3.13.4 PtlGet . 65

3.13.5 PtlGetRegion . 65

3.13.6 PtlGetPut . 66

3.14 Operations on Handles . 68

3.14.1 PtlHandleIsEqual . 68

3.15 Summary . 68

4 The Semantics of Message Transmission 75

4.1 Sending Messages . 75

4.2 Receiving Messages . 78

References 81

Appendix

A Frequently Asked Questions 83

B Portals Design Guidelines 85

B.1 Mandatory Requirements . 85

B.2 The Will Requirements . 85

B.3 The Should Requirements . 86

C A README Template 89

D Implementations 91

D.1 Reference Implementation . 91

D.2 Portals 3.3 on the Cray XT3 Red Storm . 91

D.2.1 Generic . 92

D.2.2 Accelerated . 92

E Summary of Changes 93

E.1 Changes From Version 3.0 to 3.1 . 93

E.1.1 Thread Issues . 93

E.1.2 Handling Small, Unexpected Messages . 94

E.1.3 Other Changes . 95

7

E.2 Changes From Version 3.1 to 3.2 . 96

E.3 Changes From Version 3.2 to 3.3 . 97

E.3.1 API Changes . 97

E.3.2 Semantic Clarifications . 97

E.3.3 Document Changes . 98

Index 100

8

List of Figures

2.1 Portals Put (Send) . 22

2.2 Portals Get. 23

2.3 Portals Getput (swap). 24

2.4 Portals Addressing Structures . 25

2.5 Portals Address Translation. 26

3.1 Portals Operations and Event Types . 52

9

List of Tables

3.1 Object Type Codes . 27

3.2 Memory Descriptor Update Operations . 49

3.3 Event Type Summary . 53

3.4 Portals Data Types . 69

3.5 Portals Functions . 70

3.6 Portals Return Codes . 71

3.7 Portals Constants . 72

4.1 Send Request . 76

4.2 Acknowledgment . 76

4.3 Get Request . 77

4.4 Reply . 77

4.5 Get/Put Request . 78

4.6 Portals Operations and Memory Descriptor Flags . 79

10

List of Implementation Notes

1 No wire protocol . 17

2 User memory as scratch space . 18

3 Don’t alter put or reply buffers . 19

4 Protected space . 24

5 Write-only event queue . 24

6 README and portals3.h . 27

7 Network interface encoded in handle . 28

8 Maximum length of PtlGetPut() operation . 31

9 Multiple calls to PtlNIInit() . 33

10 Measure of PtlNIDist() . 35

11 Object encoding in handle . 35

12 Checking match id . 40

13 Pairing of match list entries and memory descriptors . 43

14 Checking legality of md . 46

15 Unique memory descriptor handles . 48

16 Pending operations and buffer modifications . 51

17 Pending operations and acknowledgment . 52

18 Timing of start events . 53

19 Completion of portals operations . 54

20 Location of event queue . 56

21 Fairness of PtlEQPoll() . 59

22 Macros using PtlEQPoll() . 60

23 Filling in the ptl event t structure . 61

24 Functions that require communication . 62

25 Information on the wire . 75

26 Acknowledgment requests . 76

11

Preface

In the early 1990s, when memory-to-memory copying speeds were an order of magnitude faster than the
maximum network bandwidth, it did not matter if data had to go through one or two intermediate buffers on
its way from the network into user space. This began to change with early supercomputers, such as the
nCUBE 2 and the Intel Paragon, when network bandwidth became similar to memory bandwidth. An
intermediate memory-to-memory copy now meant that only half the available bandwidth was used.

Early versions of Portals solved this problem in a novel way. Instead of waiting for data to arrive and then
copy it into the final destination, Portals, in versions prior to 3.0, allowed a user to describe what should
happen to incoming data by using data structures. A few basic data structures were used like Legotm blocks
to create more complex structures. The operating system kernel handling the data transfer read these
structures when data began to arrive and determined where to place the incoming data. Users were allowed
to create matching criteria and to specify precisely where data would eventually end up. The kernel, in turn,
had the ability to DMA data directly into user space, which eliminated buffer space in kernel owned memory
and slow memory-to-memory copies. We named that approach Portals version 2.0. It is still in use today on
the ASCI Red supercomputer, the first general-purpose machine to break the one-teraflop barrier.

Although very successful on architectures with lightweight kernels, such as ASCI Red, Portals proved
difficult to port to Cplant [Brightwell et al. 2000] with its full-featured Linux kernel. Under Linux, memory
was no longer physically contiguous in a one-to-one mapping with the kernel. This made it prohibitively
expensive for the kernel to traverse data structures in user space. We wanted to keep the basic concept of
using data structures to describe what should happen to incoming data. We put a thin application
programming interface (API) over our data structures. We got rid of some never-used building blocks,
improved some of the others, and Portals 3.0 were born.

We defined the version 3.0 API in Brightwell, Hudson, Riesen, and Maccabe (1999). Since then, Portals
have gone through three revisions. In this report we document version 3.3. The differences between those
revisions are explored in Riesen, Brightwell, and Maccabe (2005). Appendix E has a detailed list of changes
between the versions.

Version 3.3 is used by the Lustre file system and the Red Storm system by Cray Inc. The development and
design of Portals is an ongoing activity at Sandia National Laboratories and the University of New Mexico.

12

Nomenclature

ACK Acknowledgement.
FM Illinois Fast Messages.
AM Active Messages.
API Application Programming Interface. A definition of the functions and

semantics provided by library of functions.
ASCI Advanced Simulation and Computing Initiative.
ASCI Red Intel Tflops system installed at Sandia National Laboratories. First

general-purpose system to break one teraflop barrier.
CPU Central Processing Unit.
DMA Direct Memory Access.
EQ Event Queue.
FIFO First In, First Out.
FLOP Floating Point OPeration. (Also FLOPS or flops: Floating Point OPera-

tions per Second.)
GM Glenn’s Messages; Myricom’s Myrinet API.
ID Identifier
Initiator A process that initiates a message operation.
IOVEC Input/Output Vector.
MD Message Descriptor.
ME Match list Entry.
Message An application-defined unit of data that is exchanged between processes.
Message Operation Either a put operation, which writes data to a target , or a get operation,

which reads data from a target , or a getput which does both atomically.
MPI Message Passing Interface.
MPP Massively Parallel Processor.
NAL Network Abstraction Layer.
NAND Bitwise Not AND operation.
Network A network provides point-to-point communication between nodes. In-

ternally, a network may provide multiple routes between endpoints (to
improve fault tolerance or to improve performance characteristics); how-
ever, multiple paths will not be exposed outside of the network.

NI Abstract portals Network Interface.
NIC Network Interface Card.
Node A node is an endpoint in a network. Nodes provide processing capa-

bilities and memory. A node may provide multiple processors (an SMP
node) or it may act as a gateway between networks.

OS Operating System.
PM Message passing layer for SCoreD [Ishikawa et al. 1996].
POSIX Portable Operating System Interface.
Process A context of execution. A process defines a virtual memory context. This

context is not shared with other processes. Several threads may share the
virtual memory context defined by a process.

RDMA Remote Direct Memory Access.
RMPP Reliable Message Passing Protocol.
SMP Shared Memory Processor.
SUNMOS Sandia national laboratories/University of New Mexico Operating Sys-

tem.

13

Target A process that is acted upon by a message operation.
TCP/IP Transmission Control Protocol/Internet Protocol.
Teraflop 1012 flops.
Thread A context of execution that shares a virtual memory context with other

threads.
UDP User Datagram Protocol.
UNIX A multiuser, multitasking, portable OS.
VIA Virtual Interface Architecture.

14

Chapter 1

Introduction
1.1 Overview

This document describes an application programming interface for message passing between nodes in a
system area network. The goal of this interface is to improve the scalability and performance of network
communication by defining the functions and semantics of message passing required for scaling a parallel
computing system to ten thousand nodes. This goal is achieved by providing an interface that will allow a
quality implementation to take advantage of the inherently scalable design of Portals1.

This document is divided into several sections:

Section 1 – Introduction.
This section describes the purpose and scope of the portals API2.

Section 2 – An Overview of the Portals 3.3 API.
This section gives a brief overview of the portals API. The goal is to introduce the key concepts and
terminology used in the description of the API.

Section 3 – The Portals 3.3 API.
This section describes the functions and semantics of the portals API in detail.

Section 4 – The Semantics of Message Transmission.
This section describes the semantics of message transmission. In particular, the information
transmitted in each type of message and the processing of incoming messages.

Appendix A – FAQ.
Frequently Asked Questions about Portals.

Appendix B – Portals Design Guidelines.
The guiding principles behind the portals design.

Appendix C – README-template.
A template for a README file to be provided by each implementation. The README describes
implementation specific parameters.

Appendix D – Implementations.
A brief description of the portals 3.3 reference implementation and the implementations that run on
Cray’s XT3 Red Storm machine.

Appendix E – Summary of Changes.
A list of changes between versions 3.0, 3.1, 3.2, and 3.3.

1The word Portals is a plural proper noun. We use it when we refer to the definition, design, version, or similar aspects of Portals.
2We use the lower case portals when it is used as an adjective; e.g., portals document, a (generic) portals address, or portals operations.

We use the singular when we refer to a specific portal or its attributes; e.g., portal index, portal table, or a (specific) poral address.

15

1.2 Purpose

Existing message passing technologies available for commodity cluster networking hardware do not meet
the scalability goals required by the Cplant [Brightwell et al. 2000] project at Sandia National Laboratories.
The goal of the Cplant project is to construct a commodity cluster that can scale to the order of ten thousand
nodes. This number greatly exceeds the capacity for which existing message passing technologies have been
designed and implemented.

In addition to the scalability requirements of the network, these technologies must also be able to support a
scalable implementation of the Message Passing Interface (MPI) [Message Passing Interface Forum 1994]
standard, which has become the de facto standard for parallel scientific computing. While MPI does not
impose any scalability limitations, existing message passing technologies do not provide the functionality
needed to allow implementations of MPI to meet the scalability requirements of Cplant.

The following are required properties of a network architecture to avoid scalability limitations:

• Connectionless – Many connection-oriented architectures, such as VIA [Compaq, Microsoft, and Intel
1997] and TCP/IP sockets, have limitations on the number of peer connections that can be established.
In Cplant, and other large-scale parallel systems, any node must be able to communicate with any
other node without costly connection establishment and tear down.

• Network independence – Many communication systems depend on the host processor to perform
operations in order for messages in the network to be consumed. Message consumption from the
network should not be dependent on host processor activity, such as the operating system scheduler or
user-level thread scheduler. Applications must be able to continue computing while data is moved in
and out of the application’s memory.

• User-level flow control – Many communication systems manage flow control internally to avoid
depleting resources, which can significantly impact performance as the number of communicating
processes increases. An application should be able to provide final destination buffers into which the
network can deposit data directly.

• OS bypass – High performance network communication should not involve memory copies into or out
of a kernel-managed protocol stack. Because networks are now faster or as fast as memory buses, data
has to flow directly into user space.

The following are properties of a network architecture that avoids scalability limitations for an
implementation of MPI:

• Receiver-managed – Sender-managed message passing implementations require a persistent block of
memory to be available for every process, requiring memory resources to increase with job size.

• User-level bypass (application bypass) – While OS bypass is necessary for high performance, it alone
is not sufficient to support the progress rule of MPI asynchronous operations. After an application has
posted a receive, data must be delivered and acknowledged without further intervention from the
application.

• Unexpected messages – Few communication systems have support for receiving messages for which
there is no prior notification. Support for these types of messages is necessary to avoid flow control
and protocol overhead.

1.3 Background

Portals were originally designed for and implemented on the nCube 2 machine as part of the SUNMOS
(Sandia/UNM OS) [Maccabe et al. 1994] and Puma [Shuler et al. 1995] lightweight kernel development

16

projects. Portals went through two design phases [Riesen et al. 2005], the latter one is used on the
4500-node Intel TeraFLOPS machine [Sandia National Laboratories 1996]. Portals have been very
successful in meeting the needs of such a large machine, not only as a layer for a high-performance MPI
implementation [Brightwell and Shuler 1996], but also for implementing the scalable run-time environment
and parallel I/O capabilities of the machine.

The second generation portals implementation was designed to take full advantage of the hardware
architecture of large MPP machines. However, efforts to implement this same design on commodity cluster
technology identified several limitations due to the differences in network hardware, as well as to
shortcomings in the design of Portals. Version 3.0 of Portals addresses this problem by adding a thin API
over the portals data structures used to instruct the network on where and how to deliver data.

1.4 Scalability

The primary goal in the design of Portals is scalability. Portals are designed specifically for an
implementation capable of supporting a parallel job running on tens of thousands of nodes. Performance is
critical only in terms of scalability. That is, the level of message passing performance is characterized by
how far it allows an application to scale and not by how it performs in micro-benchmarks (e.g., a two-node
bandwidth or latency test).

The portals API is designed to allow for scalability, not to guarantee it. Portals cannot overcome the
shortcomings of a poorly designed application program. Applications that have inherent scalability
limitations, either through design or implementation, will not be transformed by Portals into scalable
applications. Scalability must be addressed at all levels. Portals do not inhibit scalability and do not
guarantee it either. No portals operation requires global communication or synchronization.

Similarly, a quality implementation is needed for Portals to be scalable. If the implementation or the
network protocols and hardware underneath it cannot scale to 10,000 nodes, then neither Portals nor the
application can.

To support scalability, the portals interface maintains a minimal amount of state. Portals provide reliable,
ordered delivery of messages between pairs of processes. Portals are connectionless: a process is not
required to explicitly establish a point-to-point connection with another process in order to communicate.
Moreover, all buffers used in the transmission of messages are maintained in user space. The target process
determines how to respond to incoming messages, and messages for which there are no buffers are
discarded.

IMPLEMENTATION
NOTE 1:

No wire protocol

This document does not specify a wire protocol. Portals require a
reliable communication layer. Whether that is achieved through
software or hardware is up to the implementation. For example,
in Cplant the reliable message passing protocol (RMPP) [Riesen
and Maccabe 2002] is used to make message transmission over
Myrinet reliable, while on ASCI Red the hardware is reliable
enough to make a separate protocol unnecessary.

1.5 Communication Model

Portals combine the characteristics of both one-sided and two-sided communication. They define a
“matching put” operation and a “matching get” operation. The destination of a put (or send) is not an

17

explicit address; instead, each message contains a set of match bits that allow the receiver to determine
where incoming messages should be placed. This flexibility allows Portals to support both traditional
one-sided operations and two-sided send/receive operations.

Portals allow the target to determine whether incoming messages are acceptable. A target process can
choose to accept message operations from any specific process or can choose to ignore message operations
from any specific process.

1.6 Zero Copy, OS Bypass, and Application Bypass

In traditional system architectures, network packets arrive at the network interface card (NIC), are passed
through one or more protocol layers in the operating system, and are eventually copied into the address
space of the application. As network bandwidth began to approach memory copy rates, reduction of
memory copies became a critical concern. This concern led to the development of zero-copy message
passing protocols in which message copies are eliminated or pipelined to avoid the loss of bandwidth.

A typical zero-copy protocol has the NIC generate an interrupt for the CPU when a message arrives from the
network. The interrupt handler then controls the transfer of the incoming message into the address space of
the appropriate application. The interrupt latency, the time from the initiation of an interrupt until the
interrupt handler is running, is fairly significant. To avoid this cost, some modern NICs have processors that
can be programmed to implement part of a message passing protocol. Given a properly designed protocol, it
is possible to program the NIC to control the transfer of incoming messages without needing to interrupt the
CPU. Because this strategy does not need to involve the OS on every message transfer, it is frequently called
“OS bypass.” ST [Task Group of Technical Committee T11 1998], VIA [Compaq, Microsoft, and Intel
1997], FM [Lauria et al. 1998], GM [Myricom, Inc. 1997], PM [Ishikawa et al. 1996], and Portals are
examples of OS bypass mechanisms.

Many protocols that support OS bypass still require that the application actively participates in the protocol
to ensure progress. As an example, the long message protocol of PM requires that the application receive and
reply to a request to put or get a long message. This complicates the runtime environment, requiring a thread
to process incoming requests, and significantly increases the latency required to initiate a long message
protocol. The portals message passing protocol does not require activity on the part of the application to
ensure progress. We use the term “application bypass” to refer to this aspect of the portals protocol.

IMPLEMENTATION
NOTE 2:

User memory as scratch space

The portals API allows for user memory to be altered. That
means an implementation can utilize user memory as scratch
space and staging buffers. Only after an operation succeeds and
the end event has been posted, must the user memory reflect
exactly the data that has arrived.

1.7 Faults

Given the number of components that we are dealing with and the fact that we are interested in supporting
applications that run for very long times, failures are inevitable. The portals API recognizes that the
underlying transport may not be able to successfully complete an operation once it has been initiated. This is
reflected in the fact that the portals API reports two types of events: events indicating the initiation of an
operation and events indicating the successful completion of an operation. Every initiation event is

18

eventually followed by a completion event. Completion events carry a flag which indicates whether the
operation completed successfully or not.

Between the time an operation is started and the time that the operation completes (successfully or
unsuccessfully), any memory associated with the operation should be considered volatile. That is, the
memory may be changed in unpredictable ways while the operation is progressing. Once the operation
completes, the memory associated with the operation will not be subject to further modification (from this
operation). Notice that unsuccessful operations may alter memory in an essentially unpredictable fashion.

IMPLEMENTATION
NOTE 3:

Don’t alter put or reply buffers

A quality implementation will not alter data in a user buffer that is
used in a put or reply operation. This is independent of whether
the operation succeeds or fails.

19

20

Chapter 2

An Overview of the Portals API
In this chapter, we give a conceptual overview of the portals API. The goal is to provide a context for
understanding the detailed description of the API presented in the next section.

2.1 Data Movement

A portal represents an opening in the address space of a process. Other processes can use a portal to read
(get), write (put), or atomically swap the memory associated with the portal. Every data movement
operation involves two processes, the initiator and the target . The initiator is the process that initiates the
data movement operation. The target is the process that responds to the operation by accepting the data for a
put operation, replying with the data for a get operation, or both for a getput operation.

In this discussion, activities attributed to a process may refer to activities that are actually performed by the
process or on behalf of the process. The inclusiveness of our terminology is important in the context of
application bypass. In particular, when we note that the target sends a reply in the case of a get operation, it
is possible that a reply will be generated by another component in the system, bypassing the application.

Figures 2.1, 2.2, and 2.3 present graphical interpretations of the portals data movement operations: put
(send), get, and getput (swap). In the case of a put operation, the initiator sends a put request À message to
the target . The target translates the portal addressing information in the request using its local portals
structures. The data may be part of the same packet as the put request or it may be in separate packet(s) as
shown in Figure 2.1. The portals API does not specify a wire protocol (Section 4). When the data Á has
been put into the remote memory descriptor (or been discarded), the target optionally sends an
acknowledgment Â message.

Figure 2.2 is a representation of a get operation. First, the initiator sends a request À to the target . As with
the put operation, the target translates the portal addressing information in the request using its local portals
structures. Once it has translated the portal addressing information, the target sends a reply Á that includes
the requested data.

We should note that portals address translations are only performed on nodes that respond to operations
initiated by other nodes; i.e., a target . Acknowledgments for put operations and replies to get and getput
operations bypass the portals address translation structures at the initiator .

The third operation, getput (swap), is depicted in Figure 2.3. The initiator sends a request À, possibly
containing the put data Á, to the target . The target traverses the local portals structures based on the
information in the request to find the appropriate user buffer. The target then sends the get data in a reply
message Â back to the initiator and deposits the put data in the user buffer.

2.2 Portals Addressing

One-sided data movement models (e.g., shmem [Cray Research, Inc. 1994], ST [Task Group of Technical
Committee T11 1998], and MPI-2 [Message Passing Interface Forum 1997]) typically use a triple to address
memory on a remote node. This triple consists of a process identifier, memory buffer identifier, and offset.

21

Figure 2.1. Portals Put (Send): Note that the put request À is part of the
header and the data Á is part of the body of a single message. Depending on the
network hardware capabilities, the request and data may be sent in a single large
packet or several smaller ones.

The process identifier identifies the target process, the memory buffer identifier specifies the region of
memory to be used for the operation, and the offset specifies an offset within the memory buffer.

In addition to the standard address components (process identifier, memory buffer identifier, and offset), a
portals address includes a set of match bits and information identifying the initiator (source) of the message.
This addressing model is appropriate for supporting one-sided operations, as well as traditional two-sided
message passing operations. Specifically, the portals API provides the flexibility needed for an efficient
implementation of MPI-1, which defines two-sided operations with one-sided completion semantics.

Figure 2.4 is a graphical representation of the structures used by a target in the interpretation of a portals
address. The node identifier is used to route the message to the appropriate node and is not reflected in this
diagram. The process identifier is used to select the correct target process and the portal table it has set up.
There is one portal table for each process and each interface initialized by the process; i.e., if a process
initializes an interface for a Myrinet and then initializes another interface for an Ethernet, two portal tables
will be created within that process, one for each interface. This is not reflected in the diagram.

The portal index is used to select an entry in the portal table. Each entry of the portal table identifies a match
list. Each element of the match list specifies two bit patterns: a set of “don’t care” bits and a set of “must
match” bits. In addition to the two sets of match bits, each match list entry has at most one memory
descriptor. Each memory descriptor identifies a memory region and an optional event queue. The memory
region specifies the memory to be used in the operation, and the event queue is used to record information
about the operations.

22

Figure 2.2. Portals Get.

Figure 2.4 illustrates another important concept. The space is divided into protected and application (user)
space, while the large data buffers reside in user space. Most of the portals data structures reside in protected
space. Often the portals control structures reside inside the operating system kernel or the network interface
card. However, they can also reside in a library or another process. See implementation note 20 for possible
locations of the event queues.

Figure 2.5 illustrates the steps involved in translating a portals address, starting from the first element in a
match list. If the match criteria specified in the match list entry are met and the memory descriptor accepts
the operation1, the operation (put, get, or getput) is performed using the memory region specified in the
memory descriptor. Note that matching is done using the match bits, ignore bits, node identifier, and process
identifier.

If the memory descriptor specifies that it is to be unlinked when a threshold has been exceeded, the match
list entry is removed from the match list, and the resources associated with the memory descriptor and match
list entry are reclaimed. If there is an event queue specified in the memory descriptor and the memory
descriptor accepts the event, the operation is logged in the event queue. A start event is written before the
memory descriptor is altered, and an end event is written when no more actions, as part of the current
operation, will be performed on this memory descriptor.

If the match criteria specified in the match list entry are not met, there is no memory descriptor associated
with the match list entry, or the memory descriptor associated with the match list entry rejects the operation,
the address translation continues with the next match list entry. If the end of the match list has been reached,
the address translation is aborted and the incoming requested is discarded.

1Memory descriptors can reject operations because a threshold has been exceeded, the memory region does not have sufficient space,
or the wrong operation is attempted. See Section 3.10.

23

Figure 2.3. Portals Getput (swap).

IMPLEMENTATION
NOTE 4:

Protected space

Protected space as shown in Figure 2.4 does not mean it has to
reside inside the kernel or a different address space. The portals
implementation must guarantee that no alterations of portals
structures by the user can harm another process or the portals
implementation.

IMPLEMENTATION
NOTE 5:

Write-only event queue

The event queue depicted in Figure 2.4 is a write-only data
structure from the point of view of the portals implementation.
This avoids reads and locking, which may be expensive from
within an NIC.

2.3 Access Control

A process can control access to its portals using an access control list. Each entry in the access control list
specifies a process identifier, possibly a job identifier, a user identifier, and a portal table index. The access
control list is actually an array of entries. Each incoming request includes an index into the access control
list (i.e., a “cookie” or hint). If the identifier of the process issuing the request does not match the identifier

24

Figure 2.4. Portals Addressing Structures: The example shows two memory
descriptors sharing an event queue, one memory descriptor with its own event
queue, and a memory descriptor without an event queue. The diagram also shows
where incoming header information and data is processed as matching and data
deposition take place.

specified in the access control list entry or the portal table index specified in the request does not match the
portal table index specified in the access control list entry, the request is rejected. Process identifiers, job
identifiers, user identifiers, and portal table indexes may include wildcard values to increase the flexibility of
this mechanism.

Two aspects of this design merit further discussion. First, the model assumes that the information
identifying the initiator in a message header is trustworthy. That information includes the sender’s process
identifier, node identifier, user identifier, and job identifier. In most contexts, we assume that the entity that
constructs the header is trustworthy; however, using cryptographic techniques, we could devise a protocol
that would ensure the authenticity of the sender.

Second, because the access check is performed by the receiver, it is possible that a malicious process will
generate thousands of messages that will be denied by the receiver. This could saturate the network and/or
the receiver, resulting in a denial of service attack. Moving the check to the sender using capabilities, would
remove the potential for this form of attack. However, the solution introduces the complexities of capability
management (exchange of capabilities, revocation, protections, etc). The environments for which Portals
were originally designed do not usually have this problem.

25

Figure 2.5. Portals Address Translation.

2.4 Multi-Threaded Applications

The portals API supports a generic view of multi-threaded applications. From the perspective of the portals
API, an application program is defined by a set of processes. Each process defines a unique address space.
The portals API defines access to this address space from other processes (using portals addressing and the
data movement operations). A process may have one or more threads executing in its address space.

With the exception of PtlEQWait() and possibly PtlEQPoll(), every function in the portals API is
non-blocking and atomic with respect to both other threads and external operations that result from data
movement operations. While individual operations are atomic, sequences of these operations may be
interleaved between different threads and with external operations. The portals API does not provide any
mechanisms to control this interleaving. It is expected that these mechanisms will be provided by the API
used to create threads.

26

Chapter 3

The Portals API
3.1 Naming Conventions and Typeface Usage

The portals API defines four types of entities: functions, types, return codes, and constants. Functions
always start with Ptl and use mixed upper and lower case. When used in the body of this report, function
names appear in sans serif bold face, e.g., PtlInit(). The functions associated with an object type will have
names that start with Ptl, followed by the two letter object type code shown in column yy in Table 3.1. As
an example, the function PtlEQAlloc() allocates resources for an event queue.

Table 3.1. Object Type Codes.

yy xx Name Section
NI ni Network Interface 3.5
ME me Match list Entry 3.9
MD md Memory Descriptor 3.10
EQ eq Event Queue 3.11

Type names use lower case with underscores to separate words. Each type name starts with ptl and ends
with t. When used in the body of this report, type names appear like this: ptl match bits t.

Return codes start with the characters PTL and appear like this: PTL OK.

Names for constants use upper case with underscores to separate words. Each constant name starts with
PTL . When used in the body of this report, constant names appear like this: PTL ACK REQ.

The definition of named constants, function prototypes, and type definitions must be supplied in a file named
portals3.h that can be included by programs using portals.

IMPLEMENTATION
NOTE 6:

README and portals3.h

Each implementation must supply an include file named
portals3.h with the definitions specified in this document.
There should also be a README file that explains
implementation specific details. For example, it should list the
limits (Section 3.5.1) for this implementation and provide a list of
status registers that are provided (Section 3.2.7). See
Appendix C for a template.

3.2 Base Types

The portals API defines a variety of base types. These types represent a simple renaming of the base types
provided by the C programming language. In most cases these new type names have been introduced to
improve type safety and to avoid issues arising from differences in representation sizes (e.g., 16-bit or 32-bit
integers). Table 3.4 lists all the types defined by Portals.

27

3.2.1 Sizes

The type ptl size t is an unsigned 64-bit integral type used for representing sizes.

3.2.2 Handles

Objects maintained by the API are accessed through handles. Handle types have names of the form
ptl handle xx t, where xx is one of the two letter object type codes shown in Table 3.1, column xx. For
example, the type ptl handle ni t is used for network interface handles. Like all portals types, their names
use lower case letters and underscores are used to separate words.

Each type of object is given a unique handle type to enhance type checking. The type ptl handle any t can be
used when a generic handle is needed. Every handle value can be converted into a value of type
ptl handle any t without loss of information.

Handles are not simple values. Every portals object is associated with a specific network interface and an
identifier for this interface (along with an object identifier) is part of the handle for the object.

IMPLEMENTATION
NOTE 7:

Network interface encoded in handle

Each handle must encode the network interface it is associated
with.

The constant PTL EQ NONE, of type ptl handle eq t, is used to indicate the absence of an event queue. See
Sections 3.10.1 and 3.10.6 for uses of this value. The special constant PTL INVALID HANDLE is used to
represent an invalid handle.

3.2.3 Indexes

The types ptl pt index t and ptl ac index t are integral types used for representing portal table indexes and
access control table indexes respectively. See Section 3.5.1 and 3.5.2 for limits on values of these types.

3.2.4 Match Bits

The type ptl match bits t is capable of holding unsigned 64-bit integer values.

3.2.5 Network Interfaces

The type ptl interface t is an integral type used for identifying different network interfaces. Users will need
to consult the implementation documentation to determine appropriate values for the interfaces available.
The special constant PTL IFACE DEFAULT identifies the default interface.

3.2.6 Identifiers

The type ptl nid t is an integral type used for representing node identifiers.ptl pid t is an integral type for
representing process identifiers, ptl uid t is an integral type for representing user identifiers, and ptl jid t is
an integral type for representing job identifiers.

28

The special values PTL PID ANY matches any process identifier, PTL NID ANY matches any node identifier,
PTL UID ANY matches any user identifier, and PTL JID ANY matches any job identifier. See Section 3.12.1
for uses of these values.

3.2.7 Status Registers

Each network interface maintains an array of status registers that can be accessed using the PtlNIStatus()
function (Section 3.5.4). The type ptl sr index t defines the types of indexes that can be used to access the
status registers. The only index defined for all implementations is PTL SR DROP COUNT which identifies the
status register that counts the dropped requests for the interface. Other indexes (and registers) may be
defined by the implementation.

The type ptl sr value t defines the types of values held in status registers. This is a signed integer type. The
size is implementation dependent but must be at least 32 bits.

3.3 Return Codes

The API specifies return codes that indicate success or failure of a function call. In the case where the failure
is due to invalid arguments being passed into the function, the exact behavior of an implementation is
undefined. The API suggests error codes that provide more detail about specific invalid parameters, but an
implementation is not required to return these specific error codes. For example, an implementation is free
to allow the caller to fault when given an invalid address, rather than return PTL SEGV. In addition, an
implementation is free to map these return codes to standard return codes where appropriate. For example, a
Linux kernel-space implementation could map portals return codes to POSIX-compliant return codes.
Table 3.6 lists all return codes used by Portals.

3.4 Initialization and Cleanup

The portals API includes a function, PtlInit(), to initialize the library and a function, PtlFini(), to clean up
after the process is done using the library.

A child process does not inherit any portals resources from its parent. A child process whose parent has
initialized portals must shut down and re-initialize portals in order to obtain new, valid portals resources. If a
child process fails to shut down and re-initialize portals, behavior is undefined for both the parent and the
child.

3.4.1 PtlInit

The PtlInit() function initializes the portals library. PtlInit() must be called at least once by a process before
any thread makes a portals function call but may be safely called more than once.

Function Prototype for PtlInit

int PtlInit (int *max interfaces);

29

Arguments

max interfaces output On successful return, this location will hold the maximum number of
interfaces that can be initialized.

Return Codes

PTL OK Indicates success.

PTL FAIL Indicates an error during initialization.

PTL SEGV Indicates that max interfaces is not a legal address.

3.4.2 PtlFini

The PtlFini() function cleans up after the portals library is no longer needed by a process. After this function
is called, calls to any of the functions defined by the portals API or use of the structures set up by the portals
API will result in undefined behavior. This function should be called once and only once during termination
by a process. Typically, this function will be called in the exit sequence of a process. Individual threads
should not call PtlFini() when they terminate.

Function Prototype for PtlFini

void PtlFini (void);

3.5 Network Interfaces

The portals API supports the use of multiple network interfaces. However, each interface is treated as an
independent entity. Combining interfaces (e.g., “bonding” to create a higher bandwidth connection) must be
implemented by the process or embedded in the underlying network. Interfaces are treated as independent
entities to make it easier to cache information on individual network interface cards.

Once initialized, each interface provides a portal table, an access control table, and a collection of status
registers. In order to facilitate the development of portable portals applications, a compliant implementation
must provide at least 8 portal table entries. See Section 3.9 for a discussion of updating portal table entries
using the PtlMEAttach() or PtlMEAttachAny() functions. See Section 3.12 for a discussion of the
initialization and updating of entries in the access control table. See Section 3.5.4 for a discussion of the
PtlNIStatus() function, which can be used to read the value of a status register.

Every other type of portals object (e.g., memory descriptor, event queue, or match list entry) is associated
with a specific network interface. The association to a network interface is established when the object is
created and is encoded in the handle for the object.

Each network interface is initialized and shut down independently. The initialization routine, PtlNIInit(),
returns a handle for an interface object which is used in all subsequent portals operations. The PtlNIFini()
function is used to shut down an interface and release any resources that are associated with the interface.
Network interface handles are associated with processes, not threads. All threads in a process share all of the
network interface handles.

The portals API also defines the PtlNIStatus() function (Section 3.5.4) to query the status registers for a

30

network interface, the PtlNIDist() function (Section 3.5.5) to determine the “distance” to another process,
and the PtlNIHandle() function (Section 3.5.6) to determine the network interface with which an object is
associated.

3.5.1 The Network Interface Limits Type

The function PtlNIInit() accepts a pointer to a list of desired limits and can fill a list with the actual values
supported by the network interface. The two lists are of type ptl ni limits t and include the following
members:

typedef struct {
int max mes;
int max mds;
int max eqs;
int max ac index;
int max pt index ;
int max md iovecs;
int max me list ;
int max getput md;

} ptl ni limits t ;

Limits

max mes Maximum number of match list entries that can be allocated at any
one time.

max mds Maximum number of memory descriptors that can be allocated at any
one time.

max eqs Maximum number of event queues that can be allocated at any one
time.

max ac index Largest access control table index for this interface, valid indexes
range from zero to max ac index, inclusive.

max pt index Largest portal table index for this interface, valid indexes range from
8 (page 30) to max pt index, inclusive.

max md iovecs Maximum number of io vectors for a single memory descriptor for
this interface.

max me list Maximum number of match entries that can be attached to any portal
table index.

max getput md Maximum length, in bytes, of the local and remote memory
descriptors used in the atomic swap PtlGetPut() operation. Minimum
is 8.

IMPLEMENTATION
NOTE 8:

Maximum length of PtlGetPut() operation

An implementation has to allow at least 8 bytes in getput
operations. However, it is unlikely that many implementations will
support more than 8-byte memory descriptors.

31

3.5.2 PtlNIInit

The PtlNIInit() function initializes the portals API for a network interface (NI). A process using portals must
call this function at least once before any other functions that apply to that interface. For subsequent calls to
PtlNIInit() from within the same process (either by different threads or the same thread), the desired limits
will be ignored and the call will return the existing network interface handle and actual limits.

Function Prototype for PtlNIInit

int PtlNIInit (ptl interface t iface ,
ptl pid t pid,
ptl ni limits t *desired ,
ptl ni limits t *actual ,
ptl handle ni t *ni handle);

Arguments

iface input Identifies the network interface to be initialized. (See Section 3.2.5 for
a discussion of values used to identify network interfaces.)

pid input Identifies the desired process identifier (for well known process
identifiers). The value PTL PID ANY may be used to let the portals
library select a process identifier.

desired input If not NULL, points to a structure that holds the desired limits.

actual output If not NULL, on successful return, the location pointed to by actual
will hold the actual limits.

ni handle output On successful return, this location will hold a handle for the interface.

Discussion: The use of desired is implementation dependent. In particular, an implementation
may choose to ignore this argument

Discussion: Each interface has its own sets of limits. In implementations that support multiple
interfaces, the limits passed to and returned by PtlNIInit() apply only to the interface specified in
iface.

The desired limits are used to offer a hint to an implementation as to the amount of resources needed, and
the implementation returns the actual limits available for use. In the case where an implementation does not
have any pre-defined limits, it is free to return the largest possible value permitted by the corresponding type
(e.g., INT MAX). A quality implementation will enforce the limits that are returned and take the appropriate
action when limits are exceeded, such as using the PTL NO SPACE return code. The caller is permitted to
use maximum values for the desired fields to indicate that the limit should be determined by the
implementation.

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL IFACE INVALID Indicates that iface is not a valid network interface.

32

PTL NO SPACE Indicates that there is insufficient memory to initialize the interface.

PTL PID INVALID Indicates that pid is not a valid process identifier.

PTL SEGV Indicates that actual or ni handle is not a legal address.

IMPLEMENTATION
NOTE 9:

Multiple calls to PtlNIInit()

If PtlNIInit() gets called more than once per interface, then the
implementation should fill in actual and ni handle. It should
ignore pid . PtlGetId() (Section 3.7) can be used to retrieve the
pid .

3.5.3 PtlNIFini

The PtlNIFini() function is used to release the resources allocated for a network interface. Once the
PtlNIFini() operation has been started, the results of pending API operations (e.g., operations initiated by
another thread) for this interface are undefined. Similarly, the effects of incoming operations (put, get,
getput) or return values (acknowledgment and reply) for this interface are undefined.

Function Prototype for PtlNIFini

int PtlNIFini (ptl handle ni ti ni handle);

Arguments

ni handle input A handle for the interface to shut down.

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL NI INVALID Indicates that ni handle is not a valid network interface handle.

3.5.4 PtlNIStatus

The PtlNIStatus() function returns the value of a status register for the specified interface. (See Section 3.2.7
for more information on status register indexes and status register values.)

Function Prototype for PtlNIStatus

int PtlNIStatus (ptl handle ni t ni handle ,
ptl sr index t status register ,
ptl sr value t *status);

33

Arguments

ni handle input A handle for the interface to use.

status register input An index for the status register to read.

status output On successful return, this location will hold the current value of the
status register.

Discussion: The only status register that must be defined is a drop count register
(PTL SR DROP COUNT). Implementations may define additional status registers. Identifiers
for the indexes associated with these registers should start with the prefix PTL SR .

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL NI INVALID Indicates that ni handle is not a valid network interface handle.

PTL SR INDEX INVALID Indicates that status register is not a valid status register.

PTL SEGV Indicates that status is not a legal address.

3.5.5 PtlNIDist

The PtlNIDist() function returns the distance to another process using the specified interface. Distances are
only defined relative to an interface. Distance comparisons between different interfaces on the same process
may be meaningless.

Function Prototype for PtlNIDist

int PtlNIDist (ptl handle ni t ni handle ,
ptl process id t process ,
unsigned long *distance);

Arguments

ni handle input A handle for the interface to use.

process input An identifier for the process whose distance is being requested.

distance output On successful return, this location will hold the distance to the remote
process.

Discussion: This function should return a static measure of distance. Examples include
minimum latency, the inverse of available bandwidth, or the number of switches between the
two endpoints.

34

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL NI INVALID Indicates that ni handle is not a valid network interface handle.

PTL PROCESS INVALID Indicates that process is not a valid process identifier.

PTL SEGV Indicates that distance is not a legal address.

IMPLEMENTATION
NOTE 10:

Measure of PtlNIDist()

An implementation should state in its documentation what
measure, if any, is returned by PtlNIDist(). (Appendix C.)

3.5.6 PtlNIHandle

The PtlNIHandle() function returns a handle for the network interface with which the object identified by
handle is associated. If the object identified by handle is a network interface, this function returns the same
value it is passed.

Function Prototype for PtlNIHandle

int PtlNIHandle(ptl handle any t handle,
ptl handle ni t *ni handle);

Arguments

handle input A handle for the object.

ni handle output On successful return, this location will hold a handle for the network
interface associated with handle.

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL HANDLE INVALID Indicates that handle is not a valid handle.

PTL SEGV Indicates that ni handle is not a legal address.

IMPLEMENTATION
NOTE 11:

Object encoding in handle

Every handle should encode the network interface and the object
identifier relative to this handle. Both are presumably encoded
using integer values.

35

3.6 User Identification

Every process runs on behalf of a user. User identifiers travel in the trusted portion of the header of a portals
message. They can be used at the target to limit access via an access control list (Section 3.12).

3.6.1 PtlGetUid

The PtlGetUid() function is used to retrieve the user identifier of a process.

Function Prototype for PtlGetUid

int PtlGetUid(ptl handle ni t ni handle ,
ptl uid t *uid);

Arguments

ni handle input A network interface handle.

uid output On successful return, this location will hold the user identifier for the
calling process.

Discussion: Note that user identifiers are dependent on the network interface(s). In particular,
if a node has multiple interfaces, a process may have multiple user identifiers.

Return Codes

PTL OK Indicates success.

PTL NI INVALID Indicates that ni handle is not a valid network interface handle.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL SEGV Indicates that uid is not a legal address.

3.7 Process Identification

Processes that use the portals API can be identified using a node identifier and process identifier. Every node
accessible through a network interface has a unique node identifier and every process running on a node has
a unique process identifier. As such, any process in the computing system can be uniquely identified by its
node identifier and process identifier.

The portals API defines a type, ptl process id t for representing process identifiers, and a function,
PtlGetId(), which can be used to obtain the identifier of the current process.

Discussion: The portals API does not include thread identifiers. Messages are delivered to
processes (address spaces) not threads (contexts of execution).

36

3.7.1 The Process Identification Type

The ptl process id t type uses two identifiers to represent a process identifier: a node identifier nid and a
process identifier pid.

typedef struct {
ptl nid t nid;
ptl pid t pid;

} ptl process id t ;

3.7.2 PtlGetId

Function Prototype for PtlGetId

int PtlGetId (ptl handle ni t ni handle ,
ptl process id t *id);

Arguments

ni handle input A network interface handle.

id output On successful return, this location will hold the identifier for the
calling process.

Discussion: Note that process identifiers are dependent on the network interface(s). In
particular, if a node has multiple interfaces, it may have multiple process identifiers.

Return Codes

PTL OK Indicates success.

PTL NI INVALID Indicates that ni handle is not a valid network interface handle.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL SEGV Indicates that id is not a legal address.

3.8 Process Aggregation

It is useful in the context of a parallel machine to represent all of the processes in a parallel job through an
aggregate identifier. The portals API provides a mechanism for supporting such job identifiers for these
systems. However, job identifiers need not be supported by all systems. In order to be fully supported, job
identifiers must be included as a trusted part of a message header, as described in Section 2.3.

The job identifier is an opaque identifier shared between all of the distributed processes of an application
running on a parallel machine. All application processes and job-specific support programs, such as the
parallel job launcher, share the same job identifier. This identifier is assigned by the runtime system upon

37

job launch and is guaranteed to be unique among application jobs across the entire distributed system. An
individual serial process may be assigned a job identifier that is not shared with any other processes in the
system or the constant PTL JID NONE can be returned.

Implementations that do not support job identifiers should return the value PTL JID NONE when PtlGetId() is
called.

3.8.1 PtlGetJid

Function Prototype for PtlGetJid

int PtlGetJid (ptl handle ni t ni handle ,
ptl jid t *jid);

Arguments

ni handle input A network interface handle.

jid output On successful return, this location will hold the job identifier for the
calling process.

Return Codes

PTL OK Indicates success.

PTL NI INVALID Indicates the ni handle is not a valid network interface handle.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL SEGV Indicates that jid is not a legal address.

3.9 Match List Entries and Match Lists

A match list is a chain of match list entries. Each match list entry includes a pointer to a memory descriptor
and a set of match criteria. The match criteria can be used to reject incoming requests based on process
identifier or the match bits provided in the request. A match list is created using the PtlMEAttach() or
PtlMEAttachAny() functions, which create a match list consisting of a single match list entry, attach the
match list to the specified portal index, and return a handle for the match list entry. Match entries can be
dynamically inserted and removed from a match list using the PtlMEInsert() and PtlMEUnlink() functions.

3.9.1 Match Entry Type Definitions

The type ptl unlink t is used to specify what happens when the memory descriptor that belongs to this match
list entry is unlinked. If PTL UNLINK is specified, then the match list entry will be unlinked (removed from
the match list and resources freed) when the memory descriptor is unlinked. For match list entries that
should remain in the list even after the memory descriptor is unlinked, the value PTL RETAIN should be used.

Values of the type ptl ins pos t are used to control where a new match list entry is inserted. The value

38

PTL INS BEFORE is used to insert the new entry before the current entry or before the head of the list. The
value PTL INS AFTER is used to insert the new entry after the current entry or after the last item in the list.

typedef enum {PTL RETAIN, PTL UNLINK} ptl unlink t;
typedef enum {PTL INS BEFORE, PTL INS AFTER} ptl ins pos t;

3.9.2 PtlMEAttach

The PtlMEAttach() function creates a match list consisting of a single entry and attaches this list to the
portal table for ni handle. This function can be used to create a new list, insert a match entry at the
beginning of an existing list, or append a match entry at the end of an existing list.

Function Prototype for PtlMEAttach

int PtlMEAttach(ptl handle ni t ni handle ,
ptl pt index t pt index ,
ptl process id t match id,
ptl match bits t match bits ,
ptl match bits t ignore bits ,
ptl unlink t unlink op ,
ptl ins pos t position ,
ptl handle me t *me handle);

Arguments

ni handle input A handle for the interface to use.

pt index input The portal table index where the match list should be attached.

match id input Specifies the match criteria for the process identifier of the requester.
The constants PTL PID ANY and PTL NID ANY can be used to wildcard
either of the identifiers in the ptl process id t structure.

match bits, ignore bits input Specify the match criteria to apply to the match bits in the incoming
request. The ignore bits are used to mask out insignificant bits in the
incoming match bits. The resulting bits are then compared to the
match list entry’s match bits to determine if the incoming request
meets the match criteria.

unlink op input Indicates the match list entry should be unlinked when the memory
descriptor associated with this match list entry is unlinked. (Note that
the check for unlinking a match entry only occurs when the memory
descriptor is unlinked.) Valid values are PTL UNLINK and PTL RETAIN.

position input Indicates whether the new match entry should be prepended or
appended to the existing match list. If there is no existing list, this
argument is ignored and the new match entry becomes the only entry
in the list. Allowed constants: PTL INS BEFORE, PTL INS AFTER.

me handle output On successful return, this location will hold a handle for the newly
created match list entry.

39

Discussion: Incoming match bits undergo a logical NAND operation with the ignore bits. The
match bits stored in the match list entry undergo the same operation. The two results are then
compared. The following code fragment illustrates this:

(incoming bits & ˜ignore bits) == (match bits & ˜ignore bits)

An optimized version of that is shown in the following code fragment:

((incoming bits ˆ match bits) & ˜ignore bits) == 0

Return Codes

PTL OK Indicates success.

PTL NI INVALID Indicates that ni handle is not a valid network interface handle.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL PT INDEX INVALID Indicates that pt index is not a valid portal table index.

PTL PROCESS INVALID Indicates that match id is not a valid process identifier.

PTL NO SPACE Indicates that there is insufficient memory to allocate the match list entry.

PTL ME LIST TOO LONG Indicates that the resulting match list is too long. The maximum length for a
match list is defined by the interface.

IMPLEMENTATION
NOTE 12:

Checking match id

Checking whether a match id is a valid process identifier may
require global knowledge. However, PtlMEAttach() is not meant
to cause any communication with other nodes in the system.
Therefore, PTL PROCESS INVALID may not be returned in some
cases where it would seem appropriate.

3.9.3 PtlMEAttachAny

The PtlMEAttachAny() function creates a match list consisting of a single entry and attaches this list to an
unused portal table entry for iface.

Function Prototype for PtlMEAttachAny

int PtlMEAttachAny(ptl handle ni t ni handle ,
ptl pt index t *pt index ,
ptl process id t match id,
ptl match bits t match bits ,
ptl match bits t ignore bits ,
ptl unlink t unlink op ,
ptl handle me t *me handle);

40

Arguments

ni handle input A handle for the interface to use.

pt index output On successful return, this location will hold the portal index where the
match list has been attached.

match id, match bits,
ignore bits , unlink op input See the discussion for PtlMEAttach().

me handle output On successful return, this location will hold a handle for the newly
created match list entry.

Return Codes

PTL OK Indicates success.

PTL NI INVALID Indicates that iface is not a valid network interface handle.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL PROCESS INVALID Indicates that match id is not a valid process identifier.

PTL NO SPACE Indicates that there is insufficient memory to allocate the match list entry.

PTL PT FULL Indicates that there are no free entries in the portal table.

3.9.4 PtlMEInsert

The PtlMEInsert() function creates a new match list entry and inserts this entry into the match list containing
base.

Function Prototype for PtlMEInsert

int PtlMEInsert(ptl handle me t base,
ptl process id t match id,
ptl match bits t match bits ,
ptl match bits t ignore bits ,
ptl unlink t unlink op ,
ptl ins pos t position ,
ptl handle me t *me handle);

Arguments

base input A handle for a match entry. The new match entry will be inserted
immediately before or immediately after this match entry.

match id, match bits,
ignore bits, unlink op input See the discussion for PtlMEAttach()

position input Indicates whether the new match entry should be inserted before or
after the base entry. Allowed constants: PTL INS BEFORE,
PTL INS AFTER.

me handle input See the discussion for PtlMEAttach().

41

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL PROCESS INVALID Indicates that match id is not a valid process identifier.

PTL ME INVALID Indicates that base is not a valid match entry handle.

PTL ME LIST TOO LONG Indicates that the resulting match list is too long. The maximum length for a
match list is defined by the interface.

PTL NO SPACE Indicates that there is insufficient memory to allocate the match entry.

3.9.5 PtlMEUnlink

The PtlMEUnlink() function can be used to unlink a match entry from a match list. This operation also
releases any resources associated with the match entry. If a memory descriptor is attached to the match entry,
then it will be unlinked as well. It is an error to use the match entry handle after calling PtlMEUnlink().

Function Prototype for PtlMEUnlink

int PtlMEUnlink(ptl handle me t me handle);

Arguments

me handle input A handle for the match entry to be unlinked.

Discussion: If the memory descriptor attached to this match entry has pending operations; e.g.,
an unfinished reply operation, then PtlMEUnlink() will return PTL ME IN USE, and neither the
match entry nor the memory descriptor will be unlinked.

PtlMEUnlink() does not generate a PTL EVENT UNLINK event.

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL ME INVALID Indicates that me handle is not a valid match entry handle.

PTL ME IN USE Indicates that the match list entry has pending operations and cannot be
unlinked.

3.10 Memory Descriptors

A memory descriptor contains information about a region of a process’ memory and optionally points to an
event queue where information about the operations performed on the memory descriptor are recorded. The
portals API provides two operations to create memory descriptors: PtlMDAttach() and PtlMDBind(); one

42

operation to update a memory descriptor: PtlMDUpdate(); and one operation to unlink and release the
resources associated with a memory descriptor: PtlMDUnlink().

IMPLEMENTATION
NOTE 13:

Pairing of match list entries and memory descriptors

Because match list entries and memory descriptors almost
always come in pairs and transfer of them across a protection
boundary is often expensive, some implementations choose to
combine the two data structures internally.

3.10.1 The Memory Descriptor Type

The ptl md t type defines the visible parts of a memory descriptor. Values of this type are used to initialize
and update the memory descriptors.

typedef struct {
void *start ;
ptl size t length ;
int threshold ;
ptl size t max size;
unsigned int options ;
void *user ptr ;
ptl handle eq t eq handle;

} ptl md t;

Members

start, length Specify the memory region associated with the memory descriptor.
The start member specifies the starting address for the memory
region and the length member specifies the length of the region. The
start member can be NULL provided that the length member is zero.
Zero-length buffers (NULL MD) are useful to record events. There
are no alignment restrictions on the starting address or the length of
the region; although unaligned messages may be slower (i.e., lower
bandwidth and/or longer latency) on some implementations.

threshold Specifies the maximum number of operations that can be performed
on the memory descriptor. An operation is any action that could
possibly generate an event. (See Section 3.11.1 for the different types
of events). In the usual case, the threshold value is decremented for
each operation on the memory descriptor. When the threshold value
is zero, the memory descriptor is inactive, and does not respond to
operations. A memory descriptor can have an initial threshold value
of zero to allow for manipulation of an inactive memory descriptor by
the local process. A threshold value of PTL MD THRESH INF indicates
that there is no bound on the number of operations that may be
applied to a memory descriptor. Note that local operations, e.g.,
PtlMDUpdate(), are not applied to the threshold count. Local
operations do generate events, however. (Table 3.3.)

43

max size Specifies the largest incoming request that the memory descriptor
should be respond to. When the unused portion of a memory
descriptor (length - local offset) falls below this value, the memory
descriptor becomes inactive and does not respond to further
operations. This value is only used if the PTL MD MAX SIZE option is
specified. It is ignored if PTL MD MANAGE REMOTE is set.

options Specifies the behavior of the memory descriptor. The following
options can be selected: enable put operations (yes or no), enable get
operations (yes or no), offset management (local or remote), message
truncation (yes or no), acknowledgment (yes or no), use
scatter/gather vectors, disable start events, and disable end events.
Values for this argument can be constructed using a bitwise OR of the
following values:

PTL MD OP PUT Specifies that the memory descriptor will respond to put operations.
By default, memory descriptors reject put operations.

PTL MD OP GET Specifies that the memory descriptor will respond to get operations.
By default, memory descriptors reject get operations.

PTL MD MANAGE REMOTE Specifies that the offset used in accessing the memory region is
provided by the incoming request. By default, the offset is
maintained locally. When the offset is maintained locally, the offset is
incremented by the length of the request so that the next operation
(put and/or get) will access the next part of the memory region.
Note that only one offset variable exists per memory descriptor. If
both put and get operations are performed on a memory descriptor,
the value of that single variable is updated each time.

PTL MD TRUNCATE Specifies that the length provided in the incoming request can be
reduced to match the memory available in the region. (The memory
available in a memory region is determined by subtracting the offset
from the length of the memory region.) By default, if the length in
the incoming operation is greater than the amount of memory
available, the operation is rejected.

PTL MD ACK DISABLE Specifies that an acknowledgment should not be sent for incoming
put operations, even if requested. By default, acknowledgments are
sent for put operations that request an acknowledgment.
Acknowledgments are never sent for get operations. The data sent in
the reply serves as an implicit acknowledgment.

PTL MD IOVEC Specifies that the start argument is a pointer to an array of type
ptl md iovec t (Section 3.10.2) and the length argument is the length
of the array. This allows for a scatter/gather capability for memory
descriptors. A scatter/gather memory descriptor behaves exactly as a
memory descriptor that describes a single virtually contiguous region
of memory. The local offset, truncation semantics, etc., are identical.

PTL MD MAX SIZE Specifies that the max size field in the memory descriptor is to be
used. This option is ignored if PTL MD MANAGE REMOTE is set.

PTL MD EVENT START DISABLE Specifies that this memory descriptor should not generate start events.

PTL MD EVENT END DISABLE Specifies that this memory descriptor should not generate end events.

44

Note: It is not considered an error to have a memory descriptor that
does not respond to either put or get operations: Every memory
descriptor responds to reply operations. Nor is it considered an error
to have a memory descriptor that responds to both put and get
operations. In fact, a memory descriptor used in a getput operation
must be configured to respond to both put and get operations.

If both PTL MD EVENT START DISABLE and
PTL MD EVENT END DISABLE are specified, no events will be
generated. This includes PTL EVENT UNLINK but not PTL EVENT ACK.
If start or end events (or both) are enabled, then PTL EVENT UNLINK
events will be generated.

user ptr A user-specified value that is associated with the memory descriptor.
The value does not need to be a pointer, but must fit in the space used
by a pointer. This value (along with other values) is recorded in
events associated with operations on this memory descriptor1.

eq handle A handle for the event queue used to log the operations performed on
the memory region. If this argument is PTL EQ NONE, operations
performed on this memory descriptor are not logged.

3.10.2 The Memory Descriptor I/O Vector Type

The ptl md iovec t type is used to describe scatter/gather buffers of a memory descriptor in conjunction with
the PTL MD IOVEC option. The ptl md iovec t is intended to be a type definition of the struct iovec type
on systems that already support this type.

typedef struct {
void *iov base ;
ptl size t iov len ;

} ptl md iovec t ;

3.10.3 PtlMDAttach

The PtlMDAttach() operation is used to create a memory descriptor and attach it to a match list entry. An
error code is returned if this match list entry already has an associated memory descriptor.

Function Prototype for PtlMDAttach

int PtlMDAttach(ptl handle me t me handle,
ptl md t md,
ptl unlink t unlink op ,
ptl handle md t *md handle);

1Tying the memory descriptor to a user-defined value can be useful when multiple memory descriptor share the same event queue
or when the memory descriptor needs to be associated with a data structure maintained by the process outside of the portals library.
For example, an MPI implementation can set the user ptr argument to the value of an MPI Request. This direct association allows for
processing of memory descriptor’s by the MPI implementation without a table lookup or a search for the appropriate MPI Request.

45

Arguments

me handle input A handle for the match entry that the memory descriptor will be
associated with.

md input Provides initial values for the user-visible parts of a memory
descriptor. Other than its use for initialization, there is no linkage
between this structure and the memory descriptor maintained by the
API.

unlink op input A flag to indicate whether the memory descriptor is unlinked when it
becomesinactive, either because the operation threshold drops to zero
or because the max size threshold value has been exceeded. (Note that
the check for unlinking a memory descriptor only occurs after the
completion of a successful operation. If the threshold is set to zero
during initialization or using PtlMDUpdate(), the memory descriptor
is not unlinked.)
Values of the type ptl unlink t are used to control whether an item is
unlinked from a list. The value PTL UNLINK enables unlinking. The
value PTL RETAIN disables unlinking.

md handle output On successful return, this location will hold a handle for the newly
created memory descriptor. The md handle argument can be NULL, in
which case the handle will not be returned.

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL ME IN USE Indicates that me handle already has a memory descriptor attached.

PTL ME INVALID Indicates that me handle is not a valid match entry handle.

PTL MD ILLEGAL Indicates that md is not a legal memory descriptor. This may happen because
the memory region defined in md is invalid or because the network interface
associated with the eq handle in md is not the same as the network interface
associated with me handle. See implementation note 14.

PTL EQ INVALID Indicates that the event queue associated with md is not valid.

PTL NO SPACE Indicates that there is insufficient memory to allocate the memory descriptor.

PTL SEGV Indicates that md handle is not a legal address.

IMPLEMENTATION
NOTE 14:

Checking legality of md

PtlMDAttach() and the other functions in this section may not be
able to determine whether an md is legal or not. Therefore, even
if PTL MD ILLEGAL is not returned, an illegal md may cause an
application to be terminated or behave in an undefined manner
later on.

46

3.10.4 PtlMDBind

The PtlMDBind() operation is used to create a “free floating” memory descriptor; i.e., a memory descriptor
that is not associated with a match list entry.

Function Prototype for PtlMDBind

int PtlMDBind(ptl handle ni t ni handle ,
ptl md t md,
ptl unlink t unlink op ,
ptl handle md t *md handle);

Arguments

ni handle input A handle for the network interface with which the memory descriptor
will be associated.

md, unlink op input See the discussion for PtlMDAttach().

md handle output On successful return, this location will hold a handle for the newly
created memory descriptor. The md handle argument must be a valid
address and cannot be NULL.

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL NI INVALID Indicates that ni handle is not a valid network interface handle.

PTL MD ILLEGAL Indicates that md is not a legal memory descriptor. This may happen because
the memory region defined in md is invalid or because the network interface
associated with the eq handle in md is not the same as the network interface,
ni handle. See implementation note 14.

PTL EQ INVALID Indicates that the event queue associated with md is not valid.

PTL NO SPACE Indicates that there is insufficient memory to allocate the memory descriptor.

PTL SEGV Indicates that md handle is not a legal address.

3.10.5 PtlMDUnlink

The PtlMDUnlink() function unlinks the memory descriptor from any match list entry it may be linked to
and releases the internal resources associated with a memory descriptor. (This function does not free the
memory region associated with the memory descriptor; i.e., the memory the user allocated for this memory
descriptor.) This function also releases the resources associated with a floating memory descriptor. Only
memory descriptors with no pending operations may be unlinked. Explicitly unlinking a memory descriptor
via this function call has the same behavior as a memory descriptor that has been automatically unlinked,
except that no PTL EVENT UNLINK event is generated.

47

IMPLEMENTATION
NOTE 15:

Unique memory descriptor handles

An implementation will be greatly simplified if the encoding of
memory descriptor handles does not get reused. This makes
debugging easier, and it avoids race conditions between threads
calling PtlMDUnlink() and PtlMDBind().

Function Prototype for PtlMDUnlink

int PtlMDUnlink(ptl handle md t md handle);

Arguments

md handle input A handle for the memory descriptor to be released.

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL MD INVALID Indicates that md handle is not a valid memory descriptor handle.

PTL MD IN USE Indicates that md handle has pending operations and cannot be unlinked. See
Figure 3.1 for when data structures are considered to be in use.

3.10.6 PtlMDUpdate

The PtlMDUpdate() function provides a conditional, atomic update operation for memory descriptors. The
memory descriptor identified by md handle is only updated if the event queue identified by eq handle is
empty. The intent is to only carry out updates to the memory descriptor when no new messages have arrived
since the last time the queue was checked.

If new md is not NULL the memory descriptor identified by md handle will be updated to reflect the values
in the structure pointed to by new md if eq handle has the value PTL EQ NONE or if the event queue
identified by eq handle is empty. If old md is not NULL, the current value of the memory descriptor
identified by md handle is recorded in the location identified by old md. A successful update operation
resets the local offset of the memory descriptor.

Function Prototype for PtlMDUpdate

int PtlMDUpdate(ptl handle md t md handle,
ptl md t *old md,
ptl md t *new md,
ptl handle eq t eq handle);

48

Arguments

md handle input A handle for the memory descriptor to update.

old md output If old md is not NULL, the current value of the memory descriptor
will be stored in the location identified by old md.

new md input If new md is not NULL, this argument provides the new values for the
memory descriptor if the update is performed.

eq handle input A handle for an event queue used to predicate the update. If eq handle
is equal to PTL EQ NONE, the update is performed unconditionally.
Otherwise, the update is performed if and only if the queue pointed to
by eq handle is empty. If the update is not performed, the function
returns the value PTL MD NO UPDATE. (Note that the eq handle
argument does not need to be the same as the event queue associated
with the memory descriptor as long as it belongs to the same network
interface as the memory descriptor.)

The conditional update can be used to ensure that the memory descriptor has not changed between the time
it was examined and the time it is updated. In particular, it is needed to support an MPI implementation
where the activity of searching an unexpected message queue and posting a receive must be atomic.

Table 3.2. Memory Descriptor Update Operations.

old md new md Operation
NULL NULL n/a
NULL new atomic set of memory descriptor

old NULL read memory descriptor
old new read and atomic set of memory descriptor

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL MD NO UPDATE Indicates that the update was not performed because eq handle was not empty.

PTL MD INVALID Indicates that md handle is not a valid memory descriptor handle.

PTL MD ILLEGAL Indicates that the value pointed to by new md is not a legal memory descriptor
(e.g., the memory region specified by the memory descriptor may be invalid).

PTL EQ INVALID Indicates that eq handle is not a valid event queue handle.

PTL SEGV Indicates that new md or old md is not a legal address.

3.10.7 Thresholds and Unlinking

The value of the threshold of a memory descriptor is checked before each operation. If the threshold is
non-zero, it is decremented after the operation is initiated. A threshold that has been decremented to zero
may still have operations that are pending. If the memory descriptor is configured to automatically unlink,

49

the unlink event will not be generated until all pending operations have been completed. Binding a new
memory descriptor to a match list entry is only permitted after an earlier memory descriptor has been
explicitly unlinked — successful PtlMDUnlink() — or after an unlink event has been posted.

3.11 Events and Event Queues

Event queues are used to log operations performed on local memory descriptors. In particular, they signal
the start and end of a data transmission into or out of a memory descriptor. They can also be used to hold
acknowledgments for completed put operations and indicate when a memory descriptor has been unlinked.
Multiple memory descriptors can share a single event queue. An event queue may have an optional event
handler associated with it. If an event handler exists, it will be run for each event that is deposited into the
event queue.

In addition to the ptl handle eq t type, the portals API defines two types associated with events: The
ptl event kind t type defines the kinds of events that can be stored in an event queue. The ptl event t type
defines a structure that holds the information associated with an event.

The portals API provides five functions for dealing with event queues: The PtlEQAlloc() function is used to
allocate the API resources needed for an event queue, the PtlEQFree() function is used to release these
resources, the PtlEQGet() function can be used to get the next event from an event queue, the PtlEQWait()
function can be used to block a process (or thread) until an event queue has at least one event, and the
PtlEQPoll() function can be used to test or wait on multiple event queues.

3.11.1 Kinds of Events

The portals API defines twelve types of events that can be logged in an event queue:

typedef enum {
PTL EVENT GET START, PTL EVENT GET END,
PTL EVENT PUT START, PTL EVENT PUT END,
PTL EVENT GETPUT START, PTL EVENT GETPUT END,
PTL EVENT REPLY START, PTL EVENT REPLY END,
PTL EVENT SEND START, PTL EVENT SEND END,
PTL EVENT ACK, PTL EVENT MD UNLINK

} ptl event kind t ;

Event types

PTL EVENT GET START A remote get operation has started on the memory descriptor. The
memory region associated with this descriptor should not be altered
until PTL EVENT GET END event is logged.

PTL EVENT GET END A previously initiated get operation completed successfully.

PTL EVENT PUT START A remote put operation has started on the memory descriptor. The
memory region associated with this descriptor should be considered
volatile until the corresponding END event is logged.

PTL EVENT PUT END A previously initiated put operation completed successfully. The
underlying layers will not alter the memory (on behalf of this
operation) once this event has been logged.

50

PTL EVENT GETPUT START A remote getput operation has started on the memory descriptor. The
memory region associated with this descriptor should not be altered
until the corresponding END event is logged.

PTL EVENT GETPUT END A previously initiated getput operation completed successfully.

PTL EVENT REPLY START A reply operation has started on the memory descriptor.

PTL EVENT REPLY END A previously initiated reply operation has completed successfully .
This event is logged after the data (if any) from the reply has been
written into the memory descriptor.

PTL EVENT SEND START An outgoing send operation has started. The memory region
associated with this descriptor should not be altered until the
corresponding END or event is logged.

PTL EVENT SEND END A previously initiated send operation has completed. This event is
logged after the entire buffer has been sent and it is safe for the caller
to reuse the buffer.

PTL EVENT ACK An acknowledgment was received. This event is logged when the
acknowledgment is received

PTL EVENT UNLINK A memory descriptor was unlinked (Section 3.10.7 and 3.10.3).

3.11.2 Event Occurrence

The diagrams in Figure 3.1 show when events occur in relation to portals operations and whether they are
recorded on the initiator or the target side. Note that local and remote events are not synchronized or
ordered with respect to each other.

IMPLEMENTATION
NOTE 16:

Pending operations and buffer modifications

Figure 3.1(a) indicates that the memory descriptor is in use
starting at PTL EVENT SEND START until PTL EVENT ACK.
However, the initiator is free to modify the buffer the memory
descriptor describes after the PTL EVENT SEND END event. Also
see implementation note 17.

Figure 3.1(a) shows the events that are generated for a put operation including the optional
acknowledgment. The diagram shows which events are generated at the initiator and the target side of the
put operation. Figure 3.1(b) shows the corresponding events for a get operation, and Figure 3.1(c) shows the
events generated for a getput operation.

If during any of the operations shown in the diagrams of Figure 3.1, a memory descriptor is unlinked, then a
PTL EVENT UNLINK event is generated on the target or initiator where it was unlinked. This is not shown in
the diagrams. None of these events are generated, if the memory descriptor has no event queue attached to it
(see the description of PTL EQ NONE on page 45 of Section 3.10.1). Start or end events can be disabled
individually. (See the description of PTL MD EVENT START DISABLE and PTL MD EVENT END DISABLE on
page 45, also in Section 3.10.1.)

51

(a) put operation with optional acknowledgment (b) get operation

(c) getput operation

Figure 3.1. Portals Operations and Event Types: The red bars indicate the
times a local memory descriptor is considered to be in use by the system; i.e.,
it has operations pending. Users should not modify memory descriptors during
those periods. (Also see implementation notes 16 and 17.)

IMPLEMENTATION
NOTE 17:

Pending operations and acknowledgment

If a user attempts to unlink a memory descriptor while it has
operations pending, the implementation should return
PTL MD IN USE until the operation has completed or can be
aborted cleanly.

After a PTL EVENT SEND END a user can attempt to unlink the
memory descriptor. If the unlink is successful the implementation
should ensure a later acknowledgment is discarded, if it arrives.
The same is true for a reply, if a successful unlink request occurs
before PTL EVENT REPLY START. Since users cannot know when
events occur, the implementor has a certain amount of freedom
honoring unlink requests or returning PTL MD IN USE.

Table 3.3 summarizes the portals event types. In the table we use the word local to describe the location
where the event is delivered; it can be the initiator or the target of an operation.

52

Table 3.3. Event Type Summary: A list of event types, where (initiator or target)
they can occur and the meaning of those events.

Event Type initiator target Meaning
PTL EVENT GET START • Data is being “pulled” from a local memory

descriptor.PTL EVENT GET END •
PTL EVENT PUT START • Data is being “pushed” into a local memory

descriptor.PTL EVENT PUT END •
PTL EVENT GETPUT START • Data is being “pulled” from and “pushed”

into a local memory descriptor.PTL EVENT GETPUT END •
PTL EVENT REPLY START • Data is arriving at a local memory descriptor

because of a local get or getput operation.PTL EVENT REPLY END •
PTL EVENT SEND START • Data is leaving a local memory descriptor

because of a local put or getput operation.PTL EVENT SEND END •
PTL EVENT ACK • An acknowledgment has arrived.
PTL EVENT UNLINK • • A local memory descriptor has been un-

linked.

IMPLEMENTATION
NOTE 18:

Timing of start events

An implementation can produce a start event as early as during
the call that causes it; e.g., PtlPut(), but must do so no later than
when the data is starting to leave from or arrive in the user buffer.

3.11.3 Event Ordering

As implied by the naming convention, start events must be delivered before end events for a given operation.
The portals API also guarantees that when a process initiates two operations on a remote process, the
operations will be started on the remote process in the same order that they were initiated on the origin
process. As an example, if process A initiates two put operations, x and y, on process B, the portals API
guarantees that process A will receive the PTL EVENT SEND START events for x and y in the same order that
process B receives the PTL EVENT PUT START events for x and y.

Note that memory descriptors that have ignored start or end events using the PTL MD EVENT START DISABLE
or PTL MD EVENT END DISABLE options are still subject to ordering constraints. Even if the destination
memory descriptors for messages x and y have chosen to disable all events, messages x and y must still
traverse the portals data structures (e.g., the match list) in the order in which they were initiated.

3.11.4 Failure Notification

Operations may fail to complete successfully; however, unless the node itself fails, every operation that is
started will eventually complete. While an operation is in progress, the memory on the target associated
with the operation should not be viewed (in the case of a put or a reply) or altered on the initiator side (in the
case of a put or get). Operation completion, whether successful or unsuccessful, is final. That is, when an
operation completes, the memory associated with the operation will no longer be read or altered by the
operation. A network interface can use the integral type ptl ni fail t to define specific information regarding
the failure of the operation and record this information in the ni fail type field of an event. The constant
PTL NI OK should be used in successful start and end events to indicate that there has been no failure.

53

IMPLEMENTATION
NOTE 19:

Completion of portals operations

Portals guarantees that every operation started will finish with an
end event if events are not disabled. While this document cannot
enforce or recommend a suitable time, a quality implementation
will keep the amount of time between a start and a corresponding
end event as short as possible. That includes operations that do
not complete successfully. Timeouts of underlying protocols
should be chosen accordingly

3.11.5 The Event Queue Type

An event structure includes the following members:

typedef struct {
ptl event kind t type ;
ptl process id t initiator ; /* nid, pid */
ptl uid t uid;
ptl jid t jid ;
ptl pt index t pt index ;
ptl match bits t match bits ;
ptl size t rlength ;
ptl size t mlength;
ptl size t offset ;
ptl handle md t md handle;
ptl md t md;
ptl hdr data t hdr data;
ptl seq t link ;
ptl ni fail t ni fail type ;
volatile ptl seq t sequence;

} ptl event t ;

Members

type Indicates the type of the event.

initiator The identifier of the initiator (nid, pid).

uid The user identifier of the initiator .

jid The job identifier of the initiator . May be PTL JID NONE in
implementations that do not support job identifiers.

pt index The portal table index specified in the request.

match bits A copy of the match bits specified in the request. See Section 3.9 for
more information on match bits.

rlength The length (in bytes) specified in the request.

mlength The length (in bytes) of the data that was manipulated by the
operation. For truncated operations, the manipulated length will be
the number of bytes specified by the memory descriptor (possibly
with an offset) operation. For all other operations, the manipulated
length will be the length of the requested operation.

54

offset The displacement (in bytes) into the memory region that the operation
used. The offset can be determined by the operation (Section 3.13)
for a remote managed memory descriptor or by the local memory
descriptor (Section 3.10). The offset and the length of the memory
descriptor can be used to determine if max size has been exceeded.

md handle The handle to the memory descriptor associated with the event. The
handle may be invalid if the memory descriptor was unlinked.

md The state of the memory descriptor immediately after the event has
been processed. In particular, the threshold field in md will reflect
the state of the threshold after the operation occurred.

hdr data 64 bits of out-of-band user data (Section 3.13.2).

link The link member is used to link START events with the END event that
signifies completion of the operation. The link member will be the
same for the two events associated with an operation. The link
member is also used to link a PTL EVENT UNLINK event with the
event that caused the memory descriptor to be unlinked.

ni fail type Is used to convey the failure of an operation. Success is indicated by
PTL NI OK. Section 3.11.4.

sequence The sequence number for this event. Sequence numbers are unique to
each event.

Discussion: The sequence member is the last member and is volatile to support share memory
processor (SMP) implementations. When a portals implementation fills in an event structure,
the sequence member should be written after all other members have been updated. Moreover, a
memory barrier should be inserted between the updating of other members and the updating of
the sequence member.

3.11.6 The Event Queue Handler Type

The ptl eq handler t type is used to represent event handler functions. See the discussion in Section 3.11.8
about event queue handler semantics.

typedef void (*ptl eq handler t)(ptl event t *event);

3.11.7 PtlEQAlloc

The PtlEQAlloc() function is used to build an event queue.

Function Prototype for PtlEQAlloc

int PtlEQAlloc(ptl handle ni t ni handle ,
ptl size t count,
ptl eq handler t eq handler ,
ptl handle eq t *eq handle);

55

Arguments

ni handle input A handle for the interface with which the event queue will be
associated.

count input A hint as to the number of events to be stored in the event queue. An
implementation may provide space for more than the requested
number of event queue slots.

eq handler input A handler function that runs when an event is deposited into the event
queue. The constant value PTL EQ HANDLER NONE can be used to
indicate that no event handler is desired.

eq handle output On successful return, this location will hold a handle for the newly
created event queue.

Discussion: An event queue has room for at least count number of events. The event queue is
circular and older events will be overwritten by new ones if they are not removed in time by the
user — using the functions PtlEQGet(), PtlEQWait(), or PtlEQPoll(). It is up to the user to
determine the appropriate size of the event queue to prevent this loss of events.

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL NI INVALID Indicates that ni handle is not a valid network interface handle.

PTL NO SPACE Indicates that there is insufficient memory to allocate the event queue.

PTL SEGV Indicates that eq handle is not a legal address.

IMPLEMENTATION
NOTE 20:

Location of event queue

The event queue is designed to reside in user space.
High-performance implementations can be designed so they only
need to write to the event queue but never have to read from it.
This limits the number of protection boundary crossings to update
the event queue. However, implementors are free to place the
event queue anywhere they like; inside the kernel or the NIC for
example.

3.11.8 Event Queue Handler Semantics

The event queue handler, if specified, runs for each event that is deposited into the event queue. The handler
is supplied with a pointer to the event that triggered the handler invocation. The handler is invoked at some
time between when the event is deposited into the event queue by the underlying communication system and
the return of a successful PtlEQGet(), PtlEQWait(), or PtlEQPoll() operation. This implies that if eq handler
is not PTL EQ HANDLER NONE, PtlEQGet(), PtlEQWait(), or PtlEQPoll() must be called for each event in the
queue.

56

Event handlers may have implementation specific restrictions. In general, handlers must:

• not block;

• not make system calls;

• be reentrant;

• not call PtlEQWait(), PtlEQGet(), or PtlEQPoll();

• not perform I/O operations; and

• be allowed to call the data movement functions — PtlPut(), PtlPutRegion(), PtlGet(),
PtlGetRegion(), and PtlGetPut().

Discussion: An event handler can be called by the implementation when delivering an event or
by the portals library when an event is received. In the former case, the implementation must
ensure that the address mappings are properly set up for the handler to run. The handler belongs
to the address space of the execution thread that called PtlEQAlloc(). When run, the handler
should not receive any privileges it would not have had if run by the caller of PtlEQAlloc().

If handlers are implemented inside the portals library, they must be called before PtlEQGet(),
PtlEQWait(), or PtlEQPoll() returns with a status of PTL OK or PTL EQ DROPPED.
Independent of the type of implementation, after a successful handler run, the corresponding
event in the event queue is removed.

If a handler is specified in PtlEQAlloc() (eq handler 6= PTL EQ HANDLER NONE) and
PtlEQGet(), PtlEQWait(), or PtlEQPoll() are not called for every event in the event queue, then
behavior is undefined. Behavior is also undefined if a handler does not follow the
implementation specific restrictions, for example if a handler blocks.

3.11.9 PtlEQFree

The PtlEQFree() function releases the resources associated with an event queue. It is up to the user to ensure
that no memory descriptors are associated with the event queue once it is freed.

Function Prototype for PtlEQFree

int PtlEQFree(ptl handle eq t eq handle);

Arguments

eq handle input A handle for the event queue to be released.

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL EQ INVALID Indicates that eq handle is not a valid event queue handle.

57

3.11.10 PtlEQGet

The PtlEQGet() function is a nonblocking function that can be used to get the next event in an event queue.
If an event handler is associated with the event queue, then the handler will run before this function returns
successfully2 (Section 3.11.8). The event is removed from the queue.

Function Prototype for PtlEQGet

int PtlEQGet(ptl handle eq t eq handle,
ptl event t *event);

Arguments

eq handle input A handle for the event queue.

event output On successful return, this location will hold the values associated with
the next event in the event queue.

Return Codes

PTL OK Indicates success.

PTL EQ DROPPED Indicates success (i.e., an event is returned) and that at least one event between
this event and the last event obtained — using PtlEQGet(), PtlEQWait(), or
PtlEQPoll()— from this event queue has been dropped due to limited space in
the event queue.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL EQ EMPTY Indicates that eq handle is empty or another thread is waiting in PtlEQWait().

PTL EQ INVALID Indicates that eq handle is not a valid event queue handle.

PTL SEGV Indicates that event is not a legal address.

3.11.11 PtlEQWait

The PtlEQWait() function can be used to block the calling process or thread until there is an event in an
event queue. If an event handler is associated with the event queue, then the handler will run before this
function returns successfully (Section 3.11.8). This function returns the next event in the event queue and
removes this event from the queue. In the event that multiple threads are waiting on the same event queue,
PtlEQWait() is guaranteed to wake exactly one thread, but the order in which they are awakened is not
specified.

Function Prototype for PtlEQWait

int PtlEQWait(ptl handle eq t eq handle,
ptl event t *event);

2The handler may have run before the call to PtlEQGet().

58

Arguments

eq handle input A handle for the event queue to wait on. The calling process (thread)
will be blocked until the event queue is not empty.

event output On successful return, this location will hold the values associated with
the next event in the event queue.

Return Codes

PTL OK Indicates success.

PTL EQ DROPPED Indicates success (i.e., an event is returned) and that at least one event between
this event and the last event obtained — using PtlEQGet(), PtlEQWait(), or
PtlEQPoll()— from this event queue has been dropped due to limited space in
the event queue.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL EQ INVALID Indicates that eq handle is not a valid event queue handle.

PTL SEGV Indicates that event is not a legal address.

3.11.12 PtlEQPoll

The PtlEQPoll() function can be used by the calling process to look for an event from a set of event queues.
Should an event arrive on any of the queues contained in the array of event queue handles, the event will be
returned in event and which will contain the index of the event queue from which the event was taken.

If an event handler is associated with the event queue, then the handler will run before this function returns
successfully (Section 3.11.8). If PtlEQPoll() returns success, the corresponding event is consumed.
PtlEQPoll() provides a timeout to allow applications to poll, block for a fixed period, or block indefinitely.
PtlEQPoll() is sufficiently general to implement both PtlEQGet() and PtlEQWait(), but these functions have
been retained in the API for backward compatibility.

IMPLEMENTATION
NOTE 21:

Fairness of PtlEQPoll()

PtlEQPoll() should poll the list of queues in a round-robin fashion.
This cannot guarantee fairness but meets common expectations.

Function Prototype for PtlEQPoll

int PtlEQPoll(ptl handle eq t *eq handles,
int size ,
ptl time t timeout ,
ptl event t *event ,
int *which);

59

Arguments

eq handles input An array of event queue handles. All the handles must refer to the
same interface.

size input Length of the array.

timeout input Time in milliseconds to wait for an event to occur on one of the event
queue handles. The constant PTL TIME FOREVER can be used to
indicate an infinite timeout.

event output On successful return (PTL OK or PTL EQ DROPPED), this location
will hold the values associated with the next event in the event queue.

which output On successful return, this location will contain the index of the event
queue from which the event was taken.

Return Codes

PTL OK Indicates success.

PTL EQ DROPPED Indicates success (i.e., an event is returned) and that at least one event between
this event and the last event obtained from the event queue indicated by which
has been dropped due to limited space in the event queue.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL EQ INVALID Indicates that one or more of the event queue handles is not valid; e.g., not all
handles in eq handles are on the same network interface.

PTL SEGV Indicates that event or which is not a legal address.

PTL EQ EMPTY Indicates that the timeout has been reached and all of the event queues are
empty.

IMPLEMENTATION
NOTE 22:

Macros using PtlEQPoll()

Implementations are free to provide macros for PtlEQGet() and
PtlEQWait() that use PtlEQPoll() instead of providing these
functions.

3.11.13 Event Semantics

The split event sequence is needed to support unreliable networks and/or networks that packetize. The
start/end sequence is needed to support networks that packetize where the completion of transfers may not
be ordered with initiation of transfers. An implementation is free to implement these event sequences in any
way that meets the ordering semantics. For example, an implementation for a network that is reliable and
that preserves message ordering (or does not packetize) may generate a start/end event pair at the
completion of the transfer. In fact, since the information in the start/end events is identical except for the
link field, a correct implementation may generate a single event that the event queue test/wait library
function turns into an event pair.

60

IMPLEMENTATION
NOTE 23:

Filling in the ptl event t structure

All of the members of the ptl event t structure returned from
PtlEQGet(), PtlEQWait(), and PtlEQPoll() must be filled in with
valid information. An implementation may not leave any field in an
event unset.

3.12 The Access Control Table

Processes can use the access control table to control which processes are allowed to perform operations on
portal table entries. Each communication interface has a portal table and an access control table. The access
control table for the default interface contains an entry at index zero that allows all processes with the same
user identifier to communicate. Entries in the access control table can be manipulated using the
PtlACEntry() function.

3.12.1 PtlACEntry

The PtlACEntry() function can be used to update an entry in the access control table for an interface. For
those implementations that do not support job identifiers, the jid argument is ignored.

Function Prototype for PtlACEntry

int PtlACEntry(ptl handle ni t ni handle ,
ptl ac index t ac index ,
ptl process id t match id,
ptl uid t uid,
ptl jid t jid ,
ptl pt index t pt index);

Arguments

ni handle input Identifies the interface to use.

ac index input The index of the entry in the access control table to update.

match id input Identifies the process(es) that are allowed to perform operations. The
constants PTL PID ANY and PTL NID ANY can be used to wildcard
either of the identifiers in the ptl process id t structure.

uid input Identifies the user that is allowed to perform operations. The value
PTL UID ANY can be used to wildcard the user.

jid input Identifies the collection of processes allowed to perform an operation.
The value PTL JID ANY can be used to wildcard the job identifier.

pt index input Identifies the portal index(es) that can be used. The value
PTL PT INDEX ANY can be used to wildcard the portal index.

61

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL NI INVALID Indicates that ni handle is not a valid network interface handle.

PTL AC INDEX INVALID Indicates that ac index is not a valid access control table index.

PTL PROCESS INVALID Indicates that match id is not a valid process identifier.

PTL PT INDEX INVALID Indicates that pt index is not a valid portal table index.

3.13 Data Movement Operations

The portals API provides five data movement operations: PtlPut(), PtlPutRegion(), PtlGet(),
PtlGetRegion(), and PtlGetPut().

IMPLEMENTATION
NOTE 24:

Functions that require communication

Other than PtlPut(), PtlPutRegion(), PtlGet(), PtlGetRegion(),
and PtlGetPut(), no function in the portals API requires
communication with other nodes in the system.

3.13.1 Portals Acknowledgment Type Definition

Values of the type ptl ack req t are used to control whether an acknowledgment should be sent when the
operation completes (i.e., when the data has been written to a memory descriptor of the target process). The
value PTL ACK REQ requests an acknowledgment, the value PTL NO ACK REQ requests that no
acknowledgment should be generated.

typedef enum {PTL ACK REQ, PTL NO ACK REQ} ptl ack req t;

3.13.2 PtlPut

The PtlPut() function initiates an asynchronous put operation. There are several events associated with a put
operation: initiation of the send on the initiator node (PTL EVENT SEND START), completion of the send on
the initiator node (PTL EVENT SEND END), and when the send completes successfully, the receipt of an
acknowledgment (PTL EVENT ACK) indicating that the operation was accepted by the target . The events
PTL EVENT PUT START and PTL EVENT PUT END are used at the target node to indicate begin and end of data
delivery. (Figure 3.1.)

These (local) events will be logged in the event queue associated with the memory descriptor (md handle)
used in the put operation. Using a memory descriptor that does not have an associated event queue results in
these events being discarded. In this case, the caller must have another mechanism (e.g., a higher level
protocol) for determining when it is safe to modify the memory region associated with the memory
descriptor.

62

Function Prototype for PtlPut

int PtlPut (ptl handle md t md handle,
ptl ack req t ack req ,
ptl process id t target id ,
ptl pt index t pt index ,
ptl ac index t ac index ,
ptl match bits t match bits ,
ptl size t remote offset ,
ptl hdr data t hdr data);

Arguments

md handle input A handle for the memory descriptor that describes the memory to be
sent. If the memory descriptor has an event queue associated with it, it
will be used to record events when the message has been sent
(PTL EVENT SEND START, PTL EVENT SEND END, PTL EVENT ACK).

ack req input Controls whether an acknowledgment event is requested.
Acknowledgments are only sent when they are requested by the
initiating process and the memory descriptor has an event queue and
the target memory descriptor enables them. Allowed constants:
PTL ACK REQ, PTL NO ACK REQ.

target id input A process identifier for the target process.

pt index input The index in the target portal table.

ac index input The index into the access control table of the target process.

match bits input The match bits to use for message selection at the target process.

remote offset input The offset into the target memory descriptor (only used when the
target memory descriptor has the PTL MD MANAGE REMOTE option set).

hdr data input 64 bits of user data that can be included in the message header. This
data is written to an event queue entry at the target if an event queue is
present on the matching memory descriptor.

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL MD INVALID Indicates that md handle is not a valid memory descriptor.

PTL PROCESS INVALID Indicates that target id is not a valid process identifier.

63

3.13.3 PtlPutRegion

The PtlPutRegion() function is identical to the PtlPut() function except that it allows a region of memory
within the memory descriptor to be sent rather than the entire memory descriptor. The local (initiator) offset
is used to determine the starting address of the memory region and the length specifies the length of the
region in bytes. It is an error for the local offset and length parameters to specify memory outside the
memory described by the memory descriptor.

Function Prototype for PtlPutRegion

int PtlPutRegion(ptl handle md t md handle,
ptl size t local offset ,
ptl size t length ,
ptl ack req t ack req ,
ptl process id t target id ,
ptl pt index t pt index ,
ptl ac index t ac index ,
ptl match bits t match bits ,
ptl size t remote offset ,
ptl hdr data t hdr data);

Arguments

md handle input A handle for the memory descriptor that describes the memory to be
sent.

local offset input Offset from the start of the memory descriptor.

length input Length of the memory region to be sent.

ack req, target id, pt index,
ac index

input See the discussion for PtlPut().

match bits, remote offset,
hdr data

input See the discussion for PtlPut().

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL MD INVALID Indicates that md handle is not a valid memory descriptor.

PTL MD ILLEGAL Indicates that local offset and length specify a region outside the bounds of the
memory descriptor.

PTL PROCESS INVALID Indicates that target id is not a valid process identifier.

64

3.13.4 PtlGet

The PtlGet() function initiates a remote read operation. There are two event pairs associated with a get
operation. When the data is sent from the target node, a PTL EVENT GET START / PTL EVENT GET END event
pair is registered on the target node. When the data is returned from the target node, a
PTL EVENT REPLY START / PTL EVENT REPLY END event pair is registered on the initiator node. (Figure 3.1)

Function Prototype for PtlGet

int PtlGet (ptl handle md t md handle,
ptl process id t target id ,
ptl pt index t pt index ,
ptl ac index t ac index ,
ptl match bits t match bits ,
ptl size t remote offset);

Arguments

md handle input A handle for the memory descriptor that describes the memory into
which the requested data will be received. The memory descriptor can
have an event queue associated with it to record events, such as when
the message receive has started.

target id input A process identifier for the target process.

pt index input The index in the target portal table.

ac index input The index into the access control table of the target process.

match bits input The match bits to use for message selection at the target process.

remote offset input The offset into the target memory descriptor (only used when the
target memory descriptor has the PTL MD MANAGE REMOTE option set).

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL MD INVALID Indicates that md handle is not a valid memory descriptor.

PTL PROCESS INVALID Indicates that target id is not a valid process identifier.

3.13.5 PtlGetRegion

The PtlGetRegion() function is identical to the PtlGet() function except that it allows a region of memory
within the memory descriptor to accept a reply rather than the entire memory descriptor. The local (initiator)
offset is used to determine the starting address of the memory region and the length specifies the length of
the region in bytes. It is an error for the local offset and length parameters to specify memory outside the
memory described by the memory descriptor.

65

Function Prototype for PtlGetRegion

int PtlGetRegion(ptl handle md t md handle,
ptl size t local offset ,
ptl size t length ,
ptl process id t target id ,
ptl pt index t pt index ,
ptl ac index t ac index ,
ptl match bits t match bits ,
ptl size t remote offset);

Arguments

md handle input A handle for the memory descriptor that describes the memory into
which the requested data will be received. The memory descriptor can
have an event queue associated with it to record events, such as when
the message receive has started.

local offset input Offset from the start of the memory descriptor.

length input Length of the memory region for the reply.

target id, pt index,
ac index

input See discussion for PtlGet().

match bits, remote offset input See discussion for PtlGet().

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL MD INVALID Indicates that md handle is not a valid memory descriptor.

PTL MD ILLEGAL Indicates that local offset and length specify a region outside the bounds of the
memory descriptor.

PTL PROCESS INVALID Indicates that target id is not a valid process identifier.

3.13.6 PtlGetPut

The PtlGetPut() function performs an atomic swap of data at the target with the data passed in the put
memory descriptor. The original contents of the memory region at the target are returned in a reply message
and placed into the get memory descriptor of the initiator . An implementation may restrict the length of the
memory descriptors used in PtlGetPut() but must support at least 8 bytes (Section 3.5.1). The target
memory descriptor must be configured to respond to both get operations and put operations. The length field
in the put md handle is used to specify the size of the request.

There are three event pairs associated with a get operation. When data is sent from the initiator node, a
PTL EVENT SEND START /PTL EVENT SEND END event pair is registered on the initiator node. When the data
is sent from the target node, a PTL EVENT GETPUT START /PTL EVENT GETPUT END event pair is registered
on the target node; and when the data is returned from the target node, a
PTL EVENT REPLY START /PTL EVENT REPLY END event pair is registered on the initiator node. Note that the

66

target memory descriptor must have both the PTL MD OP PUT and PTL MD OP GET flags set.

Discussion: Most implementations will need to temporarily store the incoming data while the
old data is being sent back to the initiator. Therefore, an implementation can limit the size of
getput operations. The minimum size is 8 bytes. The actual value is returned by the PtlNIInit()
call in the variable max getput md (Section 3.5.2 and 3.5.1).

Function Prototype for PtlGetPut

int PtlGetPut (ptl handle md t get md handle,
ptl handle md t put md handle,
ptl process id t target id ,
ptl pt index t pt index ,
ptl ac index t ac index ,
ptl match bits t match bits ,
ptl size t remote offset ,
ptl hdr data t hdr data);

Arguments

get md handle input A handle for the memory descriptor that describes the memory into
which the requested data will be received. The memory descriptor can
have an event queue associated with it to record events, such as when
the message receive has started.

put md handle input A handle for the memory descriptor that describes the memory to be
sent. If the memory descriptor has an event queue associated with it, it
will be used to record events when the message has been sent.

target id input A process identifier for the target process.

pt index input The index in the target portal table.

ac index input The index into the access control table of the target process.

match bits input The match bits to use for message selection at the target process.

remote offset input The offset into the target memory descriptor (only used when the
target memory descriptor has the PTL MD MANAGE REMOTE option set).

hdr data input 64 bits of user data that can be included in the message header. This
data is written to an event queue entry at the target if an event queue is
present on the matching memory descriptor.

Return Codes

PTL OK Indicates success.

PTL NO INIT Indicates that the portals API has not been successfully initialized.

PTL MD INVALID Indicates that put md handle or get md handle is not a valid memory
descriptor.

PTL PROCESS INVALID Indicates that target id is not a valid process identifier.

67

3.14 Operations on Handles

Handles are opaque data types. The only operation defined on them by the portals API is a comparison
function.

3.14.1 PtlHandleIsEqual

The PtlHandleIsEqual() function compares two handles to determine if they represent the same object.

Function Prototype for PtlHandleIsEqual

int PtlHandleIsEqual (ptl handle any t handle1,
ptl handle any t handle2);

Arguments

handle1, handle2 input A handle for an object. Either of these handles is allowed to be the
constant value, PTL INVALID HANDLE, which represents the value of
an invalid handle.

Discussion: PtlHandleIsEqual() does not check whether handle1 and handle2 are valid; only
whether they are equal.

Return Codes

PTL OK Indicates that the handles are equivalent.

PTL FAIL Indicates that the two handles are not equivalent.

3.15 Summary

We conclude this chapter by summarizing the names introduced by the portals API. We start with the data
types introduced by the API. This is followed by a summary of the functions defined by the API which is
followed by a summary of the function return codes. Finally, we conclude with a summary of the other
constant values defined by the API.

Table 3.4 presents a summary of the types defined by the portals API. The first column in this table gives the
type name, the second column gives a brief description of the type, the third column identifies the section
where the type is defined, and the fourth column lists the functions that have arguments of this type.

68

Table 3.4. Portals Data Types: Data Types Defined by the Portals API.

Name Meaning Sec Functions
ptl ac index t access control table

indexes
3.2.3 PtlACEntry(), PtlPut(), PtlPutRegion(),

PtlGet(), PtlGetRegion(), PtlGetPut()
ptl ack req t acknowledgment request

types
3.13.2 PtlPut(), PtlPutRegion()

ptl eq handler t event queue handler
function

3.11.6 PtlEQAlloc()

ptl event kind t event kind 3.11.1 PtlEQGet(), PtlEQWait(), PtlEQPoll()
ptl event t event information 3.11.5 PtlEQGet(), PtlEQWait(), PtlEQPoll()
ptl handle any t any object handles 3.2.2 PtlNIHandle(), PtlHandleIsEqual()
ptl handle eq t event queue handles 3.2.2 PtlEQAlloc(), PtlEQFree(), PtlEQGet(),

PtlEQWait(), PtlEQPoll(),
PtlMDUpdate()

ptl handle md t memory descriptor
handles

3.2.2 PtlMDUnlink() , PtlMDUpdate(),
PtlMEAttach(), PtlMEAttachAny(),
PtlMEInsert(), PtlPut(), PtlPutRegion(),
PtlGet(), PtlGetRegion(), PtlGetPut()

ptl handle me t match entry handles 3.2.2 PtlMEAttach(), PtlMEAttachAny(),
PtlMEInsert(), PtlMEUnlink()

ptl handle ni t network interface handles 3.2.2 PtlNIInit(), PtlNIFini(), PtlNIStatus(),
PtlNIDist(), PtlEQAlloc(), PtlACEntry()

ptl hdr data t user header data 3.13.2 PtlPut(), PtlPutRegion(), PtlGet(),
PtlGetRegion(), PtlGetPut()

ptl ins pos t insert position (before or
after)

3.9.2 PtlMEAttach(), PtlMEAttachAny(),
PtlMEInsert()

ptl interface t network interface
identifiers

3.2.5 PtlNIInit()

ptl jid t job identifier 3.2.6 PtlGetJid(), PtlACEntry()
ptl match bits t match (and ignore) bits 3.2.4 PtlMEAttach(), PtlMEAttachAny(),

PtlMEInsert(), PtlPut(), PtlPutRegion(),
PtlGet(), PtlGetRegion(), PtlGetPut()

ptl md iovec t scatter/gather buffer
descriptors

3.10.2 PtlMDAttach(), PtlMDBind(),
PtlMDUpdate(), PtlMDUnlink()

ptl md t memory descriptors 3.10.1 PtlMDAttach(), PtlMDBind(),
PtlMDUpdate()

ptl nid t node identifiers 3.2.6 PtlGetId(), PtlACEntry()
ptl ni fail t network interface specific

failures
3.11.4 PtlEQGet(), PtlEQWait(), PtlEQPoll()

ptl ni limits t implementation
dependent limits

3.5.1 PtlNIInit()

ptl pid t process identifier 3.2.6 PtlGetId(), PtlACEntry()
ptl process id t process identifiers 3.7.1 PtlGetId(), PtlNIDist(), PtlMEAttach(),

PtlMEAttachAny(), PtlACEntry(),
PtlPut(), PtlPutRegion(), PtlGet(),
PtlGetRegion(), PtlGetPut()

ptl pt index t portal table indexes 3.2.3 PtlMEAttach(), PtlMEAttachAny(),
PtlPut(), PtlPutRegion(), PtlGet(),
PtlGetRegion(), PtlGetPut(),
PtlACEntry()

ptl seq t event sequence number 3.11.5 PtlEQGet(), PtlEQWait(), PtlEQPoll()
continued on next page

69

continued from previous page
Name Meaning Sec Functions
ptl size t sizes 3.2.1 PtlEQAlloc(), PtlPut(), PtlPutRegion(),

PtlGet(), PtlGetRegion()
ptl sr index t status register indexes 3.2.7 PtlNIStatus()
ptl sr value t status register values 3.2.7 PtlNIStatus()
ptl time t time in milliseconds 3.11.12 PtlEQPoll()
ptl uid t user identifier 3.2.6 PtlGetUid(), PtlACEntry()
ptl unlink t unlink options 3.9.2 PtlMEAttach(), PtlMEAttachAny(),

PtlMEInsert(), PtlMDAttach()

Table 3.5 presents a summary of the functions defined by the portals API. The first column in this table gives
the name for the function, the second column gives a brief description of the operation implemented by the
function, and the third column identifies the section where the function is defined.

Table 3.5. Portals Functions: Functions Defined by the Portals API.

Name Operation Definition
PtlACEntry() update an entry in an access control table 3.12.1
PtlEQAlloc() create an event queue 3.11.7
PtlEQFree() release the resources for an event queue 3.11.9
PtlEQGet() get the next event from an event queue 3.11.10
PtlEQPoll() poll for a new event on multiple event queues 3.11.12
PtlEQWait() wait for a new event in an event queue 3.11.11
PtlFini() shut down the portals API 3.4.2
PtlGet() perform a get operation 3.13.4
PtlGetId() get the identifier for the current process 3.7.2
PtlGetJid() get the job identifier for the current process 3.8.1
PtlGetPut() perform an atomic swap operation 3.13.6
PtlGetRegion() perform a get operation on a memory descriptor region 3.13.5
PtlGetUid() get the network interface specific user identifier 3.6.1
PtlHandleIsEqual() compares two handles to determine if they represent the same object 3.14.1
PtlInit() initialize the portals API 3.4.1
PtlMDAttach() create a memory descriptor and attach it to a match entry 3.10.3
PtlMDBind() create a free-floating memory descriptor 3.10.4
PtlMDUnlink() remove a memory descriptor from a list and release its resources 3.10.5
PtlMDUpdate() update a memory descriptor 3.10.6
PtlMEAttachAny() create a match entry and attach it to a free portal table entry 3.9.3
PtlMEAttach() create a match entry and attach it to a portal table 3.9.2
PtlMEInsert() create a match entry and insert it in a list 3.9.4
PtlMEUnlink() remove a match entry from a list and release its resources 3.9.5
PtlNIDist() get the distance to another process 3.5.5
PtlNIFini() shut down a network interface 3.5.3
PtlNIHandle() get the network interface handle for an object 3.5.6
PtlNIInit() initialize a network interface 3.5.2
PtlNIStatus() read a network interface status register 3.5.4
PtlPut() perform a put operation 3.13.2
PtlPutRegion() perform a put operation on a memory descriptor region 3.13.3

Table 3.6 summarizes the return codes used by functions defined by the portals API. The first column of this
table gives the symbolic name for the constant, the second column gives a brief description of the value, and
the third column identifies the functions that can return this value.

70

Table 3.6. Portals Return Codes: Function Return Codes for the Portals API.

Name Meaning Functions
PTL AC INDEX INVALID invalid access control table

index
PtlACEntry()

PTL EQ DROPPED at least one event has been
dropped

PtlEQGet(), PtlEQWait()

PTL EQ EMPTY no events available in an
event queue

PtlEQGet()

PTL EQ INVALID invalid event queue handle PtlMDUpdate(), PtlEQFree(),
PtlEQGet()

PTL FAIL error during initialization
or cleanup

PtlInit(), PtlFini()

PTL HANDLE INVALID invalid handle PtlNIHandle()
PTL IFACE INVALID initialization of an invalid

interface
PtlNIInit()

PTL MD ILLEGAL illegal memory descriptor
values

PtlMDAttach(), PtlMDBind(),
PtlMDUpdate()

PTL MD IN USE memory descriptor has
pending operations

PtlMDUnlink()

PTL MD INVALID invalid memory descriptor
handle

PtlMDUnlink() , PtlMDUpdate()

PTL MD NO UPDATE no update was performed PtlMDUpdate()
PTL ME IN USE ME has pending

operations
PtlMEUnlink()

PTL ME INVALID invalid match entry handle PtlMDAttach()
PTL ME LIST TOO LONG match entry list too long PtlMEAttach(), PtlMEInsert()
PTL NI INVALID invalid network interface

handle
PtlNIDist(), PtlNIFini(), PtlMDBind(),
PtlEQAlloc()

PTL NO INIT uninitialized API all, except PtlInit()
PTL NO SPACE insufficient memory PtlNIInit(), PtlMDAttach(), PtlMDBind(),

PtlEQAlloc(), PtlMEAttach(),
PtlMEInsert()

PTL OK success all
PTL PID INVALID invalid pid PtlNIInit()
PTL PROCESS INVALID invalid process identifier PtlNIInit(), PtlNIDist(), PtlMEAttach(),

PtlMEInsert(), PtlACEntry(), PtlPut(),
PtlGet()

PTL PT FULL portal table is full PtlMEAttachAny()
PTL PT INDEX INVALID invalid portal table index PtlMEAttach()
PTL SEGV addressing violation PtlNIInit(), PtlNIStatus(), PtlNIDist(),

PtlNIHandle(), PtlMDBind(),
PtlMDUpdate(), PtlEQAlloc(),
PtlEQGet(), PtlEQWait()

PTL SR INDEX INVALID invalid status register
index

PtlNIStatus()

Table 3.7 summarizes the remaining constant values introduced by the portals API. The first column in this
table presents the symbolic name for the constant, the second column gives a brief description of the value,
the third column identifies the type for the value, and the fourth column identifies the sections in which the
constant is mentioned. (A boldface section indicates the place the constant is introduced or described.)

71

Table 3.7. Portals Constants: Other Constants Defined by the Portals API.

Name Meaning Base Type Reference
PTL ACK REQ request an acknowledgment ptl ack req t 3.13, 3.13.2
PTL EQ HANDLER NONE a NULL event queue

handler function
ptl eq handler t 3.11.6, 3.11.7

PTL EQ NONE a NULL event queue handle ptl handle eq t 3.2.2, 3.10.1,
3.10.6

PTL EVENT ACK acknowledgment event ptl event kind t 3.11.1, 3.13.2
PTL EVENT GET END get event end ptl event kind t 3.11.1, 3.13.4
PTL EVENT GETPUT END getput event end ptl event kind t 3.11.1, 3.13.6
PTL EVENT GETPUT START getput event start ptl event kind t 3.11.1, 3.11.3,

3.13.6
PTL EVENT GET START get event start ptl event kind t 3.11.1, 3.13.4
PTL EVENT PUT END put event end ptl event kind t 3.11.1, 3.13.2
PTL EVENT PUT START put event start ptl event kind t 3.11.1, 3.13.2
PTL EVENT REPLY END reply event end ptl event kind t 3.11.1, 3.13.4,

3.13.6
PTL EVENT REPLY START reply event start ptl event kind t 3.11.1, 3.13.4,

3.13.6
PTL EVENT SEND END send event end ptl event kind t 3.11.1, 3.13.2,

3.13.6
PTL EVENT SEND START send event start ptl event kind t 3.11.1, 3.13.2,

3.13.6, 3.11.3
PTL EVENT UNLINK unlink event ptl event kind t 3.10.1, 3.10.5,

3.11.1
PTL IFACE DEFAULT default interface ptl interface t 3.2.5
PTL INS AFTER insert after ptl ins pos t 3.9, 3.9.2,

3.9.4
PTL INS BEFORE insert before ptl ins pos t 3.9, 3.9.2,

3.9.4
PTL INVALID HANDLE invalid handle ptl handle any t 3.2.2, 3.14.1
PTL JID ANY wildcard for job identifier ptl jid t 3.8, 3.2.6,

3.12.1
PTL JID NONE job identifiers not

supported for process
ptl jid t 3.8

PTL MD ACK DISABLE a flag to disable
acknowledgments

int 3.10.1

PTL MD EVENT END -
DISABLE

a flag to disable end events int 3.10.1, 3.11.3

PTL MD EVENT START -
DISABLE

a flag to disable start events int 3.10.1, 3.11.3

PTL MD IOVEC a flag to enable
scatter/gather memory
descriptors

int 3.10.1, 3.10.2

PTL MD MANAGE REMOTE a flag to enable the use of
remote offsets

int 3.10.1, 3.13.2,
3.13.4

PTL MD MAX SIZE use the max size field in a
memory descriptor

unsigned int 3.10.1

PTL MD OP GET a flag to enable get
operations

int 3.10.1, 4.2

continued on next page

72

continued from previous page
Name Meaning Base Type Reference
PTL MD OP PUT a flag to enable put

operations
int 3.10.1, 4.2

PTL MD THRESH INF infinite threshold for a
memory descriptor

int 3.10.1

PTL MD TRUNCATE a flag to enable truncation
of a request

int 3.10.1, 4.2

PTL NID ANY wildcard for node identifier
fields

ptl nid t 3.2.6, 3.9.2,
3.12.1

PTL NI OK successful event ptl ni fail t 3.11.4, 3.11.5
PTL NO ACK REQ request no acknowledgment ptl ack req t 3.13, 3.13.2,

4.1
PTL PID ANY wildcard for process

identifier fields
ptl pid t 3.2.6, 3.5.2,

3.9.2, 3.12.1
PTL PT INDEX ANY wildcard for portal table

indexes
ptl pt index t 3.12.1

PTL RETAIN disable unlinking ptl unlink t 3.10.3
PTL SR DROP COUNT index for the dropped count

register
ptl sr index t 3.2.7, 3.5.4

PTL TIME FOREVER a flag to indicate
unbounded time

ptl time t 3.11.12

PTL UID ANY wildcard for user identifier ptl uid t 3.2.6, 3.9.2,
3.12.1

PTL UNLINK enable unlinking ptl unlink t 3.10.3

73

74

Chapter 4

The Semantics of Message
Transmission
The portals API uses four types of messages: put, acknowledgment, get, and reply. In this section, we
describe the information passed on the wire for each type of message. We also describe how this
information is used to process incoming messages.

4.1 Sending Messages

Table 4.1 summarizes the information that is transmitted for a put request. The first column provides a
descriptive name for the information, the second column provides the type for this information, the third
column identifies the source of the information, and the fourth column provides additional notes. Most
information that is transmitted is obtained directly from the put operation.

IMPLEMENTATION
NOTE 25:

Information on the wire

This section describes the information that portals semantics
require to be passed between an initiator and its target . The
portals specification does not enforce a given wire protocol or in
what order and what manner information is passed along the
communication path.

For example, portals semantics require that an acknowledgment
event contains the memory descriptor from which the put
originated; i.e., the acknowledgment event points to the local
memory descriptor that triggered it. This section suggests that
the put memory descriptor is sent to the target and back again in
the acknowledgment message. If an implementation has another
way of identifying the memory descriptor and its event queue,
then sending the memory descriptor pointer may not be
necessary.

Notice that the handle for the memory descriptor used in the put operation is transmitted even though this
value cannot be interpreted by the target . A value of anything other than PTL NO ACK REQ is interpreted as a
request for an acknowledgment. In that case the memory descriptor value is sent back to the initiator in the
acknowledgment message. It is needed to find the appropriate event queue and identify the memory
descriptor of the original put.

A portals header contains 8 bytes of user data. This is useful for out-of-band data transmissions with or
without bulk data. The header bytes are stored in the event queue. (See Section 3.10.1 on page 45.)

Table 4.1 is also valid for PtlPutRegion() calls. The only difference is that the length information is taken
from the function call arguments instead of the memory descriptor to be sent.

75

Table 4.1. Send Request: Information Passed in a Send Request — PtlPut()
and PtlPutRegion().

Information Type PtlPut() Argument Notes
operation int indicates a put request
initiator ptl process id t local information
user ptl uid t local information
job identifier ptl jid t local information (if supported)
target ptl process id t target id
portal index ptl pt index t pt index
cookie ptl ac index t ac index
match bits ptl match bits t match bits
offset ptl size t remote offset
memory desc ptl handle md t md handle no ack, if PTL NO ACK REQ
length ptl size t md handle length member — for PtlPut()
length ptl size t length amount of data — for PtlPutRegion()
header data ptl hdr data t hdr data user data in header
data bytes md handle user data

Table 4.2 summarizes the information transmitted in an acknowledgment. Most of the information is simply
echoed from the put request. Notice that the initiator and target are obtained directly from the put request but
are swapped in generating the acknowledgment. The only new piece of information in the acknowledgment
is the manipulated length, which is determined as the put request is satisfied, and the actual offset used.

IMPLEMENTATION
NOTE 26:

Acknowledgment requests

If an acknowledgment has been requested, the associated
memory descriptor remains in use by the implementation until the
acknowledgment arrives and can be logged in the event queue.
See Section 3.10.5 for how pending operations affect unlinking of
memory descriptors.

If the target memory descriptor does not have the PTL MD MANAGE REMOTE flag set, the offset local to the
target memory descriptor is used. If the flag is set, the offset requested by the initiator is used. An
acknowledgment message returns the actual value used.

Table 4.2. Acknowledgment: Information Passed in an Acknowledgment.

Information Type PtlPut() Argument Notes
operation int indicates an acknowledgment
initiator ptl process id t target id echo target of put
target ptl process id t initiator echo initiator of put
portal index ptl pt index t pt index echo
match bits ptl match bits t match bits echo
offset ptl size t remote offset obtained from the operation
memory descriptor ptl handle md t md handle echo
requested length ptl size t md handle echo
manipulated length ptl size t obtained from the operation

76

Table 4.3 summarizes the information that is transmitted for a get request. Like the information transmitted
in a put request, most of the information transmitted in a get request is obtained directly from the PtlGet()
operation. The memory descriptor must not be unlinked until the reply is received.

Table 4.3 needs an additional field for PtlGetRegion() calls. The local offset specified by PtlGetRegion()
needs to be sent with the request and must come back with the reply information.

Table 4.3. Get Request: Information Passed in a Get Request — PtlGet() and
PtlGetRegion().

Information Type PtlGet() Argument Notes
operation int indicates a get operation
initiator ptl process id t local information
user ptl uid t local information
job identifier ptl jid t local information (if supported)
target ptl process id t target id
portal index ptl pt index t pt index
cookie ptl ac index t ac index
match bits ptl match bits t match bits
offset ptl size t remote offset
memory descriptor ptl handle md t md handle destination of reply
length ptl size t md handle length member
initiator offset ptl size t local offset for PtlGetRegion() only

Table 4.4 summarizes the information transmitted in a reply. Like an acknowledgment, most of the
information is simply echoed from the get request. The initiator and target are obtained directly from the get
request but are swapped in generating the reply. The only new information in the reply are the manipulated
length, the actual offset used, and the data, which are determined as the get request is satisfied.

Table 4.4. Reply: Information Passed in a Reply.

Information Type PtlGet() Argument Notes
operation int indicates an acknowledgment
initiator ptl process id t target id echo target of get
target ptl process id t initiator echo initiator of get
portal index ptl pt index t pt index echo
match bits ptl match bits t match bits echo
offset ptl size t remote offset obtained from the operation
memory descriptor ptl handle md t md handle echo
requested length ptl size t md handle echo length member
manipulated length ptl size t obtained from the operation
initiator offset ptl size t local offset for PtlGetRegion() only
data bytes obtained from the operation

Table 4.5 presents the information that needs to be transmitted from the initiator to the target for a getput
operation. The result of a getput operation is a reply as described in Table 4.4.

77

Table 4.5. Get/Put Request: Information Passed in a Get/Put Request.

Information Type PtlGetPut() Argument Notes
operation int indicates a getput operation
initiator ptl process id t local information
user ptl uid t local information
job identifier ptl jid t local information (if supported)
target ptl process id t target id
portal index ptl pt index t pt index
cookie ptl ac index t ac index
match bits ptl match bits t match bits
offset ptl size t remote offset
header data ptl hdr data t hdr data user data in header
memory descriptor ptl handle md t get md handle destination of reply
length ptl size t put md handle length member
data bytes put md handle user data

4.2 Receiving Messages

When an incoming message arrives on a network interface, the communication system first checks that the
target process identified in the request is a valid process that has initialized the network interface (i.e., that
the target process has a valid portal table). If this test fails, the communication system discards the message
and increments the dropped message count for the interface. The remainder of the processing depends on
the type of the incoming message. put, get, and getput messages are subject to access control checks and
translation (searching a match list), while acknowledgment and reply messages bypass the access control
checks and the translation step.

Acknowledgment messages include a handle for the memory descriptor used in the original PtlPut() or
PtlPutRegion() operation. This memory descriptor will identify the event queue where the event should be
recorded. Upon receipt of an acknowledgment, the runtime system only needs to confirm that the memory
descriptor and event queue still exist. Should any of these conditions fail, the message is simply discarded,
and the dropped message count for the interface is incremented. Otherwise, the system builds an
acknowledgment event from the information in the acknowledgment message and adds it to the event queue.

Reception of reply messages is also relatively straightforward. Each reply message includes a handle for a
memory descriptor. If this descriptor exists, it is used to receive the message. A reply message will be
dropped if the memory descriptor identified in the request does not exist or it has become inactive. In this
case, the dropped message count for the interface is incremented. Every memory descriptor accepts and
truncates incoming reply messages, eliminating the other potential reasons for rejecting a reply message.

The critical step in processing an incoming put, get, or getput request involves mapping the request to a
memory descriptor. This step starts by using the portal index in the incoming request to identify a list of
match entries. This list of match entries is searched in sequential order until a match entry is found whose
match criteria matches the match bits in the incoming request and whose memory descriptor accepts the
request.

Because acknowledgment and reply messages are generated in response to requests made by the process
receiving these messages, the checks performed by the runtime system for acknowledgments and replies are
minimal. In contrast, put, get, and getput messages are generated by remote processes and the checks
performed for these messages are more extensive. Incoming put, get, or getput messages may be rejected
because:

78

• the access control index supplied in the request is not a valid access control entry;

• the access control entry identified by the index does not match the identifier of the requesting process;

• the access control entry identified by the access control entry does not match the portal index supplied
in the request;

• the portal index supplied in the request is not valid; or

• the match bits supplied in the request do not match any of the match entries with a memory descriptor
that accepts the request.

In all cases, if the message is rejected, the incoming message is discarded and the dropped message count
for the interface is incremented.

A memory descriptor may reject an incoming request for any of the following reasons:

• the PTL MD OP PUT or PTL MD OP GET option has not been enabled and the operation is put, get, or
getput (Table 4.6); or

• the length specified in the request is too long for the memory descriptor and the PTL MD TRUNCATE
option has not been enabled.

Also see Sections 2.2 and 2.3 and Figure 2.5.

Table 4.6. Portals Operations and Memory Descriptor Flags: A - indicates
that the operation will be rejected, and a • indicates that the memory descriptor
will accept the operation.

Target Memory Descriptor Flags Operation
put get getput

none - - -
PTL MD OP PUT • - -
PTL MD OP GET - • -
both • • •

79

80

References

Brightwell, R., D. S. Greenberg, A. B. Maccabe, and R. Riesen (2000, February). Massively Parallel
Computing with Commodity Components. Parallel Computing 26, 243–266.

Brightwell, R., T. Hudson, R. Riesen, and A. B. Maccabe (1999, December). The Portals 3.0 Message
Passing Interface. Technical Report SAND99-2959, Sandia National Laboratories.

Brightwell, R. and L. Shuler (1996, July). Design and Implementation of MPI on Puma Portals. In
Proceedings of the Second MPI Developer’s Conference, pp. 18–25.

Compaq, Microsoft, and Intel (1997, December). Virtual Interface Architecture Specification Version
1.0. Technical report, Compaq, Microsoft, and Intel.

Cray Research, Inc. (1994, October). SHMEM Technical Note for C, SG-2516 2.3. Cray Research, Inc.

Ishikawa, Y., H. Tezuka, and A. Hori (1996). PM: A High-Performance Communication Library for
Multi-user Parallel Envrionments. Technical Report TR-96015, RWCP.

Lauria, M., S. Pakin, and A. Chien (1998). Efficient Layering for High Speed Communication: Fast
Messages 2.x. In Proceedings of the IEEE International Symposium on High Performance
Distributed Computing.

Maccabe, A. B., K. S. McCurley, R. Riesen, and S. R. Wheat (1994, June). SUNMOS for the Intel
Paragon: A Brief User’s Guide. In Proceedings of the Intel Supercomputer Users’ Group. 1994
Annual North America Users’ Conference., pp. 245–251.

Message Passing Interface Forum (1994). MPI: A Message-Passing Interface standard. The
International Journal of Supercomputer Applications and High Performance Computing 8, 159–416.

Message Passing Interface Forum (1997, July). MPI-2: Extensions to the Message-Passing Interface.
Message Passing Interface Forum.

Myricom, Inc. (1997). The GM Message Passing System. Technical report, Myricom, Inc.

Riesen, R., R. Brightwell, and A. B. Maccabe (2005). The Evolution of Portals, an API for High
Performance Communication. To be published.

Riesen, R. and A. B. Maccabe (2002, November). RMPP: The Reliable Message Passing Protocol. In
Workshop on High-Speed Local Networks HSLN’02, Tampa, Florida.

Sandia National Laboratories (1996). ASCI Red. Sandia National Laboratories.
http://www.sandia.gov/ASCI/TFLOP.

Shuler, L., C. Jong, R. Riesen, D. van Dresser, A. B. Maccabe, L. A. Fisk, and T. M. Stallcup (1995). The
Puma Operating System for Massively Parallel Computers. In Proceeding of the 1995 Intel
Supercomputer User’s Group Conference. Intel Supercomputer User’s Group.

Task Group of Technical Committee T11 (1998, July). Information Technology - Scheduled Transfer
Protocol - Working Draft 2.0. Technical report, Accredited Standards Committee NCITS.

81

82

Appendix A

Frequently Asked Questions
This document is a specification for the portals 3.3 API. People using and implementing Portals sometimes
have questions that the specification does not address. In this appendix we answer some of the more
common questions.

Q Are Portals a wire protocol?

A No. The portals document defines an API with semantics that specify how messages move from one
address space to another. It does not specify how the individual bytes are transferred. In that sense it is
similar to the socket API: TCP/IP or some other protocol is used to reliably transfer the data. Portals assume
an underlying transport mechanism that is reliable and scalable.

Q How are Portals different from the sockets API (TCP/IP) or the MPI API?

A Sockets are stream-based while Portals are message-based. Portals implementations can use the a priori
knowledge of the total message length to manage the buffers and protocols to be used. The portals API
makes it easy to let the implementation know in advance where in user space incoming data should be
deposited. The sockets API makes this more difficult because the implementation will not know where data
has to go until the application issues a read() request.

The sockets API using TCP/IP is connection-oriented which limits scalability because state has to be
maintained for each open connection and the number of connections increases with the size of the machine.

MPI is a higher level API than Portals. For example, the function MPIrecv() can be issued before or after the
sender has sent the message matching this receive. The MPI implementation has to take care of buffering the
message if the receive has not been posted yet. Portals simply discard messages for which the receiver is not
yet ready.

Portals are ideally suited to be used by an MPI implementation. An application programmer, however, may
grow frustrated by Portals’ lack of user-friendliness. We recommend that Portals be used by systems
programmers and library writers, not application programmers.

Q What about GM, FM, AM, PM, etc.?

A There are many communication paradigms, and, especially in the early 1990s, many experiments were
conducted on how to best pass messages among supercomputer nodes; hence, the proliferation of the various
*M message passing layers.

Some of them, such as GM, are hardware specific. Almost every network interface vendor has its own API
to access its hardware. Portals are portable and open source. They were designed to run on a wide variety of
networks with NICs that are programmable or not. This was an important design criteria for Portals 3.0
when work on Cplant started.

Most of the research message passing layers do not provide reliability because they were designed for
networks that are, for all practical purposes, reliable. While Portals themselves do not provide a wire
protocol, Portals demand that the transport layer underneath is reliable. This places Portals a level above the
other APIs in the networking stack. On reliable networks, such as ASCI Red, Portals can be implemented

83

without a wire protocol. On unreliable networks, such as Myrinet, Portals can run over GM or some other
protocol that implements reliability.

Some of the research paradigms do not scale to thousands of nodes. In order to control local resources, some
of them use send tokens to limit the number of messages that can be sent through the network at any given
time. As a machine and its network grow, this imposes severe limitations and degrades the scalability of the
message passing layer.

Q What is a NAL?

A NAL stands for Network Abstraction Layer. All current portals 3.x implementations are in some way or
another derived from the reference implementation which employs a NAL. A NAL is a very nice way to
abstract the network interface from a portals library. The library implements common portals functions in
user space and can be easily ported from one architecture to another. On the other side of the NAL, in
protected space, we find routines that are more specific to a given architecture and network interface.

Q Must Portals be implemented using a NAL?

A No. A NAL provides a nice abstraction and makes it easier to port portals implementations, but the API
and semantics of Portals do not require a NAL.

Q Why does the portals API not specify a barrier operation?

A Earlier versions of the API had a barrier function. It turned out to be quite difficult to implement on
some architectures. The main problem was that nodes would boot in intervals and not be ready to participate
in a portals barrier operation until later. The portals implementations had to rely on the runtime system to
learn when nodes became active. The runtime systems, in turn, usually had some form of barrier operation
that allowed them to synchronize nodes after booting or after job load.

Because that functionality already existed and it made portals implementations difficult, we decided to
eliminate the barrier operation from the portals API. However, future versions of Portals may have collective
operations. In that case, the portals barrier would be re-introduced.

84

Appendix B

Portals Design Guidelines
Early versions of Portals were based on the idea to use data structures to describe to the transport
mechanism how data should be delivered. This worked well for the Puma OS on the Intel Paragon but not so
well under Linux on Cplant. The solution was to create a thin API over those data structures and add a level
of abstraction. The result was Portals 3.x.

When designing and expanding this API, we were guided by several principles and requirements. We have
divided them into three categories: requirements that must be fulfilled by the API and its implementations,
requirements that should be met, and a wish list of things that would be nice if Portals 3.x could provide
them.

B.1 Mandatory Requirements

Message passing protocols. Portals must support efficient implementations of commonly used message
passing protocols.

Portability. It must be possible to develop implementations of Portals on a variety of existing message
passing interfaces.

Scalability. It must be possible to write efficient implementations of Portals for systems with thousands of
nodes.

Performance. It must be possible to write high performance (e.g., low latency, high bandwidth)
implementations of Portals on existing hardware.

Multiprocess support. Portals must support use of the communication interface by at least two processes
per CPU per node.

Communication between processes from different executables. Portals must support the ability to pass
messages between processes instantiated from different executables.

Runtime independence. The ability of a process to perform message passing must not depend on the
existence of an external runtime environment, scheduling mechanism, or other special utilities outside of
normal UNIX process startup.

Memory protection. Portals must ensure that a process cannot access the memory of another process
without consent.

B.2 The Will Requirements

Operational API. Portals will be defined by operations, not modifications to data structures. This means
that the interface will have explicit operations to send and receive messages. (It does not mean that the
receive operation will involve a copy of the message body.)

MPI. It will be possible to write an efficient implementation of the point-to-point operations in MPI 1 using
Portals.

85

Myrinet. It will be possible to write an efficient implementation of Portals using Linux as the host OS and
Myrinet interface cards.

Sockets Implementation. It will be possible to write an implementation of Portals based on the sockets
API.

Message Size. Portals will not impose an arbitrary restriction on the size of message that can be sent.

OS bypass. Portals will support an OS bypass message passing strategy. That is, high performance
implementations of the message passing mechanisms will be able to bypass the OS and deliver messages
directly to the application.

Put/Get. Portals will support remote put/get operations.

Packets. It will be possible to write efficient implementations of Portals that packetize message
transmission.

Receive operation. The receive operation of Portals will use an address and length pair to specify where the
message body should be placed.

Receiver managed communication. Portals will support receive-side management of message space, and
this management will be performed during message receipt.

Sender managed communication. Portals will support send-side management of message space.

Parallel I/O. Portals will be able to serve as the transport mechanism for a parallel file I/O system.

Gateways. It will be possible to write gateway processes using Portals. A gateway process is a process that
receives messages from one implementation of Portals and transmits them to another implementation of
Portals.

Asynchronous operations. Portals will support asynchronous operations to allow computation and
communication to overlap.

Receive side matching. Portals will allow matching on the receive side before data is delivered into the
user buffer.

B.3 The Should Requirements

Message Alignment. Portals should not impose any restrictions regarding the alignment of the address(es)
used to specify the contents of a message.

Striping. Portals should be able to take advantage of multiple interfaces on a single logical network to
improve the bandwidth

Socket API. Portals should support an efficient implementation of sockets (including UDP and TCP/IP).

Scheduled Transfer. It should be possible to write an efficient implementation of Portals based on
Scheduled Transfer (ST).

Virtual Interface Architecture. It should be possible to write an efficient implementation of Portals based
on the Virtual Interface Architecture (VIA).

Internetwork consistency. Portals should not impose any consistency requirements across multiple
networks/interfaces. In particular, there will not be any memory consistency/coherency requirements when
messages arrive on independent paths.

86

Ease of use. Programming with Portals should be no more complex than programming traditional message
passing environments such as UNIX sockets or MPI. An in-depth understanding of the implementation or
access to implementation-level information should not be required.

Minimal API. Only the smallest number of functions and definitions necessary to manipulate the data
structures should be specified. That means, for example, that convenience functions, which can be
implemented with the already defined functions, will not become part of the API.

One exception to this is if a non-native implementation would suffer in scalability or take a large
performance penalty.

87

88

Appendix C

A README Template
Each portals implementation should provide a README file that details implementation-specific choices.
This appendix serves as a template for such a file by listing which parameters should be specified.

Limits. The call PtlNIInit() accepts a desired set of limits and returns a set of actual limits. The README
should state the possible ranges of actual limits for this implementation, as well as the acceptable ranges for
the values passed into PtlNIInit(). See Section 3.5.1

Status Registers. Portals define a set of status registers (Section 3.2.7). The type ptl sr index t defines the
mandatory PTL SR DROP COUNT and all other, implementation specific indexes. The README should list
what indexes are available and what their purposes are.

Network interfaces. Each portals implementation defines PTL IFACE DEFAULT to access the default
network interface on a system (Sections 3.2.5 and 3.5.2). An implementation that supports multiple
interfaces must specify the constants used to access the various interfaces through PtlNIInit().

Portal table. The portals specification says that a compliant implementation must provide at least 8 entries
per portal table (Section 3.5). The README file should state how many entries will actually be provided.

Maximum size of a PtlGetPut(). The PtlGetPut() operation (Sections 3.5.1 and 3.13.6) supports at least 8
bytes of data. An implementation may provide more. The actual value should be mentioned in the
README file. It can also be retrieved by the user with the call PtlNIInit() (Sections 3.5.2 and 3.5.1).

Distance measure. An implementation should state in its README what measure, if any, is returned by
PtlNIDist() (Section 3.5.5).

Job identifiers. The README file should indicate whether the implementation supports job identifiers
(Section 3.8).

Alignment. If an implementation favors specific alignments for memory descriptors, the README should
state what they are and the (performance) consequences if they are not observed (Section 3.10.1).

Event handlers. The README should state implementation-specific restrictions on event handlers
(Section 3.11.8).

89

90

Appendix D

Implementations
In this appendix we briefly mention two portals 3.3 implementations: A reference implementation and one
that runs on Cray’s XT3 Red Storm.

D.1 Reference Implementation

A portals 3.3 reference implementation has been written and is maintained by Jim Schutt. The main goal of
the reference implementation is to provide a working example that implements the syntax, semantics, and
spirit of Portals 3.3 as described in this document.

The reference implementation uses the NAL (Network Abstraction Layer) concept to separate the network
independent part from the code that is specific to the API and protocols of the underlying layer. The
reference implementation uses the sockets API and TCP/IP for its transport mechanism. While this is not
overly efficient, the code used to implement Portals 3.3 can be understood by the many people who are
familiar with the sockets API. Furthermore, TCP/IP is so widespread that the reference implementation is
executable on a large array of machines and networks.

There is a build option that disables a separate progress thread which allows Portals to make progress
(sending an acknowledgment for example) without the layer above making calls into the portals library. This
speeds up the implementation but violates the progress rule.

The source code for the implementation is freely available from the following site:

ftp://ftp.sandia.gov/outgoing/pub/portals3

In addition to comments in the code, it contains several README files that describe the implementation.
Feedback is highly encouraged to the code author, jaschut@sandia.gov, and the Portals 3.3 team at
Sandia National Laboratories, p3@sandia.gov.

A NAL that runs in Linux kernel space is currently under development.

We maintain a portals web site at http://www.cs.sandia.gov/Portals with links to the latest reference
implementation and other information.

D.2 Portals 3.3 on the Cray XT3 Red Storm

There are two implementations of Portals available on Cray’s XT3 Red Storm system. One, generic, is
provided by Cray with the machine. The second, accelerated, is under active development at Sandia
National Laboratories. There are plans to merge the two versions in the future.

91

ftp://ftp.sandia.gov/outgoing/pub/portals3
jaschut@sandia.gov
p3@sandia.gov
http://www.cs.sandia.gov/Portals

D.2.1 Generic

This is the version provided by Cray with its XT3 Red Storm systems. A large portion of the portals code is
implemented inside the kernel. When messages arrive at the Seastar NIC, it causes an interrupt and lets the
kernel process the portals header; i.e., resolve portal table addressing and match list traversal. The
accelerated version under development places more of the portals code inside the Seastar NIC and avoids the
interrupt processing on each message arrival.

The generic implementation does not completely match the definitions in this document. The main
differences are listed here:

• PtlNIDist() is not implemented.

• PtlACEntry() is not implemented. Calling it has no effect.

• PtlHandleIsEqual() is not implemented.

• Limitations on IOVECs: Only the first and last entry can be unaligned (at the head of the buffer and
at the tail of the buffer, everything else must be quad-byte aligned).

• There are three new functions that are not part of this document: PtlIsValidHandle(),
PtlSetInvalidHandle(), and PtlTestGetPut().

• The following return codes are not implemented: PTL AC INDEX INVALID, PTL MD ILLEGAL,
and PTL IFACE INVALID.

• The type ptl size t is 32 bits wide, not 64 bits.

• PtlEQGet() and PtlEQWait() may return a ptl event t structure that is not fully filled in.

• Event queue handlers may block, make system calls, perform I/O, can call the portals event queue
functions, and may initiate put and get operations.

Please refer to Cray documentation for up-to-date information.

D.2.2 Accelerated

An accelerated version that avoids interrupts for each message arrival is being developed and tested at
Sandia National Laboratories. At the moment is has more limitations than the generic implementation and
leaves out several features discussed in this document. The main ones are:

• Event handlers are not supported.

• Adds a PtlPost() call which combines a PtlMEInsert() and PtlMDUpdate() call. This eliminates a
protection domain boundary crossing in many of the common usage cases.

• The PtlGet() operation generates PTL EVENT SEND START and PTL EVENT SEND END events.

Since this implementation is still under active development, further changes are to be expected.

92

Appendix E

Summary of Changes
The first version of this document described Portals version 3.0 [Brightwell et al. 1999]. Since then we have
made changes to the API and semantics of Portals, as well as changes to the document. This appendix
summarizes the changes between the individual versions and outlines the path to the current 3.3 version.

E.1 Changes From Version 3.0 to 3.1

E.1.1 Thread Issues

The most significant change to the interface from version 3.0 to 3.1 involves the clarification of how the
interface interacts with multi-threaded applications. We adopted a generic thread model in which processes
define an address space and threads share the address space. Consideration of the API in the light of threads
led to several clarifications throughout the document:

1. Glossary:

(a) added a definition for thread, and

(b) reworded the definition for process.

2. Section 2: added Section 2.4 to describe the multi-threading model used by the portals API.

3. Section 3.4.1: PtlInit() must be called at least once and may be called any number of times.

4. Section 3.4.2: PtlFini() should be called once as the process is terminating and not as each thread
terminates.

5. Section 3.7: Portals does not define thread identifiers.

6. Section 3.5: network interfaces are associated with processes, not threads.

7. Section 3.5.2: PtlNIInit() must be called at least once and may be called any number of times.

8. Section 3.11.10: PtlEQGet() returns PTL EQ EMPTY if a thread is blocked on PtlEQWait().

9. Section 3.11.11: waiting threads are awakened in FIFO order.

Two functions, PtlNIBarrier() and PtlEQCount(), were removed from the API. PtlNIBarrier() was defined to
block the calling process until all of the processes in the application group had invoked PtlNIBarrier(). We
now consider this functionality, along with the concept of groups (see the discussion under “other changes”)
to be part of the runtime system, not part of the portals API. PtlEQCount() was defined to return the number
of events in an event queue. Because external operations may lead to new events being added and other
threads may remove events, the value returned by PtlEQCount() would have to be a hint about the number
of events in the event queue.

93

E.1.2 Handling Small, Unexpected Messages

Another set of changes relates to handling small unexpected messages in MPI. In designing version 3.0, we
assumed that each unexpected message would be placed in a unique memory descriptor. To avoid the need
to process a long list of memory descriptors, we moved the memory descriptors out of the match list and
hung them off of a single match list entry. In this way, large unexpected messages would only encounter a
single “short message” match list entry before encountering the “long message” match list entry. Experience
with this strategy identified resource management problems with this approach. In particular, a long
sequence of very short (or zero length) messages could quickly exhaust the memory descriptors constructed
for handling unexpected messages. Our new strategy involves the use of several very large memory
descriptors for small unexpected messages. Consecutive unexpected messages will be written into the first
of these memory descriptors until the memory descriptor fills up. When the first of the “small memory”
descriptors fills up, it will be unlinked and subsequent short messages will be written into the next “short
message” memory descriptor. In this case, a “short message” memory descriptor will be declared full when
it does not have sufficient space for the largest possible unexpected message that is considered small.

This led to two significant changes. First, each match list entry now has a single memory descriptor rather
than a list of memory descriptors. Second, in addition to exceeding the operation threshold, a memory
descriptor can be unlinked when the local offset exceeds a specified value. These changes have led to several
changes in this document:

1. Section 2.2:

(a) removed references to the memory descriptor list, and

(b) changed the portals address translation description to indicate that unlinking a memory
descriptor implies unlinking the associated match list entry–match list entries can no longer be
unlinked independently from the memory descriptor.

2. Section 3.9.2:

(a) removed unlink from argument list,

(b) removed description of PTL UNLINK type, and

(c) changed wording of the error condition when the portal table index already has an associated
match list.

3. Section 3.9.4: removed unlink from argument list.

4. Section 3.10.1: added max offset.

5. Section 3.10.3:

(a) added description of PTL UNLINK type,

(b) removed reference to memory descriptor lists,

(c) changed wording of the error condition when match list entry already has an associated memory
descriptor, and

(d) changed the description of the unlink argument.

6. Section 3.10: removed PtlMDInsert() operation.

7. Section 3.10.4: removed references to memory descriptor list.

8. Section 3.10.5: removed reference to memory descriptor list.

9. Section 3.15: removed references to PtlMDInsert.

10. Section 4: removed reference to memory descriptor list.

94

11. Revised the MPI example to reflect the changes to the interface.

Several changes have been made to improve the general documentation of the interface.

1. Section 3.2.2: documented the special value PTL EQ NONE.

2. Section 3.2.6: documented the special value PTL ID ANY.

3. Section 3.10.4: documented the return value PTL EQ INVALID.

4. Section 3.10.6: clarified the description of the PtlMDUpdate() function.

5. Introduced a new section to document the implementation defined values.

6. Section 3.15: modified Table 3.7 to indicate where each constant is introduced and where it is used.

E.1.3 Other Changes

E.1.3.1 Implementation Defined Limits (Section 3.5.2)

The earlier version provided implementation defined limits for the maximum number of match entries, the
maximum number of memory descriptors, etc. Rather than spanning the entire implementation, these limits
are now associated with individual network interfaces.

E.1.3.2 Added User Identifiers (Section 3.6)

Group identifiers had been used to simplify access control entries. In particular, a process could allow access
for all of the processes in a group. User identifiers have been introduced to regain this functionality. We use
user identifiers to fill this role.

E.1.3.3 Removed Group Identifiers and Rank Identifiers (Section 3.7)

The earlier version of Portals had two forms for addressing processes: ¡node identifier, process identifier¿
and ¡group identifier, rank identifier¿. A process group was defined as the collection processes created
during application launch. Each process in the group was given a unique rank in the range 0 to n−1, where
n was the number of processes in the group. We removed groups because they are better handled in the
runtime system.

E.1.3.4 Match Lists (Section 3.9.2)

It is no longer illegal to have an existing match entry when calling PtlMEAttach(). A position argument was
added to the list of arguments supplied to PtlMEAttach() to specify whether the new match entry is
prepended or appended to the existing list. If there is no existing match list, the position argument is ignored.

E.1.3.5 Unlinking Memory Descriptors (Section 3.10)

Previously, a memory descriptor could be unlinked if the offset exceeded a threshold upon the completion of
an operation. In this version, the unlinking is delayed until there is a matching operation that requires more
memory than is currently available in the descriptor. In addition to changes in Section 3.10, this led to a
revision of Figure 2.5.

95

E.1.3.6 Split Phase Operations and Events (Section 3.11)

Previously, there were five types of events: PTL EVENT PUT, PTL EVENT GET, PTL EVENT REPLY,
PTL EVENT SENT, and PTL EVENT ACK. The first four of these reflected the completion of potentially long
operations. We have introduced new event types to reflect the fact that long operations have a distinct
starting point and a distinct completion point. Moreover, the completion may be successful or unsuccessful.

In addition to providing a mechanism for reporting failure to higher levels of software, this split provides an
opportunity for for improved ordering semantics. Previously, if one process initiated two operations (e.g.,
two put operations) on a remote process, these operations were guaranteed to complete in the same order
that they were initiated. Now, we only guarantee that the initiation events are delivered in the same order. In
particular, the operations do not need to complete in the order that they were initiated.

E.1.3.7 Well Known Process Identifiers (Section 3.5.2)

To support the notion of “well known process identifiers,” we added a process identifier argument to the
arguments for PtlNIInit().

E.2 Changes From Version 3.1 to 3.2

1. Updated version number to 3.2 throughout the document

2. Section 3.7.2: added PTL SEGV to error list for PtlGetId().

3. Section 3.9.2: added PTL ME LIST TOO LONG to error list for PtlMEAttach().

4. Section 3.9.5: removed text referring to a list of associated memory descriptors.

5. Section 3.10.5: added text to describe unlinking a free-floating memory descriptor.

6. Table 3.4: added entry for ptl seq t.

7. Section 3.10.1:

(a) added definition of max offset.

(b) added text to clarify PTL MD MANAGE REMOTE.

8. Section 3.10.3: modified text for unlink op.

9. Section 3.5.2: added text to clarify multiple calls to PtlNIInit().

10. Section 3.10.3: added text to clarify unlink nofit.

11. Section 4.2: removed text indicating that a memory descriptor will reject a message if the associated
event queue is full.

12. Section 3.10.5: added PTL MD IN USE error code and text to indicate that only memory descriptors
with no pending operations can be unlinked.

13. Table 3.6: added PTL MD IN USE return code.

14. Section 3.11.5: added user identifier field, memory descriptor handle field, and NI specific failure field
to the ptl event t structure.

15. Table 3.4: added ptl ni fail t.

96

16. Section 3.11.5: added PTL EVENT UNLINK event type.

17. Table 3.5: removed PtlTransId().

18. Section 3.9.2, Section 3.9.4, and Section 3.13.2: listed allowable constants with relevant fields.

19. Table 3.5: added PtlMEAttachAny() function.

20. Table 3.6: added PTL PT FULL return code for PtlMEAttachAny().

21. Table 3.7: updated to reflect new event types.

22. Section 3.2.6: added ptl nid t, ptl pid t, and ptl uid t.

23. Section 3.5.1: added max md iovecs and max me list.

24. Section 3.10: changed max offset to max size and added PTL MD IOVEC option.

25. Added Section 3.8.

26. Added Section 3.13.6.

27. Deleted the chapter with obsolete examples.

E.3 Changes From Version 3.2 to 3.3

E.3.1 API Changes

1. Section 3.11.12: added PtlEQPoll().

2. Section 3.13.3: added PtlPutRegion().

3. Section 3.13.5: added PtlGetRegion().

4. Section 3.10: added PTL MD EVENT START DISABLE and PTL MD EVENT END DISABLE options.

5. Section 3.11.6: added event queue handler capability.

6. Revised naming scheme to be consistent across the entire API.

E.3.2 Semantic Clarifications

Updating the specification and providing better descriptions for some items may have invalidated the
semantics of earlier implementations because the earlier documentation was vague or missing information.
In this section we document these clarifications.

1. Deleted PTL IFACE DUP. Interfaces can be initialized several times (by threads).

2. The remote offset in an acknowledgment operation now reflects the value used on the remote memory
descriptor. By default, it is the local offset, not the offset requested by the put operation, unless the
remote memory descriptor has the PTL MD MANAGE REMOTE flag set.

3. Ignore the PTL MD MAX SIZE option of a memory descriptor if PTL MD MANAGE REMOTE is set
(Section 3.10.1).

97

E.3.3 Document Changes

1. Converted the Lyx document to LATEX.

2. Bumped document revision number to 2.x.

3. Formatted the document according to the Sandia Technical report guidelines.

4. Moved change summaries to the end of the document.

5. Used color and C language specific syntax highlighting in listings.

6. Used macros extensively for greater consistency and error checking.

7. Moved return codes to the end of a definition.

8. Corrected a number of mistyped identifiers (e.g., plt instead of ptl).

9. Changed bibliography style to Chicago Style.

10. Added an index.

11. Made small editorial changes.

12. Added page headers.

13. Added a citation for PM, since we mention it.

14. Added a section on frequently asked questions.

15. Added a section about portals design guidelines.

16. Changed timeout in PtlEQPoll() to ptl time t.

17. Added ptl md iovec t , ptl ni limits t , and ptl time t to Table 3.4, sorted it alphabetically, and removed
PtlMDAlloc().

18. Added PtlGetUid() and PtlHandleIsEqual() to Table 3.5, sorted it alphabetically, and made column
headings boldface.

19. Added a preface

20. Changed PtlWait() to PtlEQWait() in Table 3.6 and sorted it alphabetically.

21. Changed PTL NO UPDATE to PTL MD NO UPDATE in Section 3.10.6.

22. Reformatted Table 3.7 to fit within the width of the page, sorted it alphabetically, and corrected some
of the references. Corrected PTL INSERT AFTER to be PTL INS AFTER, and PTL INSERT BEFORE to be
PTL INS BEFORE. Added PTL MD MAX SIZE and PTL NI OK.

23. Replaced occurrences of PTL MD NONE with PTL NO ACK REQ.

24. Corrected many small inconsistencies (e.g., Table 3.7 contained both PTL EVENT ACK START and
PTL EVENT ACK END, instead of only PTL EVENT ACK).

25. Section 3.11.1 only described some of the events (and had the total number of them wrong).

26. Added the following paragraph to Section 3.10.1:

If both PTL MD EVENT START DISABLE and PTL MD EVENT END DISABLE are specified, no
events will be generated. This includes PTL EVENT UNLINK and PTL EVENT ACK. If neither
PTL MD EVENT START DISABLE nor PTL MD EVENT END DISABLE, or only one of them is
specified, then PTL EVENT UNLINK and PTL EVENT ACK events will be generated.

98

27. Added start event processing to Figure 2.5.

28. Added getput where needed.

29. Made numerous clarifications in text.

30. Added implementation notes and a list of them to the front matter.

31. Added new figures for the basic portals operations in Section 2.1; expanded descriptions of those
figures.

32. Added diagrams to show event types and sequence (Figure 3.1).

33. Added Table 4.5 to include information contained in a getput request.

34. Added wire information for getput requests in Section 4.1, corrected the information that was
incorrect, commented on PtlPut() and PtlGet(), and added clarifications.

35. Consolidated argument name jobid to jid.

36. Changed references to page and section numbers into active links when viewed using Adobe’s
Acrobat Reader.

99

Index

A A
ac index (field) 61–67, 76–78
accelerated . 92
access control 24, 28, 30, 31, 36, 61
access control entry . 61
access control table . 61
ack req (field) . 63, 64
acknowledgment see operations
acknowledgment type . 62
actual (field) . 32, 33
address space opening . 21
address translation 21, 23, 26, 78, 94
addressing, portals . 26
alignment . 43, 89
API . 12, [13]
API summary . 68
application bypass 16, 18, 18, 21
application space . 23
argument names see structure fields
ASCI . [13]
atomic swap . see swap
atomic update . 48
authors

Compaq, Microsoft, and Intel . . 16, 18, (81)
Message Passing Interface Forum . . 16, (81)
Myricom, Inc. 18, (81)
Task Group of Technical Committee T11 18,

21, (81)
Brightwell and Shuler 17
Brightwell et al. 12, 16, 93
Brightwell, Ron . (81)
Chien, Andrew . (81)
Cray Research, Inc. 21
Fisk, Lee Ann . (81)
Greenberg, David S. (81)
Hori, A. (81)
Hudson, Tramm . (81)
Ishikawa et al. 13, 18
Ishikawa, Y. (81)
Jong, Chu . (81)
Lauria et al. 18
Lauria, Mario . (81)
Maccabe et al. 16
Maccabe, Arthur B. (81)
McCurley, Kevin S. (81)
Message Passing Interface Forum 21
Pakin, Scott . (81)
Riesen and Maccabe 17
Riesen et al. 17

Riesen, Rolf . (81)
Sandia National Laboratories 17
Shuler et al. 16
Shuler, Lance . (81)
Stallcup, T. Mack . (81)
Tezuka, H. (81)
van Dresser, David (81)
Wheat, Stephen R. (81)

B
background . 16
barrier operation . 84, 93
Barsis, Ed . 4
Barton, Eric . 4
base (field) . 41, 42
Braam, Peter . 4
Brightwell, Ron . 1, 3
buffer alignment . 43, 89
bypass

application 16, 18, 18, 21
OS . 16, 18, 86

C
Camp, Bill . 4
changes, API and document 93
collective operations . 84
communication model .17
conditional update . 49
connection-oriented . 16, 83
connectionless . 16, 17
constants

PTL ACK REQ 27, 62, 63, 72
PTL EQ HANDLER NONE 56, 57, 72
PTL EQ NONE . . 28, 45, 48, 49, 51, 72, 95
PTL EVENT ACK . . 45, 51, 53, 62, 63, 72,

96, 98
PTL EVENT ACK END 98
PTL EVENT ACK START 98
PTL EVENT GET . 96
PTL EVENT GET END 50, 53, 65, 72
PTL EVENT GET START . . 50, 53, 65, 72
PTL EVENT GETPUT END 51, 53, 66, 72
PTL EVENT GETPUT START .51, 53, 66,

72
PTL EVENT PUT . 96
PTL EVENT PUT END 50, 53, 62, 72
PTL EVENT PUT START . . 50, 53, 62, 72
PTL EVENT REPLY 96
PTL EVENT REPLY END . 51, 53, 65, 66,

72

100

PTL EVENT REPLY START . . 51–53, 65,
66, 72

PTL EVENT SEND END . . 51–53, 62, 63,
66, 72, 92C

PTL EVENT SEND START 51, 53, 62, 63,
66, 72, 92

PTL EVENT SENT 96
PTL EVENT UNLINK . 42, 45, 47, 51, 53,

55, 72, 97, 98
PTL IFACE DEFAULT 28, 72, 89
PTL INS AFTER 39, 41, 72, 98
PTL INS BEFORE 39, 41, 72, 98
PTL INVALID HANDLE 28, 68, 72
PTL JID ANY 29, 61, 72
PTL JID NONE 38, 54, 72
PTL MD ACK DISABLE 44, 72
PTL MD EVENT END DISABLE . 44, 45,

51, 53, 72, 97, 98
PTL MD EVENT START DISABLE . . 44,

45, 51, 53, 72, 97, 98
PTL MD IOVEC 44, 45, 72, 97
PTL MD MANAGE REMOTE . 44, 63, 65,

67, 72, 76, 96, 97
PTL MD MAX SIZE 44, 72, 97, 98
PTL MD NONE . 98
PTL MD OP GET 44, 67, 72, 79
PTL MD OP PUT 44, 67, 73, 79
PTL MD THRESH INF 43, 73
PTL MD TRUNCATE 44, 73, 79
PTL NI OK 53, 55, 73, 98
PTL NID ANY 29, 39, 61, 73
PTL NO ACK REQ . 62, 63, 73, 75, 76, 98
PTL PID ANY29, 32, 39, 61, 73
PTL PT INDEX ANY 61, 73
PTL RETAIN 38, 39, 46, 73
PTL SR DROP COUNT 29, 34, 73, 89
PTL TIME FOREVER 60, 73
PTL UID ANY 29, 61, 73
PTL UNLINK 38, 39, 46, 73, 94
PTL ID ANY . 95
PTL INSERT AFTER 98
PTL INSERT BEFORE 98
summary . 71

cookie . 24
count (field) . 56
Cplant . 12
CPU interrupts . 18
Cray XT3 . 91

D
data movement 21, 26, 57, 62
data types . 27, 69
denial of service . 25
design guidelines . 85

desired (field) . 32
discarded events . 62
discarded messages 17, 21, 23, 78, 79, 83
distance . 34, 89
distance (field) . 34, 35
DMA . [13]
dropped message count 73, 78, 79
dropped messages 29, 58–60, 71

E
eq handle (field) 45–49, 56–59
eq handler (field) . 56, 57
eq handles (field) . 60
event . 50

disable44, 45, 51, 53, 72, 97, 98
failure notification . 53
handler50, 55, 56, 69, 72, 89
occurrence . 51
order . 53
semantics . 60, 96
start/end . . 23, 44, 50, 51, 53, 55, 60, 72, 99
types . 50, 52
types (diagram) . 52

event (field) . 58–60
event queue . [13]

allocation . 55
freeing . 57
get . 58
handler . 55, 56, 58, 59
order . 53
poll . 59
type . 54
wait .58

event threshold see threshold
events . 18

F
failure notification . 53
FAQ . 83
faults . 18
Fisk, Lee Ann . 4
flow control

user-level . 16
function return codes see return codes
functions

MPIrecv . 83
PtlACEntry61, 69–71, 92
PtlEQAlloc 27, 50, 55, 55, 57, 69–71
PtlEQCount . 93
PtlEQFree 50, 57, 69–71
PtlEQGet . 50, 56–58, 58, 59–61, 69–71, 92,

93
PtlEQPoll 26, 50, 56–59, 59, 60, 61, 69, 70,

97, 98

101

PtlEQWait 26, 50, 56–58, 58, 59–61, 69–71,
92, 93, 98

PtlFini 29, 30, 30, 70, 71, 93F
PtlGet 57, 62, 65, 66, 69–71, 77, 92, 99
PtlGetId 33, 36, 37, 38, 69, 70, 96
PtlGetJid . 38, 69, 70
PtlGetPut . 31, 57, 62, 66, 67, 69, 70, 78, 89
PtlGetRegion . 57, 62, 65, 66, 69, 70, 77, 97
PtlGetUid . 36, 70, 98
PtlHandleIsEqual 68, 69, 70, 92, 98
PtlInit 27, 29, 70, 71, 93
PtlIsValidHandle . 92
PtlMDAlloc . 98
PtlMDAttach 42, 45, 46, 47, 69–71
PtlMDBind 42, 47, 48, 69–71
PtlMDInsert . 94
PtlMDUnlink 43, 47, 48, 48, 50, 69–71
PtlMDUpdate . 43, 46, 48, 48, 69–71, 92, 95
PtlMEAttach . 30, 38, 39, 39, 40, 41, 69–71,

95, 96
PtlMEAttachAny . 30, 38, 40, 40, 69–71, 97
PtlMEInsert 38, 41, 69–71, 92
PtlMEUnlink 38, 42, 69–71
PtlNIBarrier . 93
PtlNIDist 31, 34, 35, 69–71, 89, 92
PtlNIFini 30, 33, 69–71
PtlNIHandle 31, 35, 69–71
PtlNIInit . 30–32, 32, 33, 67, 69–71, 89, 93,

96
PtlNIStatus 29, 30, 33, 69–71
PtlPost . 92
PtlPut . 53, 57, 62, 63, 64, 69–71, 76, 78, 99
PtlPutRegion . 57, 62, 64, 64, 69, 70, 75, 76,

78, 97
PtlSetInvalidHandle 92
PtlTestGetPut . 92
PtlTransId . 97
PtlWait . 98
summary . 70

G
gather/scatter see scatter/gather
generic . 92
get .see operations
get ID . 37
get uid . 36
get md handle (field) 67, 78
getput . see operations
Greenberg, David . 4

H
Hale, Art . 4
handle . 28

comparison . 68
encoding . 28, 35
operations . 68

handle (field) . 35
handle1 (field) . 68
handle2 (field) . 68
handler execution context 57
hardware specific . 83
hdr data (field) 55, 63, 64, 67, 76, 78
header . 25
header data45, 63, 67, 69, 76, 78
header, trusted . 25, 36, 37
hint . 24
Hoffman, Eric . 4
Hudson, Trammell . 1, 3

I
I/O vector see scatter/gather
ID .28

get . 37
job . see job ID
network interface . 28
node . see node ID
process . see process ID
thread . see thread ID
uid (get) . 36
user . see user ID

id (field) . 37
identifier . see ID
iface (field) . 32, 40, 41
ignore bits . 23, 39, 41
ignore bits (field) .39, 41
implementation . 91
implementation notes . 11
implementation, quality . 32
inactive . 43, 44, 46
indexes, portal . 28
initialization . 29
initiator . .see also target, [13], 21, 22, 25, 51–54,

62, 64–67, 75–78
initiator (field) . 54
interrupt . 18, 92
interrupt latency . 18
Istrail, Gabi . 4

J
jid (field) . 38, 54, 61, 99
job ID . . 24, 25, 28, 37, 38, 54, 61, 69, 70, 72, 89
jobid (field) . 99
Johnston, Jeanette . 4
Jong, Chu . 4

K
Kaul, Clint . 4

102

L
LaTeX . 98
length (field) 43, 64, 66, 76–78L
Levenhagen, Mike . 4
limits . 31, 67, 69, 89, 98
link (field) . 55
Linux .86
local offset .see offset
local offset (field) 64, 66, 77
Lustre . 12
Lyx . 98

M
Maccabe, Arthur B. 1, 3
match bits . 18, 22, 23, 27, 28, 39, 41, 54, 63–67,

69, 76–79
match ID checking . 40
match list . [13], 22, 38, 39
match list entry . see ME, 38
match bits (field) 39, 41, 54, 63–67, 76–78
match id (field) 39–42, 61, 62
matching . 40
max ac index (field) . 31
max eqs (field) . 31
max getput md (field) 31, 67
max interfaces (field) . 30
max md iovecs (field) 31, 97
max mds (field) . 31
max me list (field) . 31, 97
max mes (field) . 31
max offset (field) 94, 96, 97
max pt index (field) .31
max size (field) 44, 46, 55, 72, 97
Maximum length of getput operation 31
McCurley, Kevin . 4
MD . 42

alignment . 43, 89
atomic update . 48
attach . 45
bind . 47
free floating . 47
I/O vector . 45
inactive . 43, 44, 46
message reject . 79
options . 44, 53, 97
pending operation 42, 47, 76
threshold . 49
truncate 44, 54, 73, 78, 79
unlink 23, 38, 39, 41–43, 45–51, 53, 55,

69–73, 77, 94–98
update . 48

md (field) . 46, 47, 55
md handle (field) 46–49, 55, 62–66, 76, 77
ME .38

attach . 39, 40
ignore bits see ignore bits
insert . 41
insert position 38, 69, 72
match bits see match bits
unlink 38, 39, 42, 69–71

me handle (field) 39, 41, 42, 46
memory descriptor see also MD, [13], 22, 42
message . [13]
message operation . [13]
message rejection . 78
messages, receiving . 78
messages, sending . 75
mlength (field) . 54
MPI [13], 16, 17, 21, 45, 49, 83, 85, 94

progress rule . 16, 18
MPI scalability . 16
MPIrecv (func) . 83
MPP . [13]
Myrinet . 17, 84, 86

N
NAL . [13], 84, 91
naming conventions . 27
network . [13]
network independence . 16
network interface see also NI, 18, 27–29, 30, 32,

78, 93, 95
network interface initialization 32
network interfaces

multiple . 89
network scalability . 16
new md (field) . 48, 49
NI distance . 34
NI fini . 33
NI handle . 35
NI init . 32
NI status . 33
ni fail type (field) . 53, 55
ni handle (field) 32–41, 47, 56, 61, 62
nid (field) . 37
node . [13]
node ID . 22, 23, 25, 28, 36
NULL MD . 43

O
offset . 21, 54, 76–78, 95

local 44, 48, 55, 64–66, 94
remote 44, 55, 63, 65, 67, 72

offset (field) . 55
old md (field) . 48, 49
one-sided operation . 17, 22
opening into address space 21

103

operations
acknowledgment . 33, 44, 50, 51, 75–78, 91,

97
completion . 46O
get 13, 21, 23, 33, 44, 45, 50, 51, 53, 65, 66,

70, 72, 75, 77–79, 92
get region . 65
getput 13, 21, 23, 31, 33, 45, 51, 53, 66, 67,

77–79, 99
one-sided . 17, 22
put 13, 17, 19, 21, 23, 33, 44, 45, 50, 51, 53,

62, 66, 70, 73, 75–79, 92, 96, 97
put region . 64
reply . 19, 21, 33, 42, 44, 45, 51–53, 65, 66,

75, 77, 78
two-sided . 17, 22

options (field) . 44
OS bypass . 16, 18, 86
Otto, Jim . 4

P
packetization . 60
parallel job . 17, 37
Pedretti, Kevin . 1, 3
pending operation . see MD
people

Barsis, Ed . 4
Barton, Eric . 4
Braam, Peter . 4
Brightwell, Ron . 1, 3
Camp, Bill . 4
Fisk, Lee Ann . 4
Greenberg, David . 4
Hale, Art . 4
Hoffman, Eric . 4
Hudson, Trammel1 . 3
Hudson, Trammell . 1
Istrail, Gabi . 4
Johnston, Jeanette . 4
Jong, Chu . 4
Kaul, Clint . 4
Levenhagen, Mike . 4
Maccabe, Arthur B. 1, 3
McCurley, Kevin . 4
Otto, Jim . 4
Pedretti, Kevin . 1, 3
Pundit, Neil . 4
Riesen, Rolf . 1, 3
Robboy, David . 4
Schutt, Jim . 4, 91
Sears, Mark . 4
Shuler, Lance . 4
Stallcup, Mack . 4
Underwood, Todd . 4

Vigil, Dena . 4
Ward, Lee . 4
Wheat, Stephen . 4
van Dresser, David . 4

performance . 85
pid (field) . 32, 33, 37
portability . 30, 83
portal

indexes . 28
table . 22, 30, 61, 89
table index 38, 41, 61, 73, 76–79

Portals
early versions . 12
Version 2.0 . 12
Version 3.0 . 12

portals
addressingsee address translation
constants see constants
constants summary . 71
data types . 27, 69
design . 85
functions see functions
functions summary . 70
handle . 28
multi-threading . 26
naming conventions 27
operations see operations
return codes see return codes
return codes summary 70
scalability . 17
semantics . 75
sizes . 28

portals3.h . 27
position (field) . 39, 41
process . [13], 26, 93
process (field) . 34, 35
process aggregation . 37
process ID . 21–25, 28, 32, 36, 37–40, 63, 67, 69,

96
well known . 32, 96

progress . 18
progress rule . 16, 18, 91
protected space . 23, 24
pt index (field) 39–41, 54, 61–67, 76–78
PTL AC INDEX INVALID (return code) 62, 71,

92
PTL ACK REQ (const) 27, 62, 63, 72
PTL EQ DROPPED (return code) 57–60, 71
PTL EQ EMPTY (return code) . . . 58, 60, 71, 93
PTL EQ HANDLER NONE (const) . . 56, 57, 72
PTL EQ INVALID (return code) 46, 47, 49,

57–60, 71, 95
PTL EQ NONE (const) 28, 45, 48, 49, 51, 72, 95

104

PTL EVENT ACK (const) 45, 51, 53, 62, 63, 72,
96, 98

PTL EVENT ACK END (const) 98P
PTL EVENT ACK START (const) 98
PTL EVENT GET (const) 96
PTL EVENT GET END (const) . . 50, 53, 65, 72
PTL EVENT GET START (const) 50, 53, 65, 72
PTL EVENT GETPUT END (const) 51, 53, 66,

72
PTL EVENT GETPUT START (const) . . 51, 53,

66, 72
PTL EVENT PUT (const) 96
PTL EVENT PUT END (const) . . 50, 53, 62, 72
PTL EVENT PUT START (const) 50, 53, 62, 72
PTL EVENT REPLY (const) 96
PTL EVENT REPLY END (const) . . 51, 53, 65,

66, 72
PTL EVENT REPLY START (const) 51–53, 65,

66, 72
PTL EVENT SEND END (const) 51–53, 62, 63,

66, 72, 92
PTL EVENT SEND START (const) . 51, 53, 62,

63, 66, 72, 92
PTL EVENT SENT (const) 96
PTL EVENT UNLINK (const) . . 42, 45, 47, 51,

53, 55, 72, 97, 98
PTL FAIL (return code) 30, 68, 71
PTL HANDLE INVALID (return code) . . 35, 71
PTL IFACE DEFAULT (const) 28, 72, 89
PTL IFACE DUP (return code) 97
PTL IFACE INVALID (return code) . . 32, 71, 92
PTL INS AFTER (const) 39, 41, 72, 98
PTL INS BEFORE (const) 39, 41, 72, 98
PTL INVALID HANDLE (const) 28, 68, 72
PTL JID ANY (const) 29, 61, 72
PTL JID NONE (const) 38, 54, 72
PTL MD ACK DISABLE (const) 44, 72
PTL MD EVENT END DISABLE (const) . . 44,

45, 51, 53, 72, 97, 98
PTL MD EVENT START DISABLE (const) 44,

45, 51, 53, 72, 97, 98
PTL MD ILLEGAL (return code) 46, 47, 49, 64,

66, 71, 92
PTL MD IN USE (return code) . . .48, 52, 71, 96
PTL MD INVALID (return code) 48, 49, 63–67,

71
PTL MD IOVEC (const) 44, 45, 72, 97
PTL MD MANAGE REMOTE (const) . . 44, 63,

65, 67, 72, 76, 96, 97
PTL MD MAX SIZE (const) 44, 72, 97, 98
PTL MD NO UPDATE (return code) . 49, 71, 98
PTL MD NONE (const) 98
PTL MD OP GET (const) 44, 67, 72, 79
PTL MD OP PUT (const) 44, 67, 73, 79

PTL MD THRESH INF (const) 43, 73
PTL MD TRUNCATE (const) 44, 73, 79
PTL ME IN USE (return code) 42, 46, 71
PTL ME INVALID (return code) 42, 46, 71
PTL ME LIST TOO LONG (return code) . . . 40,

42, 71, 96
PTL NI INVALID (return code) . . 33–38, 40, 41,

47, 56, 62, 71
PTL NI OK (const) 53, 55, 73, 98
PTL NID ANY (const) 29, 39, 61, 73
PTL NO ACK REQ (const) . . 62, 63, 73, 75, 76,

98
PTL NO INIT (return code) 32–38, 40–42,

46–49, 56–60, 62–67, 71
PTL NO SPACE (return code) 32, 33, 40–42, 46,

47, 56, 71
PTL NO UPDATE (return code) 98
PTL OK (return code) 27, 30, 32–38, 40–42,

46–49, 56–60, 62–68, 71
PTL PID ANY (const) 29, 32, 39, 61, 73
PTL PID INVALID (return code) 33, 71
PTL PROCESS INVALID (return code) 35,

40–42, 62–67, 71
PTL PT FULL (return code) 41, 71, 97
PTL PT INDEX ANY (const) 61, 73
PTL PT INDEX INVALID (return code) 40, 62,

71
PTL RETAIN (const) 38, 39, 46, 73
PTL SEGV (return code) . 29, 30, 33–38, 46, 47,

49, 56, 58–60, 71, 96
PTL SR DROP COUNT (const) . . 29, 34, 73, 89
PTL SR INDEX INVALID (return code) . 34, 71
PTL TIME FOREVER (const) 60, 73
PTL UID ANY (const) 29, 61, 73
PTL UNLINK (const) 38, 39, 46, 73, 94
ptl ac index t (type) 28, 69, 76–78
ptl ack req t (type) 62, 69, 72, 73
ptl eq handler t (type) 55, 69, 72
ptl event kind t (type) 50, 69, 72
ptl event t (type) 50, 61, 69, 92, 96
ptl handle any t (type) 28, 69, 72
ptl handle eq t (type) 28, 50, 69, 72
ptl handle md t (type) 69, 76–78
ptl handle me t (type) . 69
ptl handle ni t (type) 28, 69
ptl hdr data t (type) 69, 76, 78
PTL ID ANY (const) . 95
ptl ins pos t (type) 38, 69, 72
PTL INSERT AFTER (const) 98
PTL INSERT BEFORE (const) 98
ptl interface t (type) 28, 69, 72
ptl jid t (type) 28, 69, 72, 76–78
ptl match bits t (type) 27, 28, 69, 76–78
ptl md iovec t (type) 44, 45, 69, 98

105

ptl md t (type) . 43, 69
ptl ni fail t (type) 53, 69, 73, 96P
ptl ni limits t (type) 31, 69, 98
ptl nid t (type) 28, 69, 73, 97
ptl pid t (type) 28, 69, 73, 97
ptl process id t (type) . 36, 37, 39, 61, 69, 76–78
ptl pt index t (type) 28, 69, 73, 76–78
ptl seq t (type) . 69, 96
ptl size t (type) 28, 70, 76–78, 92
ptl sr index t (type) 29, 70, 73, 89
ptl sr value t (type) . 29, 70
ptl time t (type) . 70, 73, 98
ptl uid t (type) 28, 70, 73, 76–78, 97
ptl unlink t (type) 38, 46, 70, 73
PtlACEntry (func) 61, 69–71, 92
PtlEQAlloc (func) 27, 50, 55, 55, 57, 69–71
PtlEQCount (func) . 93
PtlEQFree (func) 50, 57, 69–71
PtlEQGet (func) . . . 50, 56–58, 58, 59–61, 69–71,

92, 93
PtlEQPoll (func) . . 26, 50, 56–59, 59, 60, 61, 69,

70, 97, 98
PtlEQWait (func) 26, 50, 56–58, 58, 59–61,

69–71, 92, 93, 98
PtlFini (func) 29, 30, 30, 70, 71, 93
PtlGet (func) . . . 57, 62, 65, 66, 69–71, 77, 92, 99
PtlGetId (func) 33, 36, 37, 38, 69, 70, 96
PtlGetJid (func) .38, 69, 70
PtlGetPut (func) 31, 57, 62, 66, 67, 69, 70, 78, 89
PtlGetRegion (func) 57, 62, 65, 66, 69, 70, 77, 97
PtlGetUid (func) . 36, 70, 98
PtlHandleIsEqual (func) 68, 69, 70, 92, 98
PtlInit (func)27, 29, 70, 71, 93
PtlIsValidHandle (func) . 92
PtlMDAlloc (func) . 98
PtlMDAttach (func) 42, 45, 46, 47, 69–71
PtlMDBind (func) 42, 47, 48, 69–71
PtlMDInsert (func) . 94
PtlMDUnlink (func) . . . 43, 47, 48, 48, 50, 69–71
PtlMDUpdate (func) 43, 46, 48, 48, 69–71, 92, 95
PtlMEAttach (func) 30, 38, 39, 39, 40, 41, 69–71,

95, 96
PtlMEAttachAny (func) 30, 38, 40, 40, 69–71, 97
PtlMEInsert (func) 38, 41, 69–71, 92
PtlMEUnlink (func) 38, 42, 69–71
PtlNIBarrier (func) . 93
PtlNIDist (func) 31, 34, 35, 69–71, 89, 92
PtlNIFini (func) 30, 33, 69–71
PtlNIHandle (func) 31, 35, 69–71
PtlNIInit (func) 30–32, 32, 33, 67, 69–71, 89, 93,

96
PtlNIStatus (func) 29, 30, 33, 69–71
PtlPost (func) . 92
PtlPut (func) 53, 57, 62, 63, 64, 69–71, 76, 78, 99

PtlPutRegion (func) . . . 57, 62, 64, 64, 69, 70, 75,
76, 78, 97

PtlSetInvalidHandle (func) 92
PtlTestGetPut (func) . 92
PtlTransId (func) . 97
PtlWait (func) . 98
Puma . 16
Pundit, Neil . 4
purpose . 16
put . see operations
put md handle (field)66, 67, 78

Q
quality implementation . 32
quality of implementation 17

R
README . 27, 89
receiver-managed . 16
Red Storm . 91
reliable communication 17, 83
remote offset . see offset
remote offset (field) 63–67, 76–78, 97
reply . see operations
return codes . 29, 70, 92

PTL AC INDEX INVALID 62, 71, 92
PTL EQ DROPPED 57–60, 71
PTL EQ EMPTY 58, 60, 71, 93
PTL EQ INVALID . . 46, 47, 49, 57–60, 71,

95
PTL FAIL . 30, 68, 71
PTL HANDLE INVALID 35, 71
PTL IFACE DUP . 97
PTL IFACE INVALID 32, 71, 92
PTL MD ILLEGAL . 46, 47, 49, 64, 66, 71,

92
PTL MD IN USE 48, 52, 71, 96
PTL MD INVALID 48, 49, 63–67, 71
PTL MD NO UPDATE 49, 71, 98
PTL ME IN USE 42, 46, 71
PTL ME INVALID 42, 46, 71
PTL ME LIST TOO LONG . 40, 42, 71, 96
PTL NI INVALID . . .33–38, 40, 41, 47, 56,

62, 71
PTL NO INIT 32–38, 40–42, 46–49, 56–60,

62–67, 71
PTL NO SPACE . 32, 33, 40–42, 46, 47, 56,

71
PTL NO UPDATE . 98
PTL OK 27, 30, 32–38, 40–42, 46–49,

56–60, 62–68, 71
PTL PID INVALID33, 71
PTL PROCESS INVALID 35, 40–42,

62–67, 71

106

PTL PT FULL 41, 71, 97
PTL PT INDEX INVALID 40, 62, 71R
PTL SEGV . . 29, 30, 33–38, 46, 47, 49, 56,

58–60, 71, 96
PTL SR INDEX INVALID34, 71
summary . 70

Riesen, Rolf . 1, 3
rlength (field) . 54
RMPP . [13], 17
Robboy, David . 4

S
scalability . 17, 83, 85

guarantee . 17
MPI . 16
network . 16

scatter/gather 44, 45, 69, 72, 98
Schutt, Jim . 4, 91
Sears, Mark . 4
semantics . 75
send . 21, 51, 62
send event 51, 53, 62, 66, 72
sequence (field) .55
sequence number . 55, 69
Shuler, Lance . 4
size (field) . 60
sizes . 28
sockets . 83, 86
space

application . 23
protected . 23

split event sequence see event start/end
Stallcup, Mack . 4
start (field) . 43
state . 17, 83
status (field) . 34
status registers . 29, 89
status register (field) . 34
structure fields and argument names

ac index 61–67, 76–78
ack req . 63, 64
actual . 32, 33
base . 41, 42
count . 56
desired . 32
distance . 34, 35
eq handle 45–49, 56–59
eq handler . 56, 57
eq handles .60
event . 58–60
get md handle . 67, 78
handle . 35
handle1 . 68
handle2 . 68

hdr data 55, 63, 64, 67, 76, 78
id . 37
iface . 32, 40, 41
ignore bits . 39, 41
initiator . 54
jid . 38, 54, 61, 99
jobid . 99
length 43, 64, 66, 76–78
link . 55
local offset . 64, 66, 77
match bits 39, 41, 54, 63–67, 76–78
match id 39–42, 61, 62
max ac index . 31
max eqs . 31
max getput md . 31, 67
max interfaces . 30
max md iovecs . 31, 97
max mds . 31
max me list . 31, 97
max mes . 31
max offset . 94, 96, 97
max pt index . 31
max size44, 46, 55, 72, 97
md . 46, 47, 55
md handle 46–49, 55, 62–66, 76, 77
me handle39, 41, 42, 46
mlength . 54
new md . 48, 49
ni fail type . 53, 55
ni handle 32–41, 47, 56, 61, 62
nid .37
offset . 55
old md . 48, 49
options . 44
pid . 32, 33, 37
position . 39, 41
process . 34, 35
pt index 39–41, 54, 61–67, 76–78
put md handle 66, 67, 78
remote offset63–67, 76–78, 97
rlength . 54
sequence . 55
size . 60
start . 43
status . 34
status register . 34
target id 63–67, 76–78
threshold . 43
timeout . 60
type . 54
uid . 36, 54, 61
unlink . 94
unlink nofit . 96
unlink op 39, 41, 46, 47, 96

107

user ptr . 45
which . 59, 60S

summary . 68
SUNMOS . [13], 16
swap . 21, 31, 66, 70

T
target . . see also initiator, 13, [14], 17, 18, 21, 22,

36, 51–53, 62, 63, 65–67, 75–78
target id (field) 63–67, 76–78
TCP/IP . 16, 83, 86, 91
thread . [14], 26, 93, 97
thread ID . 36
threshold 23, 43, 46, 49, 55, 94, 95
threshold (field) . 43
timeout . 59
timeout (field) . 60
truncate . 44, 54, 73, 78, 79
trusted header . 25, 36
two-sided operation . 17, 22
type (field) . 54
types . see data types

ptl ac index t 28, 69, 76–78
ptl ack req t 62, 69, 72, 73
ptl eq handler t 55, 69, 72
ptl event kind t 50, 69, 72
ptl event t 50, 61, 69, 92, 96
ptl handle any t 28, 69, 72
ptl handle eq t 28, 50, 69, 72
ptl handle md t 69, 76–78
ptl handle me t . 69
ptl handle ni t . 28, 69
ptl hdr data t 69, 76, 78
ptl ins pos t 38, 69, 72
ptl interface t 28, 69, 72
ptl jid t 28, 69, 72, 76–78
ptl match bits t 27, 28, 69, 76–78
ptl md iovec t 44, 45, 69, 98
ptl md t . 43, 69
ptl ni fail t 53, 69, 73, 96
ptl ni limits t 31, 69, 98
ptl nid t . 28, 69, 73, 97
ptl pid t . 28, 69, 73, 97
ptl process id t . . . 36, 37, 39, 61, 69, 76–78
ptl pt index t28, 69, 73, 76–78
ptl seq t . 69, 96
ptl size t 28, 70, 76–78, 92
ptl sr index t 29, 70, 73, 89
ptl sr value t . 29, 70
ptl time t . 70, 73, 98
ptl uid t 28, 70, 73, 76–78, 97
ptl unlink t 38, 46, 70, 73

U
uid (field) . 36, 54, 61
undefined behavior 29, 30, 33, 46, 57
Underwood, Todd . 4
unexpected messages . 16
unlink

MD . see MD
ME . see ME

unlink (field) . 94
unlink nofit (field) . 96
unlink op (field) 39, 41, 46, 47, 96
unreliable networks . 60, 84
update . see PtlMDUpdate
user data . 45
user ID 24, 25, 28, 36, 54, 70, 73, 95, 96
user memory . 19
user space . 17
user-level bypass see application bypass
user ptr (field) . 45

V
van Dresser, David . 4
VIA . [14]
Vigil, Dena . 4

W
Ward, Lee . 4
web site . 91
Wheat, Stephen . 4
which (field) . 59, 60
wire protocol . 17, 21, 75, 83

Z
zero copy . 18
zero-length buffer . 43

(n) page n is in the bibliography.
[n] page n is in the glossary.
n page of a definition or a main entry.
n other pages where an entry is mentioned.

108

DISTRIBUTION:

1 Arthur B. Maccabe
University of New Mexico
Department of Computer Science
Albuquerque, NM 87131-1386

1 Trammell Hudson
c/o OS Research
1527 16th NW #5
Washington, DC 20036

1 Eric Barton
9 York Gardens
Clifton
Bristol BS8 4LL
United Kingdom

1 MS 0806
Jim Schutt, 4336

1 MS 0817
Doug Doerfler, 1422

1 MS 0817
Sue Kelly, 1422

1 MS 1110
Ron Brightwell, 1423

1 MS 1110
Neil Pundit, 1423

4 MS 1110
Rolf Riesen, 1423

1 MS 1110
Lee Ward, 1423

1 MS 1110
Ron Oldfield, 1423

1 MS 1110
Kevin Pedretti, 1423

1 MS 1110
Keith Underwood, 1423

2 MS 9960
Central Technical Files, 8945-1

2 MS 0899
Technical Library, 4536

	The Portals 3.3 Message Passing Interface Document Revision 2.1
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Implementation Notes
	Preface
	Nomenclature
	Chapter 1 Introduction
	1.1 Overview
	1.2 Purpose
	1.3 Background
	1.4 Scalability
	1.5 Communication Model
	1.6 Zero Copy, OS Bypass, and Application Bypass
	1.7 Faults

	Chapter 2 An Overview of the Portals API
	2.1 Data Movement
	2.2 Portals Addressing
	2.3 Access Control
	2.4 Multi-Threaded Applications

	Chapter 3 The Portals API
	3.1 Naming Conventions and Typeface Usage
	3.2 Base Types
	3.3 Return Codes
	3.4 Initialization and Cleanup
	3.5 Network Interfaces
	3.6 User Identi�cation
	3.8 Process Aggregation
	3.9 Match List Entries and Match Lists
	3.10 Memory Descriptors
	3.11 Events and Event Queues
	3.12 The Access Control Table
	3.13 Data Movement Operations
	3.14 Operations on Handles
	3.15 Summary

	Chapter 4 The Semantics of Message Transmission
	4.1 Sending Messages
	4.2 Receiving Messages

	References
	Appendix AFrequently Asked Questions
	Appendix BPortals Design Guidelines
	Appendix CA README Template
	Appendix DImplementations
	Appendix ESummary of Changes
	Index
	Distribution

