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EXECUTIVE SUMMARY 
 
Chapter 1 of this report contains a derivation of the fundamental equations used to calculate the base 
speed, torque delivery, and power output of a reluctance-assisted permanent magnet (PM) motor which 
has a saliency ratio greater than 1 as a function of its terminal voltage and current, voltage-phase angle, 
and current-phase angle. 

 
In Chapter 2, the fundamental equations derived in the first chapter are employed to obtain expressions 
for a motor’s terminal voltage, Vt(It,ωe,γ); electrical-base speed, ωebase(Vsource, Imax, γ); maximum-
attainable current above base speed (voltage-limited region) when current-phase angle, γ, is controlled, 
It(Vsource,ωe,γ); and maximum-attainable current above base speed when voltage-phase angle, β, is 
controlled, It(Vsource,ωe, β).  The equations are initially applied to model Motor X using symbolically-
oriented methods with the computer tool Mathematica to illustrate the functional dependency of base 
speed, ωebase, on γ.  A similar expression for base speed may be derived as ωebase(Vsource, Imax, β).  Once a 
base speed is selected, unique values exist for γ and β which are expressed as γo and βo for Motor X.  
Above base speed, the dependencies of It on ωe and γ and of It on ωe and β are applied to determine the 
maximum-attainable currents as a function of speed under γ or β control, respectively, for V t =Vsource.  
Below base speed, the same dependencies are used to determine the required-terminal voltage for It = Imax 
under γ or β control. The method of maximizing output power above base speed under β control is 
indicated, but because of the nature of the solution of a fourth-order polynomial, the equations are not 
listed.  Instead, the numerical results from the fourth-order equations for power under β control are 
plotted as a function of speed and β, and the optimal-power trajectory is superimposed on the power 
surface.  This complicated numerical solution is summarized in a plot of maximum power versus speed 
and a plot of the control angle, β, required to produce maximum power versus speed.  Chapter 2 ends with 
plots that use the simpler expressions for the optimal-current-phase angle, γ, and maximum power under γ 
control over the current-limited region below base speed.  The plot of maximum power from rest to base 
speed under current-phase angle control is linear with speed. A second plot shows the current-phase angle 
versus saliency ratio, and a third plot shows the torque versus saliency ratio which is linear.  This last plot 
quantifies the torque benefit from increasing the saliency ratio of a motor similar to Motor X. 

 
In Chapter 3, the fundamental equations from the first chapter are applied to model an inset PM motor 
using numerically-oriented methods with the computer tool LabVIEW.  The equations are solved 
iteratively to find optimal current and voltage angles that yield maximum power and maximum efficiency 
from rest through the current-limited region to base speed and then through the voltage-limited region to 
high rotational speeds.  Currents, voltages, and reluctance factors were all calculated and external loops 
were added to perform additional optimization with respect to PM pitch angle, which determines the 
magnet fraction, and with respect to magnet strength. 

 
Chapter 3 begins with curves of magnet-flux linkages Ld, Lq, Lq-Ld, and Lq/Ld and characteristic current 
plotted as a function of PM pitch angle.  These curves show that Lq–Ld reaches a peak at a PM pitch angle 
of 90°, Lq/Ld reaches a peak at 130°, and characteristic current reaches a peak at about 160°.  Plots from 
the numerical analysis in Chapter 3 indicate that the optimal-magnet fraction for maximum power 
delivery is 0.72 which corresponds to a PM pitch of 130°; very close to the value where the saliency ratio 
peaks but not close to the value where Lq–Ld peaks.  Further, the strength of Motor X magnets may be 
lowered to 80% of full strength without significantly impacting motor performance for PM pitch angles 
between peak saliency and peak-characteristic current. 
 
Based on the observations that the optimal-magnet pitch is 130° which corresponds to a magnet fraction 
of 0.72 and that the strength of the PM is optimal for 80% of the original strength, a complete set of 
curves is presented showing currents, optimal-current-phase angles, terminal voltage, and optimal 
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voltage-phase angle as a function of speed for maximum power over a range of strengths.  A second set of 
the same curves follows as a function of speed for 80% magnet strength over a range of PM pitch angles. 
 
A final discussion of optimization of motor configuration based on actual life-cycle or motor-use curves 
such as the Federal Urban Driving Cycle and the Federal Highway Driving Cycle completes the chapter.  
It appears feasible to involve maximizing a driving-cycle-weighted efficiency as a criterion for selecting 
the final optimal-PM fraction for this inset PM motor.  We recommend that this be explored as part of 
future research because low efficiency at peak torque may be acceptable when there is infrequent call for 
peak torque. 

 
 



 

 vii

ABSTRACT 
 

This report contains a derivation of the fundamental equations used to calculate the base speed, torque 
delivery, and power output of a reluctance-assisted PM motor which has a saliency ratio greater than 1 as 
a function of its terminal voltage, current, voltage-phase angle, and current-phase angle. 

 
The equations are applied to model Motor X using symbolically-oriented methods with the computer tool 
Mathematica to determine: (1) the values of current-phase angle and voltage-phase angle that are uniquely 
determined once a base speed has been selected; (2) the attainable current in the voltage-limited region 
above base speed as a function of terminal voltage, speed, and current-phase angle; (3) the attainable 
current in the voltage-limited region above base speed as a function of terminal voltage, speed, and 
voltage-phase angle; (4) the maximum-power output in the voltage-limited region above base speed as a 
function of speed; (5) the optimal voltage-phase angle in the voltage-limited region above base speed 
required to obtain maximum-power output; (6) the maximum-power speed curve which was linear from 
rest to base speed in the current limited region below base speed; (7) the current angle as a function of 
saliency ratio in the current-limited region below base speed; and (8) the torque as a function of saliency 
ratio which is almost linear in the current-limited region below base speed. 

 
The equations were applied to model Motor X using numerically-oriented methods with the computer tool 
LabVIEW.  The equations were solved iteratively to find optimal current and voltage angles that yield 
maximum power and maximum efficiency from rest through the current-limited region to base speed and 
then through the voltage-limited region to high-rotational speeds.  Currents, voltages, and reluctance 
factors were all calculated and external loops were employed to perform additional optimization with 
respect to PM pitch angle (magnet fraction) and with respect to magnet strength.  The conclusion was that 
the optimal-magnet fraction for Motor X is 0.72 which corresponds to a PM pitch angle of 130°, a value 
close to the maximum-saliency ratio in a plot of saliency ratio versus PM pitch angle.  Further, the 
strength of Motor X magnets may be lowered to 80% of full strength without significantly impacting 
motor performance for PM pitch angles between the peak saliency (130°) and peak-characteristic current 
(160°). 
  
It is recommended that future research involve maximizing a driving-cycle-weighted efficiency based on 
the Federal Urban Driving Cycle and the Federal Highway Driving Cycle as criteria for selecting the final 
optimal-PM fraction and magnet strength for this inset PM motor. 
 
Results of this study indicate that the reduction in PM torque due to reduced-magnet fraction will be more 
than compensated by the reluctance torque resulting from the higher saliency ratio.  It seems likely that 
the best overall performance will require saliency; consequently, we think the best motor will be a 
reluctance-assisted PM motor.  This should be explored for use with other types of PM motors, such as 
fractional-slot motors with concentrated windings. 
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1. BACKGROUND AND EQUATIONS 
 
The importance of reluctance torque has recently been recognized [1] and commercially exploited by the 
automotive community.  The outstanding example is the internal permanent magnet (IPM) motors 
developed by Toyota to drive their Toyota Hybrid System (THS) and Toyota Hybrid System-new 
generation (THSII) hybrid electric Prius models [2].  Reluctance torque, which will be explained in this 
report, occurs when there is a difference between stator-reaction inductance referenced to the center, 
direct axis (d-axis), of a rotor’s permanent magnet (PM) and the stator inductance referenced to the 
midpoint in the space separating a PM from its closest PM neighbor with opposite polarity, quadrature 
axis (q-axis).  Such a difference does not occur in rotors with surface mounted PMs because of the 
uniform permeability of the materials in the rotor’s structure; however, the difference in inductances may 
be significant for IPMs.  The ratio of the largest inductance (along q-axis) to the smallest inductance 
(along d-axis) is known as the saliency ratio.  When designing IPMs, the objective is to maximize the 
saliency ratio while matching the reluctance torque it produces with the PM torque. 
 
There are several types of IPM motors.  One of the most prominent is the inset PM motor which is similar 
to a surface-mounted PM motor, except that the magnets are embedded in the rotor-silicon steel making 
their surface flush with the rotor surface and the magnets are separated by a width of silicon steel.  The 
ratio of the angle subtended by the magnet to the angle subtended by one pole is the magnet fraction.  
Developing a methodology to determine the magnet fraction that produces the best motor performance is 
the subject of this report.  Part of the development of the methodology is the determination of the 
meaning of best performance. 
 
Several questions are addressed in this report related to the importance of reluctance in PM motors:  
 
 1. How does reluctance torque improve the performance in a reluctance-assisted PM motor? 
 2. What can a reluctance-assisted PM motor do that a PM motor cannot do by itself? 
 3. What are the equations used to model the reluctance-assisted PM motor? 
 4. How are the effects of magnetic saturation modeled for a reluctance-assisted PM motor? 
 5. What is the criterion that should be used to define optimum performance? 
 6. Once optimum performance is defined, how is the optimum-magnet fraction determined?  
 
1.1  RELUCTANCE CONTRIBUTION TO TORQUE 
 
This task was initiated because of Fig. 1 which was calculated using SPEED software [3].  Figure 1 is a 
plot of the sum of reluctance torque and PM torque shown in red for a four-pole motor as the magnet 
fraction is varied from 0 (0 electrical degrees) as shown in Fig. 2(a) to 1 (180 electrical degrees) as shown 
in Fig. 2(b).  Since the PM torque is shown in green, the distance between the red and green curves is the 
reluctance torque.  Figure 1 shows that the total torque passes through a maximum at a magnet fraction of 
about 1/2 suggesting that there is a magnet fraction at which the torque is optimum.  Furthermore, at that 
point there is a significant increase in the torque above that produced by the magnets alone.  This task was 
to examine the equations used to design IPMs and to determine the optimal-magnet fraction.  At the onset 
of this task, we thought the primary benefit of a reluctance-assisted PM motor is that it can achieve a 
required torque with less magnet material, which would allow it to operate at higher constant power speed 
ratio (CPSR). Alternately, it can achieve a higher torque than a surface-mounted PM motor.   
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Fig. 1. Magnet torque and total shaft torque of a four-pole inset reluctance-assisted 

PM motor for a range of magnet fractions. 
 

 
 (a) Magnet fraction is almost zero. (b) Magnet fraction is almost one. 

 
Fig. 2. Two possible configurations of an inset PM motor. 

 
1.2. DESIGN EQUATIONS OF A SYNCHRONOUS PM MOTOR WITH SALIENCY 

RATIO ABOVE ONE 
 
An elegant and useful approach to developing the steady-state design equations for a synchronous PM 
motor is to transform the stator variables, current and voltage, from a three-phase stationery-coordinate 
reference frame into a new, two-coordinate reference frame fixed in the rotor.  The transformation is 
based on a two-axis theory after Blondel [4], Doherty and Nickle [5], and Park [6]. 
 
The currents and voltages in the most general form or a standard three-phase stationery-coordinate system 
are expressed as 
 



 

 3

 

( )
( )
( )3

2cos
3

2cos

cos

πεω

πεω

εω

++=

−+=

+=

c
pk

cc

b
pk

bb

a
pk

aa

tIi

tIi

tIi

   and 

( )
( )
( )3

2cos
3

2cos

cos

πδω

πδω

δω

++=

−+=

+=

c
pk

cc

b
pk

bb

a
pk

aa

tVv

tVv

tVv

    , (1) 

 
where  
 
 Ia

pk , Ib
pk , Ic

pk are the peak values for the time-domain current waveform, 
 Va

pk = Vb
pk = Vc

pk 
 = Vpk are the peak values for the time-domain voltage waveform, and 

 εa, εb, εc and δa, δb, δc are the angles by which the current and voltages, respectively, are shifted 
with respect to the time reference. 

 
The instantaneous values of ia, ib, ic , va, vb, and vc can be viewed as the projections of two sets of vectors, 
Ipk

a,b,c and Vpk
a,b,c rotating at the angular speed, ωt, with time shifts of εa,b,c/ω and δa,b,c /ω respectively, on 

the axis of abscissas of a stationary frame of reference. 
 
By changing the frame of reference to one rotating synchronously at angular speed ω, the projection of 
the Ipk

a,b,c
  and Vpk

a,b,c vectors over the rotating x- and y-axes will remain constant in time. Their value will 
depend on the angle between the rotating axis and the time reference. 
 
This is shown mathematically as in the following equations. Let us compute the sum of the projections of 
the instantaneous values of the three phases over the x- and y-axes of some arbitrary-rotating frame 
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which is   
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where θ represents the angle between the new rotating x-axis and the zero-time reference of the 
instantaneous waveforms.  
 
In a balanced system Ia

pk = Ib
pk = Ic

pk = Ipk, εa = εb = εc = ε, δa = δb =δc = δ, and Va
pk = Vb

pk = Vc
pk = Vpk.  

Then substituting (1) into (2) and (3) and employing the trigonometric identities we have 
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one obtains 
  

  ( )εθtωI x +−= cosI
2
3 pk , (4) 

 
and  
 

 ( )εθtωII pk
y +−+= sin

2
3 .  (5) 

 
 Equations (4) and (5) lead to a time-independent current in the rotating x-y rotor frame which is 
 

 pk
yxrotor IIII

2
3

=+=    .  (6) 

 
In addition, if the angle θ is chosen as θ = ω t, then the rotating frame is synchronized and the current 
projections from Eq. (4) become the time-independent equations 
 

 ( )εcos
2
3 pk

x II =  (7) 

 
and  
 

 ( )εsinI
2
3I pk

y =   .  (8) 

 
It is customary to refer to the x- and y-axes of the synchronously-rotating frame as the d- and q- axes 
respectively.  
 
The equations show that the value of ε, which is controlled by the inverter, determines how much of the 
total current, Irotor, is projected along the q-axis which produces torque interacting with the PM, or along 
the d-axis, which produces torque when there is saliency in the rotor and can be used to weaken the 
magnetic field in the air-gap to allow higher speed operation. 
 
In order to make the current, Irotor, in the rotating frame equal in value to the current, Ipk, in the stationary 
reference frame, Blondel introduced a factor 2/3 in front of the transformation (2) and (3) leading to the 
transformation named after him, which is 
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In matrix notation, the three-phase stationery currents and voltages may be expressed as 
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In the axis fixed in the rotor, the currents resulting from the transformation are Id, Iq, and I0 where 
I0 = (ia + ib + ic)/3, is zero during balanced conditions.  Likewise, the voltages resulting from the 
transformation are Vd, Vq, and Vo where Vo = (νa + νb + νc)/3, is also zero during balanced conditions.  
Blondel’s currents and voltages expressed in matrix notation are 
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The inverse of Blondel’s transformation matrix is 
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The transformations relate the phase and Blondel currents and voltages as 
 
 PB BiI =  , [ ] BP IBi 1−= ;  
 
and  
 
 PB BvV =  , [ ] BP VBv 1−= . (13) 
 
Physically this transformation makes the magneto-motive force (mmf) wave, which is induced by the 
currents in the stationery system and rotates at the synchronous speed determined by the three-phase 
signals, appear to be fixed in the rotor-coordinate system.  This facilitates physical conceptualization. 
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Using current in Eq. (13) and the rule that the transpose of the product of two matrices is the product of 
the transposes in reverse order, TT

p
T
B BiI = we find that the transformed square of the Blondel current 

for a balanced system is 
 

 
2222 pk
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This verifies that the Blondel current equals the peak current in the stationery system.  The same is true 
for the voltage.  This transformation conveniently connects currents and voltages in the two systems. 
 
The power of the stationery system must be invariant under transformation.  Using a matrix operation 
similar to that used to obtain Eq. (14) it follows that 
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where the 3 comes from the number of phases, 2 converts the peak values of voltage and current to root-
mean square (rms) values, and the I0 disappears because the current is balanced. 
 
There are different transformations that have been used, such as the Park transformation which replaces 
the pre-factor, 2/3, by 3/2  and replaces the 1/2 elements by 2/1 .  
 
Park’s transformation and inverse transformation are 
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3
2cos

2
1sincos

3
2P 1

⎟
⎠
⎞

⎜
⎝
⎛ π

+θ−⎟
⎠
⎞

⎜
⎝
⎛ π

+θ

⎟
⎠
⎞

⎜
⎝
⎛ π

−θ−⎟
⎠
⎞

⎜
⎝
⎛ π

−θ

θ−θ

=−    . (17) 

 
One can see that the two differences between the B and P transformations are the K pre-factor and the 
number used to define the imbalance current, io.  This pre-factor, K, determines the relation between the 
transformed currents and voltages and the corresponding three-phase currents and voltages.  When 
K = 2/3, the transformed current and voltage are the peak current and peak voltage in the stationary 
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system. When 3/2K = , the powers are the same and the transformed voltage can be viewed as the line-
to-line voltage in the stationary system. 
 
1.3 EQUIVALENT CIRCUITS FOR DYNAMIC OPERATION IN THE 

SYNCHRONOUSLY-ROTATING ROTOR FRAME  
 
For dynamic operation, the d-axis and q-axis have equivalent circuits that may be used to control the 
motor.  These equivalent circuits are shown in Fig. 3 and lead to the dynamic equations for a synchronous 
motor with saliency which are 
 

 )( fddeqq
q

q EILRIV
dt

dI
L −−−= ω   , (18) 

 
and  
 

 )( qqedd
d

d ILRIV
dt

dI
L ω+−=  . (19) 

 
 

 ωelLdid ωelLqiq 

+      -

 +
Ef 
 - 

Vq 

R Lq 
-       + 

Vd

R Ld 

iq id 

+ +

-- 
 

 (a) Equivalent q-axis circuit.  (b) Equivalent d-axis circuit.  
 

Fig. 3. Equivalent d-q circuits of a synchronous motor in the synchronously-rotating reference frame. 
 

For steady-state operation, 0
dt

dI
dt

dI dq == ; thus the terms in parentheses in Eqs. (18) and (19) are equal 

to zero.  Multiplying the parenthesized zero term in Eq. (18) by Iq and the parenthesized zero term in 
Eq. (19) by Id and simplifying, we obtain the q-axis and d-axis expressions for power 
 
 fqqddeqqq

in
q EIIILIRIVP ++== ω2  , (20)  

 
and  
 
 qdqeddd

in
d IILIRIVP ω−== 2   .  (21) 

 
From Eq. (15), which relates the power in the d-q system to the power in the balanced-stationary system, 
the amount of power converted from electric to magnetic form is now given by 
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  ( )[ ] ( )[ ]fqqdqdedq
in

d
in

qconverted EIIILLIIRPPP +−=+−+= ω
2
3

2
3 22 , (22) 

 
which leads to the torque equation for one pole pair, 
 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+−==

e

fq
qdqd

m

converted EI
IILL

2
3PT

ωω
. (23) 

 
Since Lq ≥ Ld, positive values of Id reduce the power and torque; consequently, Id must be negative to 
obtain increased torque.  The parenthesized zero terms in Eqs. (18) and (19) yield expressions in Eqs. (24) 
and (25) for Vq and Vd, 
 
 meddeqq ILIRV λωω ++= ,  (24) 
 
and  
 
 qqedd ILIRV ω−=   . (25) 
 
With the relation between the back-electromotive force (back-emf) and the flux linkages of the magnet, 

mefE λω= , and  the definition, [ ]RIPRIP
2
3P 2

d
in

d
2
q

in
qconverted −+−= ,  Eqs. (20) and (21) become 

 

 ( )[ ]dqdmqeconverted LLII
2
3P −−= λω   . (26)  

 
For a balanced system, the current in the stationary three-phase system is related to the total current in the 
d-q system by Eq. (14). 
 
The d- and q-circuits are 90° apart forming an orthogonal system as shown in Fig. 4, which uses the 
convention that Id along the positive d-axis is positive so that a negative value for Id is necessary to 
increase the power.   
 



 

 9

 
 
Since ddqq LXandLX ωω ==   , the above equation for output power is 
 
  )XX(IIEIP dqdqpmqout −−=  . (27) 
 
From the phasor diagram in Fig. 3, RIIXEV qddpmq ++=  and RIIXV dqqd +−= .  When solved 

for Iq and Id, one obtains the relations 
q

d
q X

VI −=  and 
d

pmq
d X

EV
I

−
= .  Substituting the expressions for 

Iq and Id into Eq. (27) yields 
 

 
( )( )dq

d

pmq

q
d

q

pmd
out XX

X
EV

X
V

X
EV

P −
−

+−= , (28) 

 
which becomes 
 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−=

qd
pmd

qd
qd

q

pmd
out X

1
X
1EV

X
1

X
1VV

X
EV

P  . (29)  

 
The first term, which one might think is the power generated by the PM, cancels the very last term giving 
 

E r  = -I q L q ω
Id R

E r = Id L d ω 
Iq R

IqI
V

l p
d-axis 

q-axis

α

Id

l rEr

l r

Ep  Λp ω

β γ 

The power input is: Pin = I V cos (α) 
                       = Iq (Epm + Iq R + Id Ld ω) + Id(Id R – Iq Lq ω) 
                       = Iq Epm + (Iq

2 + Id
2)R – Id Iq(Lq – Ld)ω 

The power output is: Pout  = Iq(Epm + LdIdω) + Id(-LqIqω) 
                          = Iq (Epm - Id(Lq – Ld) ω) = Iq(Epm – IdLd(ξ - 1) ω) 
For surface-mounted PMs, where Lq = Ld, Id in the negative direction weakens the magnet 
so that the motor may be driven at higher speeds.  However, there is no increase in output 
power, while the input power must increase to supply the additional resistance-heat loss. 
 
For IPM motors, Lq > Ld; thus if Id is along the negative d-axis as shown above, the new 
term introduced by the presence of Id has a positive power. 

Fig. 4. Phasor diagram of the d- and q-axes of a PM motor employing flux weakening 
(Id in the second quadrant). 
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 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−=

qd
qd

d

pmd
out X

1
X
1VV

X
EV

P   . (30) 

 
Substituting β= cosVVd  and β= sinVVq  leads to 
 

 ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−β+

β
−=

qd

2

d

pm
out X

1
X
12sin

2
V

X
cosVE

P   . (31) 

 
When Pout is expressed in terms of current as in Eq. (27), one is tempted to choose the IqEpm term on the 
right as the power generated by the PM, especially since the second term vanishes when Xq = Xd.  
Similarly, when Pout is expressed in terms of voltage as in Eq. (31), one is tempted to choose the term 
containing Epm as the power generated by the PM, especially since, once again, the second term vanishes 
when Xq = Xd.  Recall, however, that in the process of deriving Eq. (31), a term in the reluctance 
containing Epm canceled the very term we considered a candidate for power generated by the PM in 
Eq. (27). 
 
Using the equalities, γ= sinIIq and γ= cosIId , Eq. (27) may be written as 
 

 ( ) ( )( )dq
2

pmdq
2

pmout XX2sin
2
IsinIEXXcossinIsinIEP −γ−γ=−γγ−γ= . (32) 

 
We now examine the power expressions with voltage- and current-phase angles referenced to the q-axis, 
which is along the back-emf instead of the d-axis.  When the voltage phase angle, δ, is referenced to the 

back-emf so that 
2
π

−β=δ , the trigonometric identities are δ−=β sincos  and ( ) ( )δ−=β 2sin2sin .  

When applied to Eq. (31), the power expression becomes 
 

  
( )

( )δ
−

−
δ

= 2sin
XX

XX
2

V
X

sinVE
P

dq

dq2

d

pm
out   . (33) 

 
Likewise, when the current-phase angle, ε, is referenced to the q-axis instead of the d-axis we see that 

2/π−γ=ε  whose trigonometric identities are ε=γ cossin and ε−=γ 2sin2sin .  Substituting into 
Eq. (32) gives 
 

 ( )( )dq
2

pmout XX2sin
2
IcosIEP −ε+ε= . (34) 

 
In this expression, the useful power is the product of the current, back-emf, and the cosine of the angle 
between them, as it should be. 
 
The following table shows the PM torque and reluctance torque expressed as a function of current and 
voltage with ξ = Xq/Xd = Lq/Ld ≥ 1 being the saliency ratio. 
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Table. 1. PM and reluctance torque equations expressed as I and V functions 
 

 PM Torque Reluctance Torque Phase referenced to  
back-emf (q-axis) 

Current Expression ε
ω

cos
E

I pm  ( ) ( )ε−ξ
ω

2sin1X
2
I d
2

 ε 

Voltage Expression δ
ω

sin
E

X
V pm

d
 ( ) ( )δ

ω
−ξ

− 2sin1
X
1

2
V

q

2
 δ 
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2. MODELING APPROACH 
 
The most practical approach to modeling the performance of a PM motor with saliency is based on 
lumped-parameters and the d-q transformation.  As shown in the previous chapter, these governing 
equations are 
 
 meddeqq ILIRV λωω ++= ,  (24) 
 
 qqedd ILIRV ω−=   , (25) 
 
and  
 

 ( )[ ]dqdmqeconverted LLII
2
3P −−= λω .  (26) 

 
These lumped-parameter equations facilitate understanding of the phenomena involved but require the 
determination of lumped inductances, resistance, and flux linkages with the degree of detail appropriate 
for the simulation goals.  Most challenging is the characterization of magnetic saturation since, especially 
in the case of IPM motors, the magnetic-flux paths vary significantly with the rotor’s position relative to 
the stator generated rotating field and also with the magnitude of the stators currents.  It is best to have 
measured values of the lumped parameters. Next best is to obtain them by means of finite-element 
computations.  However, most often lumped parameters are obtained by means of calculations based on 
geometry, equivalent circuits, and adjustment factors. 
 
To complete the set of equations needed, we state the fundamental relationships for terminal voltage and 
phase current with their respective phase angles whose zero reference is the d-axis, as seen in Fig. 4, 
 

 ( )
d

q
qdt V

V
VVV =+= βtan,22 , (35) 

 

 ( )
d

q
qdt I

I
III =+= γtan,22   . (36) 

 
The angle between the current and the voltage is then γβα −= ; consequently, the power factor is 

( )αcos=pf  and the power input is 
 

 ( ) ( )qqddttinput IVIVIVP +==
2
3cos

2
3 α    . (37) 

 
Since Pconverted = Pinput - Pohmic_loss, the efficiency is 
 

 
input

loss_magloss_ohmic

input

loss_magconverted

P
PP

1
P

PP
Efficiency

+
−=

−
=   . (38) 

 
We have pursued two simulation approaches to model these fundamental equations. One approach is 
analytical, implemented symbolically in Mathematica, and the other is purely numerical, implemented in 
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LabVIEW.  With Mathematica, the symbolic representations of the equations are manipulated 
algebraically using the rules of calculus to initially obtain sets of formulas for the performance parameters 
of interest and finally to find the control parameters that optimize performance.  This is done by equating 
partial derivatives to zero, solving symbolically for the parameter of interest and solving the resulting 
equations with that parameter substituted. 
 
In this chapter, we present the derivations of some of the equations of interest and apply them to an IPM 
motor referred to as Motor X.  In the next chapter, we present the results of the numerical LabVIEW 
analysis.  
 
2.1 TERMINAL VOLTAGE UNDER CURRENT-PHASE ANGLE CONTROL  
 
An expression for the terminal voltage as a function of the current, current-phase angle, and electrical 
frequency can be obtained from Eqs. (24), (25), (27), and (28) as  
 

 
( ) ( )( ) ( ) ( )

( ) ( )( ) 22

22222

sincos2

2sin1sin11

mbeembe

ee
tt

LRLdL

LdRLdR
IV

ωγγωω

γωξγξω

++

+−−−++
=

L

L
 (39) 

 
with  
 
 

t

m
mb I

L
λ

=  and 
Ld
Lq

=ξ  . (39a) 

 
The current-limited region is below base speed.  In this region, the applied voltage must be chopped to 
prevent the current from exceeding Imax.  The amplitude-modulation ratio is the ratio of the terminal 

voltage from Eq. (39) with It = Imax to the source voltage, i.e. 1
V

],,I[Vm
source

emaxt ≤=
γω

.  The terminal 

voltage thus depends on the speed, Ωrpm, through its relation to electrical frequency, as well as the current-
control angle.  That relation is 60/2rpme πΩω =  x the number of pole pairs. 
 
The voltage-limited region is above base speed.  In this region, the back-emf prevents the current from 
reaching its maximum value even at full voltage.  In the voltage-limited region, the motor’s current-
carrying capacity is not fully used. 
 
The optimal value of the current-control angle, γ, depends on the value of the performance measure 
selected for optimization.  Typical performance measures are power output, torque, power factor, or 
efficiency. 

 
2.2 BASE SPEED 
 
The speed at which the magnitude of the terminal voltage equals the available voltage when the current is 
at its limit defines the motor’s base speed. Thus, solving Eq. (39) for ωe, with Vt = Vsource and It = Imax, 
yields the expression 
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( ) ( ) ( )( )

( )
( )( ) 2

mbmb
222

2222
mb

2
b

222
mb

2

mb

ebase
L)cos(LLd2)sin(11Ld

)sin(Ld))cos(LdL(()RR()sin())cos(Ld1L(R

2sinLd1sinL2
2
R

+γ+γ−ξ+

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

γξ+γ+−−γγ−ξ−

+γ−ξ−γ−

=ω
L

K

 (40) 
 
where 
 

max

m
mb I

L λ
=  and 

max

source
b I

VR = . (40a) 

 
As Eq. (40) shows, the base speed depends not only on the magnitudes of Vsource and Imax, but also on the 
current-phase angle, γ, (Fig. 4) which may be controlled externally.  Therefore, when a base speed is 
chosen it uniquely determines the current-phase angle, γο.  Likewise, it also uniquely determines the 
voltage-phase angle, βo. 
 
2.3 ATTAINABLE CURRENT UNDER CURRENT-PHASE ANGLE OR UNDER 

VOLTAGE-PHASE ANGLE CONTROL IN THE VOLTAGE-LIMITED REGION 
 
In the current-limited region below the base speed, the magnitude of the current is at most the design 
maximum, Imax.  The current’s phase angle may vary with speed and will depend on the performance goal. 
 
In the voltage-limited region above base speed, the maximum-terminal voltage is reached before the 
current reaches its maximum limit.  In the voltage-limited region, the attainable current can be obtained 
from Eqs. (24), (25), (27), and (28).  When the current-phase angle, γ, is being controlled, the current with 
Vt = Vsource is 
 

( ) ( )( )

( ) ( ) ( ) ( ) ( )( )( )
( ) ( )( )

( ) ( ) ( ) ( )( )( )222
e

22
e

2
e

2
e

2
mb

ee
2

e
22

embe

tt
sin11LdR2sinRLd1

sinLdcosRC

cosR2sinLd1sinLd1LdR

sinRcosLdC

VI
γ−ξ+ω+−γω−ξ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

γξω−γω

−γ−γω+ξγω−ξ+ω+

−γ+γωω

=
L

L
L

L

 (41) 

 
where  
 

 
t

m
mb V

C
λ

=  . (41a) 

 
When the voltage-phase angle β is being controlled, the current with Vt = Vsource is 
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( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

2
e

22

e
2222

e

22
e

22
embe

22
e

222
mb

2
e

2

tt
LdR

2sinRLd1sin11Ld

sin)LdR(cosRLd1C2

)LdR(CR

VI
ωξ+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

βω−ξ+β−ξ+ω

+βωξ++βω−ξω

−ωξ+ω+

=
L

LL

L

  . (42) 

 
The magnitude of the current in this region depends on the control angle.  A higher current does not 
necessarily produce more power since power depends on the phase angle; thus, as mentioned above, the 
control angle needs to be chosen to optimize the desired performance parameter. 
 
2.4 APPLICATION OF MOTOR X PARAMETERS TO VOLTAGE AND CURRENT 

EXPRESSIONS 
 
We now investigate the above expressions using a specific motor example defined by the parameters in 
Table 2. 
 

Table 2. Lumped parameters for Motor X 
 

Phase inductance 
through magnet, Ld 0.952 mH Number of turns 

per coil 9 

Phase-quadrature 
inductance, Lq 1.413 mH Current-phase angle 

wrt 
d-axis, γo

* 

2.65 radians 
152° 

Flux linkages, λm 0.1208 Wb 
Voltage-phase angle 

wrt 
d-axis, βo

* 

3.49 radians 
200 ° 

Phase resistance, R 0.049 Ω Maximum rated 
current, Ito 

212.6 amps 

Terminal voltage, Vt 245 V Rated power, Po 47.3 kW 
Base speed, 

electrical rad/s, ωe0 

mechanical rad/s, ωm0 

mechanical rpm, Ω 

1550  
387.5 
3770 

Number of pole pairs 4 

Hysteresis loss factor, 
Kh, (s2/T1.93)(W/lb)(lb) 2.2

T

se8.5K
93.1

2
3

h
−=  

Eddy current loss 
factor, Ke, 

(s2/T2)(W/lb)(lb) 
2.2

T

se3.9K 2

2
6

e
−=  

*Once a design-terminal voltage and current are established, selection of the electrical-base speed, which for 
Motor X is 1550 rad/s, imposes unique values for γo and βo. 

 
Figure 5 shows the base-speed dependence from Eq. (40) on the current-phase angle for Motor X.  The 
maximum-base speed for Motor X values of Vsource and Imax occurs for γ = 180° and is 3003 rad/s; but this 
speed is not of interest because for γ = 180° the power factor, which is the angle between back-emf and 
current and may be visualized using Fig. 4, is 90° so that the developed power is zero. 
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Fig. 5. Motor X base speed as a function of current-control angle. 

(Maximum for γ = 180°, 
m

222
max_ebase ItLd

RItVt
λ−

−
=ω  = 3003 rad/s.) 

 
Figure 6 shows the terminal-current dependence in the voltage-limited region on the current-phase angle, 
γ, and speed for Motor X from Eq. (41).  The maximum current also corresponds to γ = 180°, which is 
useful to illustrate functional relationships between It, ωe, and γ but, once again, is of no physical interest 
because it produces no power. 

ωebase [rad/s]

γ [deg] 
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(a) As a function of speed and current-control angle. 
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(b) As a function of current-control angle, γ, for base speed, ωe0.   (c) As a function of speed for γ = 180°. 
 

Fig. 6. Motor X with voltage-limited attainable current under γ control. 
 
Figure 7 shows the dependence of the maximum-attainable current in the voltage-limited region, on the 
voltage-phase angle, β, and speed for Motor X from Eq. (42).  Figures 7(a) and (b) show that the 
maximum-attainable current occurs at β = 270°, which again is useful to illustrate functional 
relationships, but is not of physical importance because it produces no power.  Figure 7(c) shows the drop 
in current with speed for a fixed current angle of 200°, which is equal to the value of β0 required by the 
base speed.  When base speed is established first, which for Motor X is 1550 rad/s, unique values are 
imposed on γo and βo as shown in Table 1.  
 

Ιt [A] 

γ [deg]  

Ιt [A] 

Ιt [A] 

ωe [rad/s] 
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(a) As a function of speed and voltage-control angle. 
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 (b) Function of voltage-control angle for ωe0. (c) Function of speed for β = β0 = 200°. 
 

Fig. 7. Motor X with voltage-limited current under β control. 
 
To determine the best control angle for each speed which corresponds to the optimal trajectories along the 
surfaces in Figs. 6(a) and 7(a), one must look at the performance parameter of interest which may be 
power, torque, and/or efficiency. 
 
2.5 POWER EXPRESSION USED FOR OPTIMIZATION 
 
The power output can be obtained by subtracting the ohmic and magnetic losses in the iron from the 
power input as shown in Eq. (29).  Expressions for maximum power can be derived under control of 
either voltage-phase angle, β, or current-phase angle, γ.  Derivation of maximum power controlled by the 
voltage-phase angle, known as β control, leads to a less tractable expression and is discussed next for the 
voltage-limited region along with the nature of its intractability.  The numerical solution is presented 
instead of a complicated multi-page expression.  Section 2.6 derives a much simpler expression for 
maximum power controlled by the current-phase angle, known as γ control, in the current-limited region.   
 
From Eq. (26) one may obtain the functional form of Pout(Vt ,β) as  

ωe [rad/s] 

Ιt [A] Ιt [A] 

Ιt [A] 

β [deg] 

β [deg] 

ωe [rad/s] 
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( )( ) ( )( )

( )
( )
( ) ( ) ( )( ) Fe

e

22
e

22
mb

22
e

22
mbee

2
t

tout

P
sinLdcosRLd1

LdRC

LdR

sinRcosLdCRV
2
3),V(P

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

βξω+β−ξ
+ωξ+

ω+

β−β+ωω
−=β

L

L

, (43) 

 

where 
t

m
mb V

C λ
=  as in Eq. (42).   The iron losses [7] are estimated to be 

 
 93.122

gapehgapeeFe BKBKP ωω +=     , (44) 
 
where Ke is the eddy-current-loss coefficient and Kh is the hysteresis-loss coefficient.  These are listed for 
Motor X in Table 1. 
 
The negative sign in front of Eq. (43) indicates that the voltage-control angle, β, must be larger than a 
certain value to produce net power for motoring operation.  This can be seen for the simplified case in 
which the iron and ohmic losses are neglected and Ld = Lq so that ξ = 1, which corresponds to no 
saliency.  Then 
 

 
( )

Ld
V

PRP mt
Feout

βλ
ξ

cos
2
3]1,0,0[ −====  

 
and when  β is between 90 and 270°, its cosine is negative and consequently Pout > 0. 
 
The optimal-voltage angle, β, over the voltage-limited region above base speed may be obtained by 
making Vt = Vsource in Eq. (43) and finding the value of β for which 0/Pout =β∂∂ .  This equation is a 
fourth-degree polynomial in sin(β).  The nature of its intractability is its four solutions in terms of Ld, Lq, 
R, Vsource, ωe, and λm which are too cumbersome to transcribe here.  Instead, the numerical results are 
presented. 
 
2.6 NUMERICALLY DETERMINED MAXIMUM-POWER DELIVERY UNDER 

VOLTAGE CONTROL IN THE VOLTAGE-LIMITED REGION 
 
The power output according to Eq. (43), including iron losses, is shown in Fig. 8(a) and (b) as a function 
of speed for the full range of voltage-phase angles above base speed.  Figure 8(b) superimposes the 
trajectory for maximum-power output on the surface in Fig. 8(a). 
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 (a) With grid. (b) With optimal-power trajectory superimposed. 

 
Fig. 8. Power output as a function of speed for the full range of voltage-control angles for Motor X. 

 
The maximum power versus speed curve is shown in Fig. 9 for the voltage-limited region and the values 
of the voltage-phase angle, β, necessary to maximize Eq. (43) are shown in Fig. 10.  For this motor, the 
optimal β starts at about 206° at the base speed of 3700 mechanical rpm and shifts towards 180° as the 
speed increases. 

 
Fig. 9. Optimal-power output as a function of speed for Motor X. 
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Fig. 10. Voltage-phase angle, β, required to obtain maximum-power output above base speed  

as a function of speed for Motor X. 
 
In the following section a simpler example of optimization will be examined for illustration. 
  
2.7 A MORE TRACTABLE RELATION FOR MAXIMUM POWER UNDER 

CURRENT CONTROL IN THE CURRENT-LIMITED REGION 
 
Following the methodology of Section 2.5, an expression for Pout(It,γ) similar to Eq. (43) may be derived.  
In the current-limited region below base speed, the optimal-current angle, γ, may be obtained by 
substituting It = Imax in Pout(It,γ) and finding the value of γ for which 0/Pout =∂∂ γ . 
 
Below base speed, the expressions for optimal γ are more tractable than those for optimal β above base 
speed given in Section 2.5.  The expression for the optimal-current-phase angle, clγ , in the current-limited 
region is  
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and the corresponding maximum power is 
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where M1 and M2 are the numerator and denominator in Eq. (40). 
 
The power for the optimal-current angle, γcl, in the current-limited region is plotted as a function of speed 
using Eqs. (45) and (46) in Fig. 11 for Motor X.  Its corresponding torque is constant and equal to 
188 N-m. 
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Fig. 11. Maximum-power output in the current-limited region below base speed for Motor X. 
 

The optimal-current angle and torque in the current-limited region are plotted as a function of saliency 
using Eqs. (45) and (46) in Figs. 12(a) and (b) for a motor with all other parameters except saliency equal 
to those of Motor X.  
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 (a) Optimal-current angle, γ. (b) Torque. 
 

Fig. 12. Maximum-power output trajectories below base speed in the current-limited region for  
Motor X-like motors with saliencies from one to four. 
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3. MAXIMIZING PERFORMANCE OF A MOTOR WITH SALIENCY:  
OPTIMAL-MAGNET FRACTION 

 
In the LabVIEW model, the fundamental Eqs. (24–30) are solved iteratively to find the optimal-current or 
voltage angles required to obtain (a) maximum-power output and (b) maximum efficiency all along the 
operating envelope of the motor, over both the current-limited and voltage-limited regions.  The 
corresponding currents, voltages, and reluctance factors are also computed. 
 
The model has been applied to study the impact of reluctance in reluctance-assisted PM motors. Taking as 
input data, the dependence on the amount of PM material of the fundamental-lumped parameters Ld, Lq, 
and λm in an inset PM motor, LabVIEW computes the maximum power and efficiency for each 
configuration. External loops have been added to the base-model to perform addition studies, such as the 
impact of using weaker PM material which corresponds to the loss of magnetic strength. 
 
Figures 13(a) and (b) show how the fundamental parameters vary for the inset PM motor as a function of 
the magnet’s angular pitch.  The iron’s angular pitch shrinks as the magnet grows since both add up to 
180°.  Figure 13(a) shows the values of Ld, Lq, and λm.  Note that the maximum difference between Lq 
and Ld occurs at 90° and that above 130° there is practically no gain in λm.  Figure 13(b), which is derived 
from Fig. 13(a), shows the saliency ratio peaking at 130° while the characteristic current peaks near 160°. 
 

   
 

 (a) Values of Ld, Lq, and λm. (b) Saliency ratio and characteristic current. 
 

Fig. 13. Dependence of the fundamental parameters on the magnet’s angular pitch. 
 
First, let us look at the case in which the PM occupies 170° of the 180° available.  This has a small degree 
of saliency (ξ = 1.5 per Fig. 13(b)) and corresponds to an inset PM motor with minimum separation 
between the PMs as in case Fig. 2(b).  The maximum power attainable at each speed and its efficiency are 
shown in Figs. 14(a) and (b) for different strengths of the PM material. 
 

Lq/Ld
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 (a) Maximum-output power. (b) Efficiency for the maximum power. 
 

Fig. 14. Dependence of performance on the magnet’s strength for 170° PM pitch. 
 

Since the speed iteration is stopped during the iterative computations as soon as the efficiency becomes 
negative, the curves for different PM strength and also those for different PM angular pitch have different 
ranges. 
 
The thick blue lines in Fig. 15 show that at full PM strength this motor has the highest power-output peak, 
but its power output decays rapidly with speed.  Its speed range is shorter and its efficiency at high speeds 
is smaller than motors with weaker PM material. 
 
Figures 15(a) and (b) are zoomed-in versions of Fig. 14.  For this angular pitch, magnets with 80% 
strength that are represented by thick purple lines, double the speed range and have better efficiency at 
high speeds with little loss of peak power. 
 

 
 
 (a) Maximum-output power. (b) Efficiency for the maximum power. 

 
Fig. 15. Zoom-in of Fig. 14. 
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On the other hand, if one looks at the dependence on PM angular pitch for a full strength PM in 
Figs. 16(a) and (b), the orange line corresponding to a 130° pitch seems preferable to the 170° blue lines 
in terms of speed range and efficiency at high speeds.  The zoomed versions in Figs. 17(a) and (b) 
confirm that even at low speeds in the current-limited region, the 130° PM pitch is a better option in terms 
of both power output and efficiency.  This value of the pitch angle coincides with the peak in the saliency 
ratio of 3.3 shown in Fig. 13(b). 
 

.  
 (a) Maximum-output power. (b) Efficiency for the maximum power. 

 
Fig. 16. Speed dependence of optimal performance on the PM pitch angle at 100% magnet strength. 

           

  
 

 (a) Maximum-output power. (b) Efficiency for the maximum power. 
 

Fig. 17. Zoom-in of Fig. 16. 
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We look now at the 130° PM pitch angle in Figs. 18(a) and (b) and, comparing the 100% PM strength 
blue line with the rest, we see that using magnetic material of 80% magnetic strength (orange line) may 
still be desirable because of higher efficiency. 
 

  
 (a) Maximum-output power. (b) Efficiency for the maximum power. 
 

Fig. 18. Speed dependence of optimal performance on the magnet’s strength for a 130° PM pitch angle. 
 
For 80% magnetic strength, Figs. 19(a), (b), 20(a) and (b) favor 150° pitch.  The optimal-PM angle is 
dependent on the magnet strength but stays in the 130–170o region where the peak values of the 
characteristic current and the saliency factor are found in Fig. 13(b).  Yet, at low speeds up to 40 kW, the 
130° is better even at 80% magnet strength. The best choice will ultimately depend on the time the motor 
is operated in the speed/power out map. 
 

 
 

 (a) Maximum-output power.  (b) Efficiency for the maximum power. 
 

Fig. 19. Speed dependence of optimal performance on the PM pitch angle for 80% PM strength. 
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 (a) Maximum-output power. (b) Efficiency for the maximum power. 

 
Fig. 20. Zoom-in of Fig. 19. 

 
We now look at Figs. 21(a) and (b) corresponding to a magnet fraction of 0.5, which has a 90° PM pitch 
angle and where the difference between Lq and Ld is the maximum in Fig. 13(a).  The power levels are 
much lower primarily because there is half as much PM material.  The relative contribution of reluctance 
torque to total torque for 90° and 130° PM pitch angles are shown in Figs. 22(a) and (b), respectively, as a 
function of PM magnet strength.  For both pitch angles, the reluctance fraction increases with speed in the 
current-limited region up to the peak which occurs at the base speed and declines with speed in the 
voltage-limited region.  Their reluctance-fraction peaks are similar, but the rate of decrease is slower for 
the case where the PM pitch is 130°.  For 100% magnet strength and 130° PM pitch, the reluctance 
fraction remains almost constant in the voltage-limited region as shown in Figs. 22(b). 
 

  
 
 (a) Maximum-output power. (b) Efficiency for the maximum power. 

 
Fig. 21. Speed dependence of optimal performance on the magnet’s strength for 90° PM pitch angle. 
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 (a) For 90o PM pitch (max Lq - Ld). (b) For 130° PM pitch (max Lq/Ld). 
 

Fig. 22. Comparison of the speed dependence of the reluctance-torque fraction on the magnet’s strength for a 
magnet fraction of 0.5 and a magnet fraction of 0.72. 

 
3.1 OPTIMAL-MAGNET FRACTION BASED ON STEADY-STATE CALCULATIONS 
 
Simply based on the steady-state operating curves, the optimal-PM pitch angle is 130°, which 
corresponds to a magnet fraction of 0.72.  For the PM pitch of 130°, the optimal strength of the PM 
magnet also seems to be between 80% and 100% of the original strength; conversely, if one first selects a 
magnet strength of 80%, then the optimal-PM pitch moves toward 150°. 
 
For completeness, we show in Figs. 23(a–d) the speed dependence on magnet strength of current, 
optimal-current-phase angle, terminal voltage, and optimal voltage-phase angle all at maximum power 
delivery for the 130° PM pitch-angle design.  The reluctance-torque fraction has already been shown in 
Fig. 22(b).  Also, Figs. 24(a–e) show the speed dependency on PM pitch angle of current, optimal-
current-phase angle, terminal voltage, optimal voltage-phase angle, and reluctance-torque fraction all for 
maximum power delivery for the design using 80% magnet strength. 
 
 

Reluctance Torque Fraction 
MaxPower for 90o PM Pitch 

Reluctance Torque Fraction 
MaxPower for 130o PM Pitch 
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 (a) Current for maximum power. (b) Current-phase angle for maximum power. 
 

   

 
 (c) Terminal voltage for maximum power. (d) Voltage-phase angle for maximum power. 

 
Fig. 23. Speed dependence of optimal parameters on percent PM strength for 130° PM pitch angle. 
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 (a) Current for maximum power. (b) Current-phase angle for maximum power. 
 

  
 

 (c) Terminal voltage for maximum power. (d) Voltage-phase angle for maximum power. 
 

Fig. 24. Speed dependence of optimal parameters on PM pitch angle for 80% magnet strength. 
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              (e) Reluctance-torque fraction for maximum power. 
 

Fig. 24. Speed dependence of optimal parameters on PM pitch angle for 80% magnet strength (cont’d). 
 
3.2 OPTIMIZATION CONSIDERING ACTUAL LIFETIME OPERATING CYCLES 
 
Selection of the optimal reluctance-assisted PM motor configuration should not be based only on the 
steady-state performance curves.  The anticipated lifetime operating cycle should also be considered.  For 
hybrid electric vehicles (HEVs), examples of two such standard operating cycles that represent urban and 
highway driving averages are shown in Figs. 25(a) and (b).  The speed versus time trace of the Federal 
Urban Driving Schedule (FUDS) includes frequent stops and limited operation above 40 mph.  In the 
Federal Highway Driving Schedule (FHDS) there are no intermediate stops and the speed is seldom 
below 40 mph.  The electric traction motor’s speed is directly related to the vehicle’s speed; thus, the 
driving cycle characterizes trajectories in the electric motor’s efficiency and power maps.  The overall 
efficiency thus depends on the driving cycle.  In addition, consideration of regeneration during braking is 
important especially when the cycle includes frequent decelerations. 
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 (a) Federal urban driving cycle. (b) Federal highway driving cycle. 

 
Fig. 25. Typical driving schedules. 

  
For a particular driving cycle, the mass of the vehicle, its passenger and load, tire inflation, and 
aerodynamic-wind resistance are important contributors to determine power required.  Figures 26(a) and 
(b) show the power-requirement maps associated with the two driving cycles of Figs. 25.  When there is 
no regeneration, only the parts of the curves above the zero line are considered.  The same power demand 
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information is shown in Figs. 27(a) and (b), this time in terms of motor speed in rpm corresponding to the 
linear velocity of the vehicle. 
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 (a) FUDS. (b) FHDS.    

 
Fig. 26. Typical power demand vs. time for standard-driving schedules. 
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 (a) FUDS. (b) FHDS. 

 
Fig. 27. Typical power demand vs. motor speed for standard-driving schedules. 

 
In conclusion, the ultimate selection of an optimal design in this case of optimal-PM fraction in this inset 
PM motor could benefit by including a driving-cycle-weighted efficiency. Low efficiencies at peak-
torque conditions may be acceptable when the percentage of time spent at those conditions is small. 
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4. CONCLUSIONS 
 

The conclusions will address, among other observations, the key research subjects introduced in 
Chapter 1 of this report and related to modeling reluctance-assisted PM motors.  The questions were:  
 
 (1) How does reluctance torque improve the performance in a reluctance-assisted PM motor?  
 (2) What can a reluctance-assisted PM motor do that a PM motor cannot do by itself?  
 (3) What are the equations used to model the reluctance-assisted PM motor?  
 (4) How are the effects of magnetic saturation modeled for a reluctance-assisted PM motor? 
 (5) What is the criterion that should be used to define optimum performance?  
 (6) Once optimum performance is defined, how is the optimum magnet fraction determined?  
 
1. Reluctance torque improves the performance of a reluctance-assisted PM motor by adding a 

component of reluctance torque to the torque produced by the PMs. The reluctance torque has its 
strongest contribution in the current-limited region below the base speed in which maximum torque is 
required.  Because there is less magnet material, the back-emf at high speeds is reduced allowing the 
motor to have a wider CPSR.  At high speeds, the additional torque can produce more power.  
Reluctance torque is generated when the stator field tries to pull ferromagnetic poles toward an 
equilibrium location.  The current or voltage-phase angle, if not properly controlled, can oppose the 
PM torque. 

 
2. Thanks to the reluctance contribution, higher-peak torques can be achieved at low speeds for the same 

current limit. This suggests that to improve the performance of a PM motor, one may reduce the 
magnitude of the PM energy in the rotor by reducing the PM thickness or area facing the gap, which 
increases the rotor’s saliency ratio thereby compensating the loss in PM torque with an increased 
reluctance torque.  In turn, the reduction in PM energy results in reduced rate of change of the back-
emf and magnetic-core losses as the speed increases. This increases the speed range, improves the 
efficiency, and reduces the motor’s heat-removal load.  This may play out as a cheaper motor with 
higher-power output, reduced back-emf, increased speed range, and increased efficiency. 

 
3. Equations (24–30) in Chapter 2, which were derived from the equivalent circuit of a synchronous-

reluctance-assisted PM motor in Chapter 1, are applied to develop expressions for attainable voltage 
and current in terms of phase angles of either voltage or current.  These expressions in turn are used 
to optimize power output and efficiency with algebraically-oriented methods using Mathematica in 
Chapter 2 and with numerically-oriented methods using LabVIEW  in Chapter 3.  The impact on the 
speed dependency of maximum-power output and maximum efficiency of a reluctance-assisted PM 
motor from changing the magnet fraction and magnetic strength depends on the control strategy used.  
Below base speed, we have investigated the impact of varying the magnet fraction and thickness by 
trading PM material for iron in an inset PM motor controlled with the optimal-current-phase angle or 
voltage-phase angle for each speed. 

 
4. Most challenging is the characterization of magnetic saturation since, especially in the case of IPM 

motors, the magnetic flux paths vary significantly with the rotor’s position relative to the rotating 
field generated by the stator.  The use of lumped-parameter equations for modeling is appealing since 
it facilitates understanding, but it requires the determination of inductances, resistance, and flux 
linkages with the degree of detail appropriate for the simulation goals. It is best to have measured 
values of the lumped parameters. Next best is to obtain them by means of finite-element 
computations. Most often, though, they are obtained by means of calculations based on geometry, 
equivalent circuits, and adjustment factors as was the case in this study. 
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5. The criteria defining optimum performance determines the parameters that will be optimized.  The 
most common parameters for maximization are power output or efficiency and may flip from one to 
the other depending on the situation.  For this study in which both power output and efficiency were 
maximized using steady-state expressions, the optimal-magnet fraction was minimized to 0.72 
corresponding to a 130° PM pitch angle, and the magnet strength was minimized to 80% of maximum 
which will reduce magnet material cost without impacting the performance. 

 
6. For automotive applications it seems appropriate to focus on efficiency where one should consider the 

speed-torque cycle for each particular application. We thus suggest that, in addition to the standard 
efficiency/torque maps, maximization of the efficiency over a set of standard-driving cycles should be 
a criterion to determine optimal configurations for reluctance-assisted PM motors. 

 
Results of this study indicate that the reduction in PM torque due to reduced magnet fraction will be more 
than compensated by the reluctance torque resulting from the higher saliency ratio.  It seems likely that 
the best overall performance will require saliency; consequently, we think the best motor will be a 
reluctance-assisted PM motor.  Future research should explore the benefit that could be derived increasing 
saliency in the design of other types of PM motors such as fractional-slot motors with concentrated 
windings. 
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