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Muon g-2 and Electric Dipole Moments in Storage Rings:

Powerful Probes of Physics Beyond the Standard Model

Yannis K. Semertzidis 1

1 Brookhaven National Laboratory (on behalf of the Muon g-2 and the Storage Ring
EDM collaborations)

Dipole Moments in Storage Rings

Muon g-2: Theoretical Significance

The g-factor of a particle is defined as

g ≡
magnetic moment

eh̄/2mc

angular momentum
h̄

(1)

The Dirac equation predicts g = 2 for point-like, spin 1/2 particles. The quantity
g − 2 probes the difference between the mass and charge distributions of a particle
and g − 2 = 0 when they are the same at all times. The proton (gp = 5.586)
and the neutron (gn = −3.826) differ significantly from the value 2, indicating they
are composite particles. Their ratio (gp/gn = −1.46) being close to the predicted
value of -3/2 was the first success of the constituent quark model. The anomalous
magnetic moment (a ≡ g−2

2
) value of the electron is known 350 times more precisely

than the muon (a) in agreement with the theoretical prediction involving only QED.
The (g-2)/2 value of the muon is known with 0.5ppm accuracy and because its
sensitivity to a certain class of particles scales as (mµ/me)

2 ≈ 40, 000 it is necessary
to add the contribution of strong and weak interactions of the standard model (SM).
Speculative extensions of the SM, like super-symmetry (SUSY), could also have a
significant contribution.

The estimated contributions to the anomalous magnetic moment of the muon
are the sum of the SM contributions and those coming from new physics: aµ(theo) =
aµ(QED) + aµ(had) + aµ(weak) + aµ(new physics), with

• aµ(QED) = 11658470.6(0.3)× 10−10

• aµ(had) = 694.9(8.) × 10−10 (based on e+e− data)

• aµ(had) = 709.6(7.) × 10−10 (based on τ data)

• aµ(weak) = 15.4(0.3) × 10−10

with the sum of the SM contributions being

• aµ(SM) = 11 659 181(8)(8.)× 10−10 (based on e+e− data)

• aµ(SM) = 11 659 196(8)× 10−10 (based on τ data)



Speculative extentions like SUSY also have a potentially large contribution given
by [1]

aµ(SUSY) = sgn(µ) × 13 × 10−10
[
100GeV

mSUSY

]2

tan β (2)

with sgn(µ) the sign of the SUSY (µ) parameter and tanβ the ratio of the vacuum
expectation values of the two Higgs doublets.

Muon g-2: Experimental Method

There are three major components of the muon g-2 experimental method [2]:

• Polarize: Using the parity violating decay π− → µ− + ν̄µ

• Interact: Precess in a uniform magnetic field

• Analyze: Using the parity violating decay µ− → e− + ν̄e + νµ

Pions are produced by colliding energetic protons onto a fixed target. Pions of
a certain momentum range are collected and directed into a pion decay channel.
The muons resulting from the pion decay can be highly polarized (of the order of
95%) when a small muon momentum bite of 1% is used. These longitudinally
polarized muons are directed into a large super-conducting magnet of 7.11m radius.
The magnetic field is vertical and has a strength of 1.5T. The radius and strength
of this magnet are very specific and driven by the requirement to use muons of a
specific momentum 3.1GeV/c, a.k.a. magic momentum, with γ ≈ 29.3 [3].

For the non-relativistic case the g-2 principle is just the difference between the
momentum precession and the spin precession of the muon. The cyclotron (angular)
frequency is

ωc =
eB

m
(3)

while the spin precession is

ωs =
g

2

eB

m
(4)

and their difference

ωa = ωs − ωc = (
g

2
− 1)

eB

m
=

g − 2

2

eB

m
⇒ ωa = a

eB

m
(5)

It turns out that this equation is also valid in the relativistic case when taking into
account Thomas’ precession of the accelerated system. For a positive a, like it is the
case with the muon, it means that the spin vector gets ahead of the momentum vector
in every turn. In order to be able to determine the anomalous magnetic moment a
with high accuracy we need to determine with at least the same accuracy ωa, e/m
and B. The last requirement places severe restrictions on the possible magnetic field
configurations, with the simplest being that of a high uniformity. A highly uniform
magnetic field is not very efficient in storing a large number of muons because of the
absence of vertical focusing. This vertical focusing is provided for by an electrical



focusing system (quadrupoles) without adding a significant systematic error when
the muon momentum used is the magic one. At this momentum the influence of
the horizontal electric field on both the muon momentum vector and the muon spin
vector is the same. A small correction arising from the finite momentum width of
the stored beam is applied at the end of the data analysis. At low momentum the
radial electric field influences the momentum vector more than it influences the spin
vector. The opposite happens at very high momentum values (the E-field looks like
a magnetic field and it precesses the spin vector more than the momentum vector
by the anomalous magnetic moment factor a). In between, at γ = 29.3, there is
a happy coincindence where the E-field influences both the momentum and spin
vectors the same!

The (positive) muons decay to one positron and two neutrinos, with the pre-
ferred direction of the positron (in the muon rest frame) being along the muon spin.
This fact has very interesting consequences on the energy spectrum of the positrons
depending on the relative angle between the muon spin and momentum vectors.
When the muon spin and momentum are parallel, the energy of the positron in the
lab frame is maximum (on average) and when they are anti-parallel it is minimum
(see Figure 1). The time spectrum of the detected positrons is given in (Figure 2).
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Figure 1: When the spin and momentum vectors are aligned the energy of the
positrons in the lab frame is (on average) larger than when the two vectors are
anti-parallel. Setting an energy threshold of, e.g., 2GeV modulates the number of
particles above that energy with the g-2 frequency.

The main experimental accomplishements that made the muon g-2 experiment
at Brookhaven National Laboratory particularly sensitive are several:

1. High muon intensity made possible by the large proton intensity available from
the AGS with the proper timing structure.
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Figure 2: The number of detected positrons as a function of time. The spectrum is
a traditional radioactive decay modulated with the g-2 frequency.

2. The construction of the largest diameter super-conducting magnet in the world
providing a stable magnetic field and the superb NMR system as its monitoring
device [4].

3. Direct muon injection, made possible with the fast magnetic kicker with min-
imal residual magnetic field [5].

4. A super-conducting inflector with a superconducting shield that provided 1.5T
DC magnetic field to counter-part the main magnet field and yet it allowed no
measurable fringe field in the storage region, just a couple of cm away [6]!

5. Pulsed electric quadrupoles providing vertical focusing with an innovative lead
design to quench the trapping of low energy electrons [7].

6. Electromagnetic calorimeters and their detection electronics that could operate
at high and low counting rates with adequate gain and timing stability [8].

The final experimental results as well as the theoretical predictions based on
both the e+e− and τ data are shown in Figure 3; the total experimental error is
0.5ppm [9]. The experimental value is found to be 11 659 203(8)× 10−10. Clearly it
would be beneficial to reduce both the theoretical and experimental uncertainties.
It is expected that the theoretical uncertainty will be reduced by a factor of 2 in
the next years. On the experimental side we have already put in a proposal for
an upgraded experiment at BNL with a goal of 0.2ppm, which received scientific
approval and is currently awaiting funding approval from the DOE.
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Figure 3: The experimental value as well as the theoretical predictions of the anoma-
lous magnetic moment of the muon are shown here. The experimental error is
dominated by its statistical error.

Electric Dipole Moments in Storage Rings

The search for an electric dipole moment (EDM) of fundamnetal particles has been
going on since the 1950s. If an EDM was to exist it would have to violate separately
parity (P) and time reversal (T) invariance (see Figure 4). T-violation, assuming
CPT conservation, means CP-violation which is one of the required conditions, ac-
cording to Sakharov, for an initially matter-antimatter symmetric universe to evolve
to the present day matter dominated universe. EDMs are particularly sensitive to

A Permanent EDM Violates both 
T & P Symmetries:
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Figure 4: The existence of an EDM in a particle with spin would violate separately
parity (P) and time (T) reversal invariance.

physics beyond the SM. Due to the structure of the SM (a single CP-violating phase



plus the fact that the W− boson comes only in one handedness) the EDMs in the SM
have negligible values (from a 10−31e ·cm-10−32e ·cm for the neutron to < 10−38e ·cm
for the electron) as they are a high order effect. In most extentions of the SM the
above mentioned restrictions do not exist (e.g. in SUSY there are 42 CP-violating
phases, with both right and left handed bosons present) and their EDM contribu-
tions are first order effects. The expected numerical values are in the neighborhood
of the current experimental limits. Obviously the discovery of an EDM will con-
stitute a significant progress in understanding the origin of our cosmos. The usual
method for searching for an EDM is depicted in Figure 5.
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Figure 5: Strong electric fields are used to probe EDMs. Flipping the electric field
direction should change the particle spin precession rate in the presence of an EDM.

The current EDM limits are dominated by the electron [10] (< 1.6×10−27e ·cm),
the neutron [11] (< 6.3 × 10−26e · cm) and 199Hg [12] (< 2.1 × 10−28e · cm) with
approximately the same physics sensitivity. Even though the 199Hg is numerically
the best limit it only translates to a lesser limit for the neutron due to screening
(Schiff theorem). As a matter of fact screening is the reason that all the EDM
experiments have been performed in neutral systems and then the EDM of the
individual charged particles has been deduced using theory.

We have now introduced a new sensitive EDM method using directly charged
particles in magnetic storage rings. This method uses the fact that magnetic fields
Lorentz transform into electric field in the rest frame of the moving particles and
therefore they couple to the EDM (d) causing the spin (S) vector to precess according
to:

d�S

dt
= �d ×

(
�V × �B

)
(6)

where, e.g., 1T is equivalent to 300MV/m for relativistic particles, much more than
it is possible to achieve for electric fields in the laboratory.

In our muon g-2 experiment we used this effect to place an indirect limit on the
muon EDM (see Figure 6). Due to the tilt in the angular velocity vector with respect
to the magnetic field direction there is a modulated vertical spin component. The
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Figure 6: The direction of the angular velocity vector is slightly tilted with respect
to the magnetic field direction in the presence of a muon EDM.

amplitude of the vertical component depends on the g-2 period, the larger the period
the stronger the signal. This is the reason we have proposed to use particles with a
momentum lower than the magic momentum (where a radial electric field infuences
the momentum direction more than the spin direction) to “freeze” the spin in the
forward direction (in effect making the g-2 period as long as possible) [13]. We have
applied this method to produce a letter of intent with a sensitivity of 10−24e · cm for
the muon [14] (statistics limited) and a proposal with a sensitivity of 10−27e · cm for
the deuteron nucleus [15] (systematics limited) as it is most applicable to particles
with small anomalous magnetic moments. The deuteron EDM is the sum of the
proton, and neutron EDM plus the CP-violating nuclear forces:

dD = (dp + dn) + dπNN
D (7)

A limit of 3 × 10−27e · cm was used to compare it with the the present limits of the
neutron, electron (Tl) and 199Hg [16] limits. The deuteron EDM is most favorable
by a factor of 10 to 1000 depending on the value of the SUSY parameters and the
models. The deuteron polarimetry (the analyzer that probes the spin polarization
state as a function of time) is described by Onderwater in the same proceedings.

The cost of the proposal was estimated to be $34M mainly due to the large size
of the storage ring and the Brookhaven PAC felt it was too expensive for the physics
reach.

Since then Yuri Orlov invented [17] another variation (resonance method, see
the contribution by Orlov in the current proceedings) of the Storage Ring EDM
method which reduces the size of the ring by an order of magnitude and eliminates
the major systematic error limitation of the previous method. The potential reach
of the method is 10−29e · cm an un-precidented sensitivity level. The buildup of the
vertical spin component is achieved by using RF to modulate the particle velocity
in resonance with the g-2 frequency. The method is also applicable to particles with
large anomalous magnetic moments. It eliminates the need for the radial electric
field, the major source of systematic error of the previous method.



Conclusion

We have shown that the study of dipole moments, both magnetic and electric, in
storage rings offer unique opportunities in probing physics beyond the SM. Both
methods use similar techniques (particle and spin precession in magnetic storage
rings). We are currently investigating the systematic errors associated with the
resonance EDM method. So far it looks very promising.
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