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The development of synthetic pathways to yield advanced functional materials is an 

important aspect of materials science.  In particular, the ability to control and manipulate 

the chemical composition and structure of inorganic nanomaterials is highly desirable.  

Two synthetic approaches which show great promise for producing the next generation of 

functional inorganic nanomaterials are i) templating of supramolecular assemblies[1] and 

ii) ion exchange within nanostructured inorganic solids to manipulate chemical 

composition.[2-4] Templating of supramolecular assemblies of surfactants and amphiphilic 

polymers has already proven to be a powerful technique in synthesizing various inorganic 

structures.  Namely, numerous examples of mesostructured metal oxides (SiO2, TiO2, 

WO3, etc.) have been synthesized by templating the liquid crystalline phases of 

amphiphilic polymers and surfactants (i.e. vesicles, 2D and 3D hexagonal and cubic 

phases, etc.) with inorganic precursors, resulting in the formation of highly ordered 

inorganic-organic hybrid materials.[5-10] Although the templating of supramolecular 

assemblies has been successful in generating highly ordered mesostructured metal oxides, 

there are only a few examples of non-oxidic mesostructured inorganic materials.[11-17]  

The recent developments of ion exchange within nanoparticles offer  a promising 

approach to generating novel nanostructured inorganic materials with unique chemical 

compositions.  Konenkamp et al.[2] and Alivisatos et al.[4] have successfully utilized the 

ion exchange methods to fully transform the chemical composition of simple 

nanostructured inorganic materials while retaining their shapes.  Although the exact 

mechanism by which the ions exchange while retaining the overall structure is still 

unclear, this approach combined with templating of supramolecular assemblies can 

provide a potent technique for obtaining highly ordered inorganic materials with unique 
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structures and chemical compositions.  Herein, we describe for the first time, the 

successful synthesis of highly ordered, mesostructured CuxS, by combining the 

templating of the supramolecular assemblies of non-ionic amphiphilic polymer method 

with the cation exchange method to transform mesostructured cadmium sulfide (CdS) 

into mesostructured copper sulfides (CuS, Cu2S).

Mesostructured CdS has been synthesized previously by direct templating of 

hexagonal mesophase of oligoethylene oxide oleyl ether (C18H35(OCH2CH2)n-OH, n~10, 

Brij 97) in H2O.[12, 18] Precipitation of CdS in the presence of self-assembled Brij 97 

resulted in the formation of 2-dimensional hexagonally structured, inorganic-organic 

hybrid material that retained the long-range order of the original self-assembled 

amphiphilic polymer.  The inorganic portion of these hybrid materials consisted of 

aggregates of CdS nanocrystals that are suitable for cation exchange with other mono and 

divalent metal ions.  Cu2+ ion was chosen to replace Cd2+ ions in the CdS hybrid 

structure, since the formation of CuxS is thermodynamically favorable (∆Gf < 0) and 

highly ordered mesostructured CuxS has not been successfully synthesized by 

supramolecular templating method alone.  Furthermore, nanoparticles of CuxS have 

shown to possess interesting optical properties,[3] therefore, successful synthesis of  

mesostructured CuxS consisting of nanocrystals may lead to interesting properties and 

applications.

The transformation of hierarchically ordered mesostructured CdS to CuxS was 

initiated by addition of Cu2+(aq) ions into finely dispersed mesostructured CdS powder in 

ethanolic solution and analyzed by transmission electron microscopy (TEM). A direct 

comparison between the as-made mesostructured CdS (figure 1a) and to the cation 
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exchanged product (figure 1b) clearly show the similar channel structures and 

hexagonally ordered porous networks.  According to TEM analysis of the mesostructured 

CuxS samples, the inorganic portion of the newly formed mesostructured hybrid material 

consisted of 4 nm thick walls separated by 2 nm cylindrical spaces, which were initially 

formed and occupied by the self-assembled organic polymers. Further analysis of the 

sample showed that the presence of the channels and the porous structures in the newly 

formed hybrid material were ubiquitous, similar to the original mesostructured CdS.  The 

individual particles of the CuxS mesostructures ranged from 50 nm to 500 nm in 

diameter.  The highly ordered mesostructures of the smaller particles were clearly 

evident, whereas the larger particles less clearly resolved, due to the random deposition 

of the samples onto the TEM grid and the thickness of the particles, thus preventing 

observation of their long-range order within a given sample.  High-resolution TEM (HR-

TEM) analyses were performed on both mesostructured CdS and CuxS to obtain detailed 

information regarding the structure of the inorganic portion of the hybrid materials.  HR-

TEM analysis showed (figure 1c, 1d) that the cation exchange process resulted in the 

transformation of crystalline CdS to crystalline CuxS in the inorganic portions of the 

mesostructures.  Selected area electron diffraction (SAED) measurements of both 

samples (figure 1a, 1b insets) also confirmed that both were crystalline.

In order to confirm the chemical composition of the newly formed mesostructured 

hybrid materials, individual particles were analyzed by energy dispersive X-ray 

spectroscopy (EDS).  Figure 2a and 2b show the EDS spectra of the mesostructured 

materials before and after the cation exchange process.  EDS spectra of the 

mesostructured CuxS (figure 2b) clearly show well defined Cu Kα (8.04 keV), Lα (0.92 
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keV) peaks along with the sulfur Kα peak at 2.3 keV.  More important, however, was the 

absence of cadmium Lα peaks at 3.1 keV and Lβ at 3.3 keV in the EDS analysis of the 

hexagonally ordered CuxS mesostructures, confirming the total exchange of cations 

during the transformation process from CdS to CuxS.  It is important to note that the Cu 

Kα and Kβ peaks observed in figure 2a are due to the copper grid used during the 

analysis.  However, a clear distinction between the CuxS sample and copper grid can be 

made by comparing the Cu L line in the EDS spectra which is much more prominent in 

figure 2b. X-ray fluorescence (XRF) measurements along with X-ray absorption 

spectroscopy (XAS) were also performed on mesostructured CuxS that corroborated the 

EDS results.[19]

The initial indication of successful cation exchange of Cu2+ for Cd2+ ions in the 

mesostructured CdS was an immediate color change upon addition of Cu2+ ions to the 

mesostructured materials in ethanolic solution.  The shift in the absorption bands of the 

mesostructured materials during the transformation was monitored by UV-Vis 

spectrophotometery.  The UV-Vis spectra of the as-made mesostructured CdS show 

strong absorption bands at 485 nm (figure 3a), due to the exciton transition within 

individual CdS nanocrystals.  When Cu2+ ions were introduced to the as-made CdS 

samples, however, a dramatic blue shift was observed (figure 3b).  The newly formed 

mesostructured CuxS shows a broad band with λmax at 375 nm, which, according to 

previously published results,[20, 21] is indicative of Cu2S nanoparticle formation.  It is 

interesting to note that we specifically observed an absorption band for Cu2S, when in 

fact Cu2+ ions were added to the mesostructured CdS.  It is well known that aqueous 

formation of copper sulfides is complex and can produce both CuS and Cu2S depending 
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on the reaction conditions.[22-24] Therefore, it may be possible that we have a mixture of 

both Cu2S and CuS nanoparticles, which we are currently investigating. The breadth of 

the peak at 375 nm can be attributed to the polydispersity of the CuxS nanocrystals within 

the mesostructures.

TGA analysis was also performed on both mesostructured CdS and CuxS 

materials to determine the concentration of the amphiphilic polymer within the hybrid 

materials.  As seen in figure 4a, weight loss from the mesostructured CdS occurs in two 

distinct stages.  The initial weight loss of 7%, which occurs from the onset, is attributed 

to the loss of water physisorbed on to the inorganic solids and the ethylene oxides 

moieties of the amphiphilic polymer.  The second step of weight loss, which occurs 

between approximately 200 ºC and 350 ºC, is due to decomposition of the amphiphilic 

polymer.  The total weight change due to the amphiphilic polymer is approximately 15 

%.  Although the initial concentration of the polymer during the synthesis of the 

mesostructured CdS is much greater, excess polymer, which did not part-take in the 

formation of the hybrid materials, is removed during the recovery process of the 

inorganic-organic composite materials in multiple rinsing cycles.  Therefore, the 

remaining polymer component after the rinse cycles is thought to reside within the 

mesostructures occupying the void spaces in between the inorganic solids (i.e. channels 

and pores).  The mesostructured CuxS materials were also subjected to the same TGA 

analysis.  It can be seen in figure 4b that the profile of the TGA curves for CuxS sample 

are similar to that of CdS sample.  However, the total weight change due to water and the 

polymer in the CuxS materials is much lower (~ 5 wt%) than for the CdS sample.  We 

attribute the differences in the overall weight loss between mesostructured CdS and CuxS 
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materials to the loss of incorporated polymers during the cation exchange process, as well 

as during the recovery process of the newly formed CuxS materials.   Although the 

presence of the amphiphilic polymer is critical in obtaining the mesostructured CdS, it 

appears that during the cation exchange process, the presence of the amphiphilic polymer 

is not required to retain the overall morphology.  The ability to retain the mesostructures 

during the cation exchange process in the absence of the templating organic molecules 

once again reemphasizes the versatility of ion exchange method in transforming 

nanostructured inorganic materials.

In summary, a successful morphological transformation of ordered 

mesostructured CdS to CuxS was achieved for the first time.  The precise mechanism of 

cation exchange in the mesostructured CdS, while retaining their structure, is unknown at 

this time. Nonetheless, the overall integrity of the mesostructures is retained after the 

cation exchange process.  The newly formed Cu2S structures are composed of 4 nm Cu2S 

nanoparticles with no residual CdS structures present.  The formation of Cu2S 

nanoparticles in the mesostructured Cu2S may have interesting optical and electronic 

properties, which we are currently investigating.  This new method of material synthesis, 

which incorporates the versatility of supramolecular assembly templating techniques with 

the ion exchange method, provides a potent tool for fabricating highly ordered inorganic 

nanostructures, with various chemical compositions, which are otherwise difficult to 

synthesize. 
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Experimental

Synthesis of mesostructured CdS
Mesostructured cadmium sulfide was synthesized according to procedures detailed in 
published literature.[18] Typically, liquefied Brij 97 was added to a scintillation vial along 
with 0.50 ml of 0.1M Cd(NO3)2.  The capped vial was then heated to 90 ºC and shaken to 
yield a homogeneous mixture.  Subsequently, the homogeneous mixture was allowed to 
cool to room temperature which resulted in formation of a clear gel. The uncapped 
scintillation vial was then transferred to an Erlenmeyer flask with inlet and outlet ports.  
The precipitation of mesostructured CdS was initiated by flowing hydrated H2S gas to the 
Erlenmeyer flask containing the scintillation vial for 30 min.  The resulting 
mesostructured CdS gel was rinsed excessively in 50/50 vol % solution of diethyl 
ether/ethanol and dispersed by sonication.  The final product was recovered through 
centrifugation.

Synthesis of mesostructured CuxS 
The cation exchange process of mesostructured CdS to CuxS was initiated by adding 
dropwise aqueous copper sulfate solution (270mM) to a dispersion of mesostructured 
CdS in ethanolic solution (50mg CdS/Brij 97 in 10mL ethanol, 27mM) over a period of 5 
minutes.  The mixture was allowed to react and age at room temperature for a minimum 
of 3 hours.  The resulting product was rinsed several times with ethanol/water mixture 
and recovered by centrifugation yielding a black/brown powder. 
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Figure Captions

Figure 1) TEM images of a) mesostructured CdS and selected area electron diffraction 
(inset), and b) mesostructured CuxS and selected area electron diffraction (inset). 
Energy dispersive X-ray spectra of mesostructured CdS and CuxS are shown in c) 
and d) respectively. TEM measurements were made on Philips FEG CM300, 
operating at 300 kV using copper grid with lacey formvar .  The scale bar = 20 
nm.

Figure 2) UV-Vis absorption spectra of a) mesostructured CdS with λmax = 485 nm and b) 
mesostructured CuxS with λmax = 385 nm.  UV-Vis absorption measurements 
were made with PerkinElmer Lambda 25 Spectrometer.

Figure 3)  TGA spectra of a) mesostructured CdS and b) mesostructured CuxS under 
nitrogen.  TGA analyses were performed on Mettler TG50 thermobalance system 
at heating rate of 10 ºC/min.
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Figure 1
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Figure 2
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Figure 3
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