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1.0 Executive Summary 

This report addresses the effects of electrical anisotropy on the 3D inversion of 
single-well induction logging data when anisotropy is not considered.  Of concern are 
possible artifacts that may lead to an incorrect interpretation of the formation about the 
borehole.  Comparison is made of 3D isotropic inversion on a suite of model data, with 
and without anisotropy, consisting of an infinite layer and layer terminated at the 
borehole.  In both cases, the layer dip (or well deviation) is varied.  Inversion of the 
anisotropic data result in an overestimate of the layer conductivity, and the lateral extent 
of the layer about the borehole. 
 
 
2.0 Description of the Proposed Work 

 Inductive resistivity logging has long been an important technology to oil 
and gas producers because of the sensitivity of electrical resistivity to geological structure 
and variations in reservoir fluids. Electrical resistivity data from well logs is often used in 
geologically describing reservoirs, locating fractures, and selecting producing intervals in 
wells. Unfortunately, commercial tools of this type are not commonly used by geothermal 
developers, because they are not built to withstand the hostile high temperature 
environment found in geothermal boreholes. In addition, commercial logging tools that 
can locate, orient, and assess fracture zones in terms of their geometry, extent, and 
production potential at large distances from the well axis do not exist. If available, this 
capability could guide drilling programs and optimize the placement of production and 
injection wells resulting in fewer dry holes and substantial cost savings in field 
development.  

A few years ago, the DOE and the California Energy Commission (CEC) funded 
ElectroMagnetic Instruments, Inc. (EMI) of Richmond, California, to build a prototype 
induction-logging device that will provide downhole electromagnetic identification and 
characterization of geothermal resources. The resulting ‘Geo-BILT’ successfully 
collected data in California oilfields and attempted to collect data in the hot, downhole 
environments present at the Dixie Valley and Geysers geothermal fields in Nevada and 
California, respectively.  Because wells intersect production zones at oblique angles, and 
three-dimensional (3D) variability exists within geothermal reservoirs, standard induction 
logging analysis that assumes two-dimensional (2D) cylindrical symmetry about the 
borehole will provide unreliable interpretations. Inversion algorithms that perform 
“exact” 3D inversions of multi-component data do exist.  However, massively parallel 
computing is necessary to arrive at timely solutions. Since massively parallel computing 
is neither easily accessible nor practical for many industry and field applications, a “fast” 
imaging scheme, which can be implemented on standard computing hardware, is 
required.  In addition, fractured-production zones likely exhibit electrical anisotropy 
where the resistivity parallel to the fracture is different than that perpendicular to the 
zone. This can cause significant distortions in the measured fields that are not accounted 
for in current 3D isotropic inversion algorithms. 

We proposed a three-step process to address the problem of 3D induction logging 
in a geothermal reservoir environment. The first step was to determine the need of a 
three-dimensional inversion algorithm that accounts for the presence of anisotropy by 
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applying an available 3D isotropic inversion algorithm to synthetic data generated in the 
presence of anisotropy. The need for an anisotropic inversion would be assessed from the 
isotropic inversion results by the nature and size of artifacts produced by the anisotropy. 
The second step was to develop an approximate inversion algorithm that provides the 
computational speed necessary to invert multi-component borehole electromagnetic 
induction data in a few hours rather than days. The two-step algorithm was to be based on 
a non-linear inversion to recover a layered anisotropic (or isotropic if it is determined to 
be so) model, followed by a single-iterate Gauss-Newton scheme to image 3D 
heterogeneity.   The final step was to assess the accuracy and applicability of the scheme 
by testing it on synthetic data sets generated with a 3D forward modeling algorithm and 
by applying it to data collected with the Geo-BILT tool in two different geothermal 
reservoirs. Unfortunately, due to the fact that the PI took a leave of absence soon after the 
project was funded and soon after left the university for industry, and the student 
performing the work left the University of Wisconsin a year after the PI to pursue 
graduates studies elsewhere, only the first task was completed. The second task 
consisting of the development of an approximate algorithm was initiated but never 
completed, while the third task could not even be started as the Dixie Valley data 
collected with the Geo-BILT showed little evidence of any structure at all, and data 
collected at the Geysers was too noisy due to the fact that the well was producing while 
data were being collected. Thus this report, the results of which were presented at the 
2004 Annual Meeting of the Society of Exploration Geophysicists, outlines the findings 
only of the first task of the proposed work. 
 
3.0 Results 
3.1 Introduction 

With the advent of greater computational capabilities and faster, more accurate, 
induction logging acquisition systems, comes the possibility of generating 3D images of 
the region surrounding the well bore.  This has great potential in oil and geothermal 
reservoir characterization in terms of delineating bypassed production zones, as well as 
providing additional data that leads to a better exploration strategy.  The data required to 
provide the 3D images include 3-component measurements of the magnetic field 
generated by at least one, if not three orthogonally oriented loop sources.  Three-
dimensional imaging and inversion algorithms are now available (e.g., Newman and 
Alumbaugh, 1997; Zhdanov et al., 2002), and recent numerical studies have employed 
these algorithms to show potential of this imaging technique (Alumbaugh and Wilt, 2001; 
Zhdanov et al., 2004).  However, many target zones of interest exhibit electrical 
anisotropy where the resistance to current flow is directionally dependent.  Examples of 
this include interbedded sand-shale sequences or turbidite deposits in oil reservoirs 
(Nekut, 1994), and stress-oriented fracture zones in geothermal fields.  The 
aforementioned imaging algorithms assume isotropic materials, and thus cannot account 
for anisotropy.  This paper will present results that show the effect of electrical 
anisotropy on 3D isotropic imaging, and will determine the level of error that arises in the 
images due to the introduction of this parameter.  The focus will be on simple anisotropic 
targets such as fracture zones found within geothermal reservoirs. 
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3.2 Forward Modeling Studies 

A suite of calculations was performed on targets consisting of an infinite layer 
and a half-infinite layer within a background whole space ( 

Figure 1).  Variations in the models included the layer dip-angle which varied 
from 0o to 60o, and the conductivity of the layer in the direction perpendicular to the 
bedding plane, which was 5 or 20 times less than that of the conductivity in the parallel 
to-bedding direction.  In each case, the layer thickness is 3.5 m and the layer-parallel 
conductivity is 1 S/m., with the background conductivity fixed at 0.1 S/m.  Regarding the 
tool configuration, the transmitter-receiver separation is 2 m, and the frequency is 4 kHz.  
This resembles that of an existing multi-component induction logging tool, the GeoBILT 
(EMI, 1998).  Calculations were made at 0.5 m intervals along the borehole axis and 
extended to approximately 10 m above and below the borehole-layer intersection.  
Calculation of the x-, y- and z-component field is made for each of the x-, y- and z-
directed sources, constituting nine field calculations for each depth. 

Calculations were performed using a 3D finite difference electromagnetic 
modeling algorithm developed by Newman and Alumbaugh (1995) with the ability to 
accommodate anisotropy in conductivity.  Infinite layer calculations were compared 
against a 1D transverse anisotropic code (Lu and Alumbaugh, 2001) to ensure 
appropriate mesh gridding. 

Sample results presented in Figure 2 of the coaxial, coplanar and coaxial null-
coupled responses for a 0o and 60o-dipping layer show deviations in amplitude caused by 
anisotropy.  This is a result of the near-well sensitivity changing as the angle between the 
tool axis and the conductivity tensor changes (Lu and Alumbaugh, 2001; Tompkins et al., 
2004).  As a result of the anisotropy altering the total field amplitude relative to the 
isotropic case, assumptions used in inverting multi-component data for near-well 
formation properties can result in error.  For example, if only the coaxial data are 
employed, the formation conductivity will be underestimated, and the magnitude of the 
error will depend on the magnitude of the anisotropy coefficient (

h vλ σ σ= ) and the dip 
angle of the formation. 

 
 
 
 
 

 

Figure 1: Schematics of models simulated. 
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Figure 2: Forward model results. 
 
 
3.3 Three-Dimensional Isotropic Inversion of Anisotropic Data 
 The forward model data were inverted using the 3D Gauss-Newton inversion 
scheme developed by Newman and Alumbaugh (1997).  This scheme employs 
regularization that imposes smoothness on the conductivity reconstructions, where the 
regularization parameter is updated at each iteration based upon the updated Jacobian. 
 The inversion was applied to the three component data generated by each of the 
axially and the two horizontally aligned sources, yielding a total of 9 data components to 
be inverted for each depth.  A uniform grid over the inversion domain extended 4 m 
above and below the top transmitter and bottom receiver positions, respectively, and 
extended horizontally out to 8 m.  Vertical cell spacing is 0.5 m, equal to the 
measurement interval, and horizontal cell spacing is 0.8 m.  The same mesh was used for 
all models.  The starting model was a 0.1 S/m whole-space.  The size of the modeling 
mesh was 36 by 36 by 65 cells with an inversion domain of 20 by 20 by 51 cells.  
Computations were performed on 96 high performance RISC nodes on the IBM SP 
parallel computer facilities available through the National Energy Research Super 
Computing center located at Lawrence Berkeley Laboratory. 
 Inversion results for the two models in  
Figure 1, having 0o and 30o dip, are presented in Figure 3-Figure 14.  For each case, 
isotropic and anisotropic case, where the horizontal conductivity is 20 times that of the 
vertical, are compared.  Figure 3 shows the inverted conductivity distribution for 0o-

dipping infinite layer, with the resultant data fit shown in Figure 4.  Figure 5 shows the 
misfit (sum of square error) and the regularization parameter versus iteration.  Results are 
similarly presented for 30o-dipping infinite layer (Figure 6 through Figure 8), 0o-dipping 
half-infinite layer (Figure 9 through Figure 11) and 30o-dipping half-infinite layer (Figure 
12 through Figure 14) models. 
 In all cases, several observations are made.  The conductivity estimate of the 
anisotropic layer is overestimated, and the distribution is moved closer, or localized, to 
the borehole.  Additionally, the anisotropic data require considerably more iterations to 
achieve a misfit comparable to the isotropic data.  The inversion results for the isotropic 
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models adequately resolve the layer conductivity distribution; though, conductivity 
estimates tend to be overestimated around borehole.  This is likely due to the fact that 
only one receiver-offset and frequency was employed, affecting the resolution.  What is 
observed in the anisotropic models is this effect of overestimating and localizing the 
conductivity estimates is considerably enhanced.  As seen from the regularization 
parameter plots, the smoothness constraints for the inversions of the anisotropic data are 
approximately the same, if not slightly higher (meaning more constrain to produce a 
smooth conductivity estimate), than for the isotropic data.  Therefore, the inversion 
regularization is ruled out as a cause for the ‘roughness’ in the conductivity estimates for 
the anisotropic models. 
 
 
 
 
 
 
 
 
 

Figure 3: Inversion results for the 0o dip, infinite layer. a) Isotropic layer. b) Anisotropic 
layer. 
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Figure 4: Inversion data fit for the horizontal, infinite layer.  a) Isotropic layer. b) 
Anisotropic layer. 
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Figure 5: a) misfit and b) regularization versus iteration for the horizontal, 
infinite layer. 
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Figure 6: Inversion results for the 30o dip, infinite layer. a) Isotropic layer. b) Anisotropic 
layer. 
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Figure 7: Inversion data fit for the 30o dip, infinite layer. a) Isotropic layer. b) Anisotropic 
layer. 
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Figure 8: a) misfit and b) regularization versus iteration for the 30o dip, infinite layer. 
 
 
 
 
 
 
 

Figure 9: Inversion results for the 0o dip, half-infinite layer. a) Isotropic layer. b) 
Anisotropiclayer. 
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Figure 10: Inversion data fit for the horizontal, terminated layer. a) Isotropic layer. b) 
Anisotropic layer. 
 
 
 

Figure 11: a) misfit and b) regularization versus iteration for the horizontal, half-infinite 
layer. 
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Figure 12: Inversion results for the 30o dip, half-infinite layer. a) Isotropic layer. b) 
Anisotropic layer. 
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Figure 13: Inversion data fit for the 30o dip, terminated layer. a) Isotropic layer. b) 
Anisotropic layer. 
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Figure 14: a) misfit and b) regularization versus iteration for the 30o dip, infinite layer.  
 
4.0 Conclusions 
 The effects of anisotropy on standard induction logging in a simple model is well 
understood, with the resultant artifact being an over estimation of the layer resistivity.  
We’ve presented anisotropic effects on 3D induction logging in more complex models.  
The apparent effects are conductivities estimates that are over estimated and become 
more confined about the borehole.  We attribute these effects as artifacts caused by the 
anisotropy. 
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